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Abstract

Bayesian neural networks (BNNss) retain NN structures with
a probability distribution placed over their weights. With the
introduced uncertainties and redundancies, BNNs are proper
choices of robust controllers for safety-critical control sys-
tems. This paper considers the problem of verifying the
safety of nonlinear closed-loop systems with BNN controllers
over unbounded-time horizon. In essence, we compute a safe
weight set such that as long as the BNN controller is al-
ways applied with weights sampled from the safe weight set,
the controlled system is guaranteed to be safe. We propose
a novel two-phase method for the safe weight set computa-
tion. First, we construct a reference safe control set that con-
straints the control inputs, through polynomial approximation
to the BNN controller followed by polynomial-optimization-
based barrier certificate generation. Then, the computation of
safe weight set is reduced to a range inclusion problem of the
BNN on the system domain w.r.t. the safe control set, which
can be solved incrementally and the set of safe weights can
be extracted. Compared with the existing method based on
invariant learning and mixed-integer linear programming, we
could compute safe weight sets with larger radii on a series
of linear benchmarks. Moreover, experiments on a series of
widely used nonlinear control tasks show that our method can
synthesize large safe weight sets with probability measure as
high as 95% even for a large-scale system of dimension 7.

Introduction

Deep neural networks (DNN5s) are capable of dealing with
decision making tasks in a variety of areas, such as medi-
cal diagnosis, face recognition and so on. Especially, DNNs
have been used successfully in control of cyber-physical sys-
tems such as unmanned aerial vehicles, self-driving cars, etc
(Squires, Pierpaoli, and Egerstedt 2018). However, DNNs
are still not widely applied to safety-critical systems in prac-
tice because they may behave in unexpected ways in re-
sponse to inputs leaving known grounds. In fact, uncertainty
is everywhere in the real-world situation including model-
ing uncertainty (also called epistemic uncertainty) and data
uncertainty (Oliver Diirr 2020; Han, Jasour, and Williams
2022). Bayesian neural networks (BNNs) retain the struc-
tures of neural networks and place distributions over their

*Corresponding author.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

15278

weights (Neal 1996). This allows learning uncertainty in
the data and the network’s prediction, while preserving the
strong modelling capabilities of DNNs (Lee et al. 2019;
McAllister et al. 2017). BNNs are proper choice for con-
trollers of safety-critical systems by introducing redundan-
cies to tackle the safe control problem more robustly (Lee
et al. 2019).

Because of the probabilistic nature of BNNs, the closed-
loop systems may exhibit unsafe behaviors under the BNN
controllers. So safety verification of BNN controlled sys-
tems amounts to computing a safe weight set from the sup-
port set of the distribution of the BNN’s weights, such that
when restricted to the safe weight set, the BNN controller
not only retains the redundancies of control but also guar-
antee the safe behaviors of the systems. A similar research
topic is verifying safety of the closed-loop systems under
DNN controllers, which has been extensively studied (Zhao
et al. 2021; Deshmukh et al. 2019; Ivanov et al. 2019; Tran
et al. 2020; Yang et al. 2021). Comparably speaking, the
safety verification of BNN controllers has drawn less atten-
tion except for (Lechner et al. 2021). Verifying even simple
properties about DNN is NP-complete (Katz et al. 2017),
and verification for BNN means at least verifying any deter-
ministic DNN sampled from the BNN’s posterior distribu-
tion (Wicker et al. 2020). So it is conceivable that the verifi-
cation of closed-loop systems with BNN controllers is a big
challenge, and results on verification of systems with DNN
controllers cannot be employed straightforwardly.

Recently, (Lechner et al. 2021) first defined the safety ver-
ification problem for discrete-time dynamical systems with
BNN controllers. They compute the safe weight set W, with
width €, and iteratively increase € to explore a W, as large
as possible, which ensures the infinite time horizon safety
condition, i.e. existence the safe inductive invariants. They
use supervised learning to synthesize neural network invari-
ants as safety certificates, whose rigorousness is checked
by mixed-integer linear programming (MILP) solvers. For
their method to work, the original continuous dynamical sys-
tems in the safety control benchmarks need to be discretized
first. In addition, the scalability and efficiency of the method
is limited by MILP/SMT-solver-based inductive invariants
checking. Furthermore, when seeking for larger safe weight
sets, results about smaller safe weight sets and correspond-
ing invariants cannot be reused, which makes their iterative



synthesis framework less systematic and efficient.

In this paper, we study the problem of safety verifica-
tion for nonlinear continuous dynamical systems with BNN
controllers over unbounded-time horizon. To begin with, we
introduce a concept of safe control set such that when all
control inputs are restricted to this set then safety of the
controlled system is guaranteed. We propose a novel two-
phase method to yield safe weight sets, which starts with the
construction of a safe control set by means of polynomial
optimization solving method, and proceeds by identifying
the weights from the BNN’s posterior distribution to con-
struct the safe weight set via range inclusion computation.
In the first phase, we build a DNN with weights selected as
the mean of the BNN’s posterior distribution, and compute
its polynomial approximation as a reference controller, and
then the safe control set is obtained by maximizing a pertur-
bation interval around the polynomial reference controller
in order to capture the largest possible range of safe con-
trol actions. In the second phase, we sample weights w from
the BNN’s posterior distribution, and try to verify that the
DNN with weights taken from a neighborhood of w maps
all states in the system domain to the obtained safe control
set, and then we accumulate the verified neighborhood of w
to obtain the safe weight set incrementally.

Compared with (Lechner et al. 2021), our method has
the following prominent features. First, it can directly deal
with the continuous dynamical systems commonly studied
for safety control problems without discretization. Second,
it computes the safe control set as a reference and incremen-
tally constructs the safe weight set by accumulating small
safe weight subsets rather than treats the whole safe weight
set as a hyper-rectangle, thus being able to capture finer and
larger safe weight sets, which is confirmed by the experi-
mental results. Third, on the solving efficiency and scalabil-
ity, our method based on polynomial abstraction and poly-
nomial optimization is more efficient and applies straight-
forwardly to nonlinear systems even with high dimension.

In summary, the main contributions of this paper are as
follows: 1) We formally define the infinite-time-horizon-
safety control problem for continuous dynamical systems
with BNN controllers, and introduce a methodology for syn-
thesizing the safe weight set of the BNN ensuring the safety
of the controlled system; 2) We introduce the notion of ref-
erence safe control set as a bridge between the safety of
the system and the safe weight set of the BNN, which en-
ables us to construct the safe weight set incrementally by
accumulating any verified safe weight subset; 3) We present
a computational method to yield a reference safe control
set by solving a polynomial optimization problem result-
ing from the barrier certificate synthesis, and develop an
interval-analysis-based algorithm combined with Lipschitz
constant estimation for yielding the safe weight sets; 4) We
evaluate our approach on a set of benchmarks, demonstrat-
ing that it compares favorably with the existing algorithm.

Related Work
Neural network (NN) controllers have been used in control
of continuous dynamical systems for long, and recently re-
gained popularity with the prosperity of deep reinforcement
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learning (Duan et al. 2016; Lillicrap et al. 2016). To improve
the reliability and interpretability of NN control, researchers
are beginning to introduce measurement of uncertainty in
control actions, and thus the adoption of BNN controllers is
on its way. In particular, (McAllister et al. 2017) systemati-
cally discussed the advantages of Bayesian deep learning for
different layers of the autonomous driving architecture, and
strongly advocated the Bayesian decision approach; (Lee
et al. 2019) used an ensemble BNN structure to compute
the prediction uncertainty of end-to-end BNN controllers
based on different sensors, and choose the least uncertain
one as the applied control action to a safety-critical system;
(Loquercio, Segu, and Scaramuzza 2020) presented a gen-
eral framework for uncertainty estimation of neural network
predictions based on Bayesian belief networks, and demon-
strated its effectiveness on a steering angle prediction task.

With the boom of NN control, stability and safety issues
of NN-controlled systems are drawing more and more atten-
tion in the control and Al community (Anand et al. 2021;
Dawson, Gao, and Fan 2022; Everett 2021). Compared to
the research on safe NN controllers, formal verification for
pure BNN or BNN-controlled systems is much newer and
there are a few works on this topic: (Wicker et al. 2020)
studied the probabilistic safety for BNNs, by computing the
probability of weights w.r.t. the posterior distribution us-
ing linear bound propagation, such that a given input set is
mapped to a target set under these weights; (Cardelli et al.
2019) studied a similar robustness problem to (Wicker et al.
2020) for BNNs, but adopted a statistical verification ap-
proach to compute the probability of robustness safety with
a prescribed error bound and confidence, by sampling from
the posterior distribution; (Michelmore et al. 2020) extended
the statistical verification approach to end-to-end driving
with BNN controllers, which can compute both real time de-
cision uncertainty and bounded-time trajectory safety, with
statistical guarantees; (Wicker et al. 2021) computed reach-
avoid probabilities for closed-loop systems with iterative
BNN predictions, where BNN is used to model system dy-
namics rather than controllers.

Cheng et al. pointed out that in safety-critical applica-
tions such as autonomous driving, it is necessary to provide
extremely low safety failure probability on the order 108
over a given planning horizon (Cheng, Murray, and Burdick
2021). Therefore it is desirable to pursue absolute safety
with an infinite time horizon. To the best of our knowledge,
(Lechner et al. 2021) proposed the first and only infinite time
horizon safety verification approach for closed-loop system
with BNN controllers. Our approach differs from it in that
we consider continuous dynamical systems and propose a
novel efficient framework for incremental construction of
the safe weight set based on polynomial optimization.

Preliminaries and Problem Statement

Throughout this paper, R denotes the set of real numbers,
R[x] denotes the polynomial ring with coefficients in R
over X = (1,22, -+ ,2,)7, and X[x] C R[x] denotes the
space of Sum-of-Squares polynomials. For a random vector
x ~ p(x), we use supp(p(x)) to denote the support of the
distribution p(x) of x. Let || - || denote the 2-norm.



Bayesian Neural Networks

A typical neural network (NN for short) consists of an in-
put layer, an output layer, and multiple hidden layers in be-
tween. Each neuron in some hidden layer ¢; is assigned by
a linear combination of the neuron outputs of the previous
layer, and then applying a non-linear activation function ¢,
ie., KZ(X) = ¢(W1X -+ bl), w, € Rnixni*l,bi € R™,
where n; is the number of neurons in layer /;. So a neural
network is essentially a composite function of its layers, i.e.,
T=4{,0---0/.

Despite NN is an important machine learning (ML)
model, it lacks reflection of the uncertainty when leaving
known grounds. The Bayesian neural network (BNN for
short) models the epistemic uncertainty well by placing a
probability distribution on the weights and biases of a tra-
ditional NN. For simplicity, we denote a BNN by 7%

[(¥Pr oo PR and call w, the vector random vari-
able collecting all the weights and biases in the network, the
weights of a BNN. For any sampled value w of w, a BNN
becomes a deterministic NN, denoted by 7*.

When training a BNN model, it is assumed its weights
obey some prior distribution, i.e., w ~ p(w). Then learn-
ing the BNN is essentially computing the posterior distribu-
tion ¢(w|D) under the Bayes rule. As the function of the
BNN model is highly nonlinear, computing such a condi-
tional distribution ¢(w|D) is of high complexity and infea-
sible in general. The commonly used BNN training algo-
rithms are based on efficient approximate inference tech-
niques, e.g., variational inference (VI) (Blundell et al. 2015),
Monte Carlo dropout (MC dropout) (Brooks et al. 2011), etc.

Problem Statement

Consider a continuous dynamical system of the form x =
f(x), where f = (f1,---, f,)7 is the vector field defined on
the state space D C R™. We assume that f satisfies the local
Lipschitz condition, so that the system has a unique solution
x(t,x0) in D for xo € D. In many contexts, a dynamical
system is equipped with a domain ¥ C D and an initial
set © C W, represented as a triple C = (f,0, ¥), called a
constrained continuous dynamical system (CCDS).

Definition 1 (Safety) For a CCDS C = (f,0,V) and a
given unsafe region X, the system is safe if for all xy € O,
there does not exist t1 > 0 s.t. ¥Vt € [0,11].x(t,%¢) € ¥
and x(t1,x0) € X, that is, the system’s trajectory never
reaches X, from © as long as it remains in V.

A controlled continuous dynamical system is modeled by
first-order ordinary differential equations (ODE)

% =f(x,u) with u=Xk(x)

ey

where x € VU, f is a locally Lipschitz continuous vector
filed, u € U with U C R™ an admissible control set, and
k : R® — R™ is a locally Lipschitz continuous controller
function. In this paper, we will adopt the notion of state-
wise admissible control set, i.e. Uy C R"™ defined per state
x, which is used to restrict the control input u such that for
allx € ¥, u = k(x) € Ukx.

In this paper, we investigate the safety of the closed-loop
system (1) with a BNN controller k. We focus on systems
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in form of ODE mainly to validate the functionality of the
proposed BNN safety verification approach, which can be
extended to deal with more practical stochastic systems in
future. Since the output of a BNN 7% is probabilistic, we
must clarify how to apply it to (1). To this end, we introduce
the following two definitions:

Definition 2 (Continuous Instantiation of BNN) Given a
BNN 7 with weights w ~ q(w) and a set W C supp(q(w)),
a locally Lipschitz continuous function w(t) is called a con-
tinuous instantiation of ™ from W, if Vt > 0.w(t) € W.

Definition 3 (Continuous BNN Controller) Given a BNN
™ with weights w ~ q(w) and a set W C supp(q(w)),
any continuous instantiation of T from W can be used as

a controller in (1) in such a way that for all t > 0 and
x(t) € ¥, u = 7V (x(t)).

We consider the safety of (1) with BNN controllers 7% as
per Definition 3. Since supp(q(w)) is usually an unbounded
set for distributions such as Gaussian, the safety of (1) can-
not be guaranteed if w is arbitrarily instantiated. Therefore
it is necessary to capture a safe weight set from supp(q(w)),
which gives the following safety problem that we focus on:

Problem 1 (Safety for BNN Control) Given a controlled
CCDS C = (f,0, V) with f defined by (1), an unsafe region
X, and a BNN controller T with w ~ q(w), determine
a set W C supp(q(w)), such that for any continuous in-
stantiation w (t) of the BNN from the set W, the system with
controller ™) is safe as per Definition 1. Such a set W is
called a safe weight set.

In this work, we propose a method to compute a safe
weight set W such that the safety property of the controlled
system is guaranteed. Meanwhile, we compute the proba-
bility measure of W w.r.t ¢(w) to evaluate how restrictive
the safe weight set is. The higher probability measure W
has, the more flexibility it gives to the implementation of the
BNN controller.

Barrier Certificate for Safety Verification

The concept of barrier certificate plays an important role
in safety verification of continuous systems. The essential
idea is to use the zero level set of a differentiable function
B(x) as a barrier to separate all the reachable states from the
unsafe set. The following theorem states the conditions that
must be satisfied by a barrier certificate.

Theorem 1 (Prajna, Jadbabaie, and Pappas 2007) Given
a CCDS C = (f,0, V) and an unsafe region X,, if there ex-
ists a real-valued differentiable function B : ¥ — R satisfy-
ing the following conditions: i) Vx € ©.B(x) > 0, ii) Vx €
X,.B(x) < 0; iii) ¥x € W.(B(x) = 0 = LeB(x) > 0),
where Lg B(x) denotes the Lie-derivative of B(x) along the
vector field £(x), i.e., LeB(x) = Y1) 82 - fi(x), then
B(x) is called a barrier certificate of C, and the safety of C
is guaranteed.

For a controlled CCDS C = (f, ©, ¥) with f defined by (1),
a feedback controller k can be used to ensure the safety of C,
if there exists a barrier certificate for the closed-loop system



under k. In this paper, we solve Problem 1 by synthesizing
barrier certificates for C controlled by a BNN 7%,

To facilitate the presentation in the rest of this paper, we
will make the following two assumptions.

Assumption 1 The BNN controller ™ has one output neu-
ron, i.e., the controller win (1) is a scalar.

Assumption 2 The controlled CCDS C = (f,0,7) is of
polynomial form, that is, £ is polynomial, ©, U, as well as
the unsafe set X,, are all semi-algebraic sets defined by
polynomial equations and inequalities, represented by © :=
{xeR"|gi(x) >0, 1 <i<k},¥:={xeR"|hj(x)>
0, 1 <j<i}, Xy ={xeR"|gr(x) >0, 1<Ek<v}
where q;(x), hj(x) and g (x) are polynomials.

‘We remark that the proposed approach is not limited by these
assumptions. For non-polynomial systems, we can abstract
the non-polynomial term in the system specification into a
polynomial inclusion by means of the Taylor model (Chen,
Abrahém, and Sankaranarayanan 2012).

Main Results

In this section, we first introduce a proposition that lays
the foundation of our method and then present the detailed
design of our method for safe weight set computation. All
proofs and algorithm details can be found at https://github.
com/Estellaly/Safety- Verification-of-Bnn-Controllers.

Framework of the Safe Weight Set Synthesis

Our idea is to first construct a state-wise admissible control
set Ux for each x € W such that the system is guaranteed
to be safe when the range of k(x) is restricted to Ux. We
next try to extract a set W of weights such that for any con-
tinuous instantiation 7% from W, and for any x € VU,
7% (x) € Uy. Then such W is a safe weight set by defini-
tion. To this end, we formally introduce the following defi-
nition and propositions.

Definition 4 (Safe Control Set) Fora CCDS C=(f,0, )
with f defined by (1) and a given unsafe region X, a state-
wise admissible control set Uy is called a safe control set
if the closed-loop system under any continuous controller
k(x) s.t. k(x) € Ux, Vx € U is guaranteed to be safe.

Proposition 1 For a controlled CCDS C = (f,0, V) with f
defined by (1), if there exists a state-wise admissible control
set Uy such that there exists a uniform barrier certificate
for the closed-loop system with any controller k satisfying
Vx € W.k(x) € Uy, then Uy is a safe control set.

Proposition 2 Given a controlled CCDS C = (f,0,7), a
BNN controller ™™ with w ~ q(w), and a safe control set
Uy, a set W C supp(q(w)) is a safe weight set if 7" (x) C
Uy for all x € U, where ™V (x) = {7%(x) | w € W}.

Based on Propositions 1 and 2, our safe weight set con-
struction method consists of two main steps, i.e. safe con-
trol set construction and safe weight set extraction, as illus-
trated by the framework in Fig. 1. The box in the bottom
left of Fig. 1 shows the safe control set construction pro-
cess. We construct the safe control set Ux as a polynomial
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interval model. Briefly, we use 7 with u the mean weight
of the BNN'’s posterior as a reference controller, and com-
pute a polynomial approximation p(x) of 7* for tractability.
Then Uy is expressed as p(x) plus an interval [—v, ], with
~ computed through polynomial optimization which simul-
taneously ensures the existence of barrier certificates for the
safety of p(x) +[—~, 7]. The right part of Fig. 1 corresponds
to the safe weight set extraction process. Briefly, we sample
w’ from the BNN’s posterior and construct a neighborhood
around w’ as a candidate safe weight subset, and then we
check the validity of such a candidate by solving a range in-
clusion problem for the BNN 7% on the system domain ¥
w.r.t. the safe control set p(x) 4+ [—,7]. We next present the
detailed procedures.

Safe Control Set Construction

Given a controlled CCDS C = (f, 0, ¥) with f defined by

(1), a given unsafe region X, and a BNN controller 7wt
with w(t) ~ ¢g(w), we synthesize a safe control set using
the concept of barrier certificates in this subsection.

Polynomial approximation for BNN controllers Let 7
be the BNN with a single output, and the case with multi-
ple outputs can be dealt with similarly. Let ¢ be the mean
of g(w), and 7 (x) corresponds to a deterministic neural
network. We consider computing a polynomial p(x) to fit
" (x) by sampling-based method. At first, we construct a
template polynomial p(x|6) with dimension n, which is con-
sistent with the system dimension, and a pre-assigned to-
tal degree 7. Let [x], be the vector consisting of mono-
mials with degree at most 7, and the dimension of [x], is
("*7). Then the polynomial template is written as p(x|0) =

67 [x]. Next, we construct a dataset D = {x;}¥; by col-
lecting the sampling points on the trajectories of the system
under the controller 7# to ensure good quality of the data.
Then the problem is reduced to fitting the polynomial p(x|60)
for 7+ (x) on the dataset D = {x;}¥ . Solving for the co-
efficient parameter 6 is through the least square program-
ming: 6* = argming & SN | (7#(x) — p(x;|#))?. Thus,
we could obtain the polynomial approximation p(x) for the
controller 7 (x).

Maximal safe control radius around p(x) The remain-
ing task is to find a safe radius around the polynomial p(x)
and construct the safe control set. We introduce a polyno-
mial interval model Z(x) = p(x) + [, y] with a parameter
~ > 0, and try to make Z(x) a safe control set as per Defini-
tion 4. For the model Z(x), the state-wise admissible control
set is given by Ux = Z(x) = [p(x) — 7, p(x) + 7]. We em-
ploy barrier certificates to compute a proper -y and establish
the safety for the closed-loop system under all controllers
k(x) satisfying ¥x € ¥, k(x) € [p(x)—~,p(x)+7]. In fact,
any such k(x) can be expressed in the form p(x(t))+e€; with
€; continuously varying within [—~, ] for ¢ > 0. Then we
try to synthesize a barrier certificate for the closed-loop sys-
tem with polynomial controller p(x) + € with € € [—, 7] by
abstracting ¢ away for simplification. We assume a polyno-
mial barrier certificate template B(x|b) = b”[x], of degree

d in x, with b a vector of dimension (";d) and the canonical
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Figure 1: The framework of safe weight set generation for BNN controllers

basis [x]4 of monomials. In order to obtain a largest possi-
ble safe control set, we maximize y while imposing the con-
straints for the existence of barrier certificate B(x|b) on the
closed-loop system with controller p(x) + €, which results
in the following optimization problem:

Vopt = Maxy
s.t. B(x|b) > 0,V¥x € O,
B(X|b) =0 = Ef(x7p(x)+e)B(X|b) > 0,

Vx € U AVe € [—,7],
B(x|b) < 0,¥x € X,,.

@

Then, the Sum-of-Squares (SOS) relaxation technique
(Papachristodoulou et al. 2021) is applied to encode the opti-
mization problem (2) as an SOS program. We have encoded
the constraint Ve € [—~,~] for € involved in the polyno-
mial L (x p(x)+o) B(x|b) into h(y,€) > 0 with h(y,€) :=
(7 + €)(y — €). Thus, the problem (2) can be transformed
into the following optimization problem

v* = max~y

b,y
st B(x[b) =3, 65(x)g;(x) € X[x],
Le(x.0)B(x[b) = Alx JB(x b) =32, pi(x)h;(x) ¢ B
—£(x,€)h(7,€) — €1 € B[x],
—B(x[b) — €2 = 37 r;(x)g;(x) € %[x],
where €1, €2 > 0, the entries of 6,(x), p;(x), k;(x) € X[x],
&(x,€) € X[x, €], and A\(x) € R[x]. Clearly, the feasibility

of the constraints in (3) is sufficient to imply the feasibility
of the constraints in (2), and thus the optimum of (3) is a
lower bound of the optimum of (2), i.e., v* < vjpt. There-
fore, the safe control set generation problem is transformed
into a non-convex bilinear matrix inequalities (BMI) prob-
lem (3), which can be solved by a Matlab package PENBMI
(Kocvara, Stingl, and GbR 2005). If (3) is feasible then the
solution b* and optimum ~* result in a barrier certificate
B(x|b*) for all controllers p(x) + € with ¢ € [—*,~v*].
Furthermore, we have

Proposition 3 Z(x) = p(x) + [—*,v*] with v* produced
by (3) is a safe control set.
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Safe Weight Set Construction for BNN

We use the computed safe control set Z(x) = p(x)+H—7*,7*]
to extract a safe weight set according to Proposition 2. The
computation of the exact safe weight set W is not straight-
forward. We provide a method to compute a verified subset
W of the exact set, and meanwhile calculate the probability
measure of W w.r.t. the BNN’s posterior distribution.

The intuitive idea can be illustrated by Fig. 2. For a BNN
7™ with w ~ N (w|u,X) obtained by VI, we build small
safe weight subset candidates which are hyper-rectangles
centered at sampled points from N (w|u,X), ie., w; =
[w] — AX, w] + AX] with w] ~ supp(N (w|u, X)). Next, ac-
cording to Proposition 2, we need to check that for each can-
didate w; the inclusion condition Vx € ¥.7%Vi(x) C Z(x)
holds, which can be reduced to checking the validity of Vx &
x;.mVi(x) C I(x),Vj =1,--- s, where {X1,X2,...,Xs}
is a partition of W. Finally, W is taken as the union of all
verified candidates w;.

Range inclusion for BNN Let x be an arbitrary partition
block of ¥ and w be a safe weight subset candidate. From
the above discussion, we need to verify Vx € y.7%(x) C
Z(x). Here we present an efficient way to check this inclu-
sion using Lipschitz constant estimation. The local Lipschitz
constant of a function ¢ w.r.t. a nominal input xg € X is the
minimal L, > 0s.t. ||p(x) — ¢(x0)|| < Ly||x — x|, Vx €
X, denoted as L (xo, x). Then, the following proposition
can be used to verify the desired inclusion relation.

Proposition 4 Ler ¢V (x) = 7%V (x) — p(x). For a nominal
input xg € X we denote the local Lipschitz constants for
7V (x) and p(x) as LY (x¢, x) and L,(xo, x) respectively.
Further, let L = maxwew LY (X0, X) + Lp(X0, X). Then if
maxwew ||¢% (x0)|| + L||x — x| < ~* for all x € x, we
have Vx € x.7%(x) C Z(x).

Then we are ready to present the safe weight set genera-
tion algorithm for BNNs (SWB for short) in Algorithm 1.
Line 9 calls a subroutine local_L() to compute the Lips-
chitz constants as specified by Proposition 4. The estima-
tion of Lipschitz constants for DNNs has been addressed in
(Fazlyab et al. 2019; Ruan, Huang, and Kwiatkowska 2018;
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Figure 2: Safe weight set construction based on partition. The right part depicts small subsets w; by sampling w) ~ N (w|u, 2),

and the left depicts the partition of system domain W.

Algorithm 1: Safe weight set construction for BNN con-
trollers (SWB)

Input: system domain ¥, BNN policy 7%, weight posterior
w ~ N (-|u, X), safe control set [p — v*, p + v*], number of
partitions s, number of samples N, A > 0, partition size d;
Output: safe weight set W; probability measure pgq fe;

1: split ¥ into {Xq, ..., X5} with partition size J;

2: W+ 0

3: fork=1— N do

4 W ~N( ) W [w = ASw + A
5. isSafe + True;

6: fori=1— sdo

7: x; — (xF+xV)/2;

8 [lo0a)] < maxwes 7% (x:) — p(x:)l;
9: L + local _\L(x4,6, W, p);

10: if [|¢(x;)|| + Ly/nx0 > ~* then

11: isSafe + False;

12: break;

13: end if

14:  end for

15:  if isSafe then

16: W+ WUw;

17:  end if

18: end for

19: W + removeDuplicates(W);

20: psafe < computeProbability(W);
21: return W, pyqre;

Szegedy et al. 2014). Here we extend the result in (Avant
and Morgansen 2021) to Lipschitz constant estimation for
BNNSs. The ny in Line 10 denotes the system dimension.
Line 19 is based on (Wicker et al. 2020). In Line 20, we use
the error function (erf) (Andrews 1998) to compute the re-
turned probability measure. The correctness of Algorithm 1
can be stated as the following theorem.

Theorem 2 The W computed by Algorithm 1 is a safe
weight set as per Problem 1.

Experiments

In this part, we evaluate our approach on the piecewise-
linear benchmarks from (Lechner et al. 2021) and make a
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comparison with the results reported therein. Furthermore,
we demonstrate the effectiveness of our approach on some
nonlinear benchmarks. All our experiments are carried out
on a virtual machine equipped with a 64GB RAM, an In-
tel(R) Core(TM) i19-10900K CPU, and an NVIDIA GeForce
RTX 3090 super GPU. More details of the experiments can
be found at https://github.com/Estellaly/Safety- Verification-
of-Bnn-Controllers.

For each safe control task, the BNN controller is obtained
as follows. For benchmarks from (Lechner et al. 2021), we
use their publicly available BNNs at Github. For the non-
linear benchmarks, we train BNN controllers in two steps:
firstly, we apply Model Predictive Control (MPC) to gen-
erate the MPC controller and simulate the systems’ trajecto-
ries to construct a dataset of state-action pairs; subsequently,
Variational Inference is applied to train a BNN controller
consisting of a hidden layer with 16 ReLU units with Gaus-
sian distribution prior on all its weights, utilizing the data
generated by MPC. Actually, our method doesn’t rely on the
MPC controller synthesis and the BNN training, which only
provides BNN inputs to our algorithm.

For each BNN controller, we first compute the safe con-
trol set in the form of p(x) + [—~, 7], where p(x) is com-
puted through a least square programming and v is com-
puted with barrier certificate generation via an encoded SOS
relaxation programming using the Matlab package PENBMI
(Kocvara, Stingl, and GbR 2005). Then we apply Algorithm
1, named SWB, to compute the safe weight set W and its
probability measure, denoted by Fswg. Since the construc-
tion by Algorithm 1 is incremental, our generated W con-
sists of a series of disjoint high-dimensional intervals. It is
statistically reasonable to find one such interval, denoted by
Sy, that contains the mean weight of the BNN’s posterior,
because the safe control set is computed around a polyno-
mial approximation p(x) to the posterior’s mean, and the
sampled weights (up to 5000 points) in Algorithm 1 also
have largest probability density around the posterior’s mean.

Table 1 shows the comparison results between our ap-
proach (SWB) and the Bootstrapping method in (Lechner
et al. 2021). We conduct experiments on three benchmarks
provided in (Lechner et al. 2021). For each benchmark,
we verify two BNN controllers reported in (Lechner et al.
2021): one with Bayesian weights from the second layer



verified radius probability

Benchmark v degp(x) deg B(x) re, s Paw  Ps, P,
Unstable LDS 0.5 2 2 200 20 0.93 045 0.45
Unstable LDS (all) 04 2 2 230 0.50 0.90 0.12 3.6e-41
Pendulum 0.8 3 2 240 20 0.96 0.76 0.45
Pendulum (all) 1.8 3 2 240 150 0.82 0.20 9.0e-7
Collision avoid. 0.2 2 2 340 2.00 0.99 0.99 0.09
Collision avoid. (all) | 0.5 2 2 300 1.50 095 0.71 7.0e-11

Table 1: Comparison between our approach and (Lechner et al. 2021) on the same benchmarks

Benchmark | nx v degp(x) degB(x) |rs, Ps, Psws
Dubin’s Car (Zhao et al. 2021) 2 03 2 2 2.60 0.54 0.96
Oscillator (Zhu et al. 2019) 2 0.1 2 2 3.00 0.84 0098
Academic 3D (Deshmukh et al. 2019) 3 1.6 2 4 2.70  0.57 0.96
Bicycle Steering (Deshmukh et al. 2019) | 3 0.7 2 2 3.00 0.80 0.96
Chesi 3 (Andrews 1998) 4 0.1 2 2 290 0.70 0.96
LALO20 (Laub and Loomis 1998) 7 0.1 2 2 290 058 0.95

Table 2: Performance of our approach on a series of nonlinear benchmarks

(with (0, 0.1) prior) and one with Bayesian weights in all
layers (with A/(0,0.05) prior) which has been marked by
‘all’ in the Table 1. deg p(x) refers to the degree of the com-
puted polynomial p(x) for approximating the controller in-
stantiated at the posterior’s mean p, v denotes the computed
maximal radius for the safe control set, and deg B(x) refers
to the degree of the generated barrier certificate.

The comparison in Table 1 is made in two aspects, i.e.
the interval radius as well as the probability measure of the
generated safe weight set W. Since the computed W is not
a connected set, we extract a connected interval .S uw C w
containing the posterior’s mean p and denote its radius as
rs,- T8 denotes the radius of verified safe weight set re-
ported in (Lechner et al. 2021). ¢ means standard devia-
tion of the weights’ posterior distribution. Psys, Ps, and
P; represent the probability measure of our obtained safe
weight set W, the extracted interval S,,, and the safe weight
set by Bootstrapping in (Lechner et al. 2021), respectively.
We can see that all our verified safe weight subsets S, are

not narrower than the W of (Lechner et al. 2021) by com-
parison between TS, and rg. For benchmark Collision avoid.
(all), our verified safe weight subset S, has a radius twice as
large as (Lechner et al. 2021). Especially for Unstable LDS
(all), our verified subset has width even more than four times
as large as (Lechner et al. 2021). By comparison between
Psyp and By, our verified safe weight set W has consistently
higher probability measure. The least result for Psyg is 82%
whereas the greatest for Py is 45%. For Unstable LDS (all),
the reported safe weight set in (Lechner et al. 2021) has an
extremely small probability measure of 3.6-10~4! due to the
exponential decreasing rate of probability w.r.t. the number
of BNN’s weights for small safe sets. Thus we can conclude
that our method can synthesize larger safe sets for guaran-
teeing safety while maintaining most of the expressiveness
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of the original BNNSs.

To demonstrate the scalability of our method, we further
conduct evaluation on a series of nonlinear control systems
and the results are shown in Table 2. The origins of these 6
examples are provided in the first column, ny denotes the
number of state variables, and the meanings of the other
columns are the same as Table 1. Our computed safe weight
sets have probability measure at least 95% even for a large-
scale nonlinear system with dimension 7, which shows the
good scalability of our approach.

Conclusion

In this paper, we study the safety verification problem of
nonlinear control systems with BNN controllers, and present
a methodology for computing a safe weight set such that as
long as the BNN controller is always applied with weights
sampled from the safe weight set, the controlled system is
guaranteed to be safe. We construct a safe control set as a
bridge to help synthesize the safe weight set. Based on the
notion of barrier certificate for continuous system safety ver-
ification, we formalize the safe control set generation prob-
lem into a polynomial optimization problem which is effi-
cient to solve. We present an incremental construction of
safe weight set with reference to the safe control set, and
design an algorithm with a BNN range inclusion verifica-
tion module based on local Lipschitz constant estimation
for BNNs. Extensive experiment results consistently demon-
strate the effectiveness and scalability of our approach.

Despite that our computed safe weight sets have been ver-
ified with high probability measures, the efficiency of the
safe weight set construction process needs to be improved
because of the complexity caused by state space division.
How to find a valid division for a trade-off between the suc-
cess rate of verification and the time efficiency is an inter-
esting topic for our future work.



Acknowledgments

This work was supported in part by the National Key
Research and Development Project, China under Grant
2022YFA1005100, in part by the National Natural Sci-
ence Foundation of China under Grants (No. 61902325, No.
12171159, No. 62272397, No. 62032019, No. 61732019),
Shanghai Trusted Industry Internet Software Collaborative
Innovation Center, “Digital Silk Road” Shanghai Interna-
tional Joint Lab of Trustworthy Intelligent Software (Grant
No. 22510750100), and the Capacity Development Grant of
Southwest University (No. SWU116007).

References

Anand, A.; Seel, K.; Gjerum, V.; Hakansson, A.; Robinson,
H.; and Saad, A. 2021. Safe Learning for Control using Con-
trol Lyapunov Functions and Control Barrier Functions: A
Review. Procedia Computer Science, 192: 3987-3997.

Andrews, L. C. 1998. Special functions of mathematics for
engineers. Oxford University Press.

Avant, T.; and Morgansen, K. A. 2021. Analytical bounds
on the local Lipschitz constants of ReLU networks. CoRR,
abs/2104.14672.

Blundell, C.; Cornebise, J.; Kavukcuoglu, K.; and Wier-
stra, D. 2015. Weight Uncertainty in Neural Networks. In
Proceedings of the 32nd International Conference on In-
ternational Conference on Machine Learning - Volume 37,

ICML’15, 1613-1622. JMLR.org.

Brooks, S.; Gelman, A.; Jones, G. L.; and Meng, X.-L., eds.
2011. Handbook of Markov Chain Monte Carlo. Chapman
and Hall/CRC.

Cardelli, L.; Kwiatkowska, M.; Laurenti, L.; Paoletti, N.;
Patane, A.; and Wicker, M. 2019. Statistical Guarantees for
the Robustness of Bayesian Neural Networks. In Proceed-
ings of the Twenty-FEighth International Joint Conference on
Artificial Intelligence, 1JCAI-19, 5693-5700. International
Joint Conferences on Artificial Intelligence Organization.

Chen, X.; Abrahém, E.; and Sankaranarayanan, S. 2012.
Taylor Model Flowpipe Construction for Non-linear Hybrid
Systems. In 2012 IEEE 33rd Real-Time Systems Symposium,
183-192.

Cheng, R.; Murray, R. M.; and Burdick, J. W. 2021. Limits
of Probabilistic Safety Guarantees when Considering Hu-
man Uncertainty. In 2021 IEEE International Conference
on Robotics and Automation (ICRA), 3182-3189.

Dawson, C.; Gao, S.; and Fan, C. 2022. Safe Control with
Learned Certificates: A Survey of Neural Lyapunov, Barrier,
and Contraction methods. ArXiv, abs/2202.11762.

Deshmukh, J. V.; Kapinski, J. P; Yamaguchi, T.; and
Prokhorov, D. 2019. Learning deep neural network con-
trollers for dynamical systems with safety guarantees. In
2019 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), 1-7. IEEE.

Duan, Y.; Chen, X.; Houthooft, R.; Schulman, J.; and
Abbeel, P. 2016. Benchmarking Deep Reinforcement Learn-
ing for Continuous Control. In Proceedings of the 33nd In-
ternational Conference on Machine Learning, ICML 2016,

15285

New York City, NY, USA, June 19-24, 2016, volume 48 of
JMLR Workshop and Conference Proceedings, 1329—1338.
JMLR.org.

Everett, M. 2021. Neural Network Verification in Control.
In 2021 60th IEEE Conference on Decision and Control
(CDC), 6326-6340.

Fazlyab, M.; Robey, A.; Hassani, H.; Morari, M.; and Pap-
pas, G. 2019. Efficient and Accurate Estimation of Lips-
chitz Constants for Deep Neural Networks. In Wallach, H.;
Larochelle, H.; Beygelzimer, A.; d'Alché-Buc, F.; Fox, E.;
and Garnett, R., eds., Advances in Neural Information Pro-
cessing Systems, volume 32. Curran Associates, Inc.

Han, W.; Jasour, A.; and Williams, B. 2022. Non-Gaussian
Risk Bounded Trajectory Optimization for Stochastic Non-
linear Systems in Uncertain Environments. In 2022 Inter-
national Conference on Robotics and Automation (ICRA),
11044-11050.

Ivanov, R.; Weimer, J.; Alur, R.; Pappas, G. J.; and Lee, L.
2019. Verisig: verifying safety properties of hybrid systems
with neural network controllers. In Proceedings of the 22nd
ACM International Conference on Hybrid Systems: Compu-
tation and Control, HSCC 2019., 169-178.

Katz, G.; Barrett, C.; Dill, D. L.; Julian, K.; and Kochen-
derfer, M. J. 2017. Reluplex: An Efficient SMT Solver
for Verifying Deep Neural Networks. In Majumdar, R;
and Kuncak, V., eds., Computer Aided Verification, 97-117.
Cham: Springer International Publishing.

Kocvara, M.; Stingl, M.; and GbR, P. 2005. PENBMI
user’s guide (version 2.0). software manual, PENOPT GDR,
Hauptstrasse A, 31: 91338.

Laub, M. T.; and Loomis, W. F. 1998. A molecular network
that produces spontaneous oscillations in excitable cells of
Dictyostelium. Molecular biology of the cell, 9(12): 3521—
3532.

Lechner, M.; Zikeli¢, D. o. e.; Chatterjee, K.; and Henzinger,
T. 2021. Infinite Time Horizon Safety of Bayesian Neu-
ral Networks. In Ranzato, M.; Beygelzimer, A.; Dauphin,
Y.; Liang, P.; and Vaughan, J. W., eds., Advances in Neural
Information Processing Systems, volume 34, 10171-10185.
Curran Associates, Inc.

Lee, K.; Wang, Z.; Vlahov, B.; Brar, H.; and Theodorou,
E. A. 2019. Ensemble Bayesian Decision Making with Re-
dundant Deep Perceptual Control Policies. In 20719 18th
IEEE International Conference On Machine Learning And
Applications (ICMLA), 831-837.

Lillicrap, T. P;; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T,;
Tassa, Y.; Silver, D.; and Wierstra, D. 2016. Continuous con-
trol with deep reinforcement learning. In 4th International
Conference on Learning Representations, ICLR 2016, San
Juan, Puerto Rico, May 2-4, 2016, Conference Track Pro-
ceedings.

Loquercio, A.; Segu, M.; and Scaramuzza, D. 2020. A Gen-
eral Framework for Uncertainty Estimation in Deep Learn-
ing. IEEE Robotics and Automation Letters, 5(2): 3153—
3160.

McAllister, R.; Gal, Y.; Kendall, A.; Van Der Wilk, M.;
Shah, A.; Cipolla, R.; and Weller, A. 2017. Concrete



Problems for Autonomous Vehicle Safety: Advantages of
Bayesian Deep Learning. In Proceedings of the 26th In-
ternational Joint Conference on Artificial Intelligence, 1J-

CAI'17,4745-4753. AAAI Press.

Michelmore, R.; Wicker, M.; Laurenti, L.; Cardelli, L.; Gal,
Y.; and Kwiatkowska, M. 2020. Uncertainty Quantifica-
tion with Statistical Guarantees in End-to-End Autonomous
Driving Control. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), 7344-7350.

Neal, R. M. 1996. Bayesian Learning for Neural Networks.
Berlin, Heidelberg: Springer-Verlag.

Oliver Diirr, E. M., Beate Sick. 2020. Probabilistic Deep
Learning. Manning Publications Co. Press.

Papachristodoulou, A.; Anderson, J.; Valmérbida, G.; Pra-
jna, S.; Seiler, P. J.; and Parrilo, P. A. 2021. SOSTOOLS Ver-
sion 4.00 Sum of Squares Optimization Toolbox for MAT-
LAB. ArXiv, abs/1310.4716.

Prajna, S.; Jadbabaie, A.; and Pappas, G. J. 2007. A frame-
work for worst-case and stochastic safety verification using
barrier certificates. IEEE Transactions on Automatic Con-
trol, 52(8): 1415-1429.

Ruan, W.; Huang, X.; and Kwiatkowska, M. 2018. Reach-
ability Analysis of Deep Neural Networks with Provable
Guarantees. In Lang, J., ed., Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelli-
gence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden,
2651-2659. ijcai.org.

Squires, E.; Pierpaoli, P.; and Egerstedt, M. 2018. Construc-
tive Barrier Certificates with Applications to Fixed-Wing
Aircraft Collision Avoidance. In 2018 IEEE Conference on
Control Technology and Applications (CCTA), 1656-1661.

Szegedy, C.; Zaremba, W.; Sutskever, 1.; Bruna, J.; Erhan,
D.; Goodfellow, 1. J.; and Fergus, R. 2014. Intriguing prop-
erties of neural networks. In Bengio, Y.; and LeCun, Y., eds.,
2nd International Conference on Learning Representations,
ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Confer-
ence Track Proceedings.

Tran, H.-D.; Yang, X.; Manzanas Lopez, D.; Musau, P;
Nguyen, L. V.; Xiang, W.; Bak, S.; and Johnson, T. T. 2020.
NNV: The Neural Network Verification Tool for Deep Neu-
ral Networks and Learning-Enabled Cyber-Physical Sys-
tems. In Computer Aided Verification, 3—17. Springer In-
ternational Publishing.

Wicker, M.; Laurenti, L.; Patane, A.; and Kwiatkowska, M.
2020. Probabilistic Safety for Bayesian Neural Networks.
In Peters, J.; and Sontag, D., eds., Proceedings of the 36th
Conference on Uncertainty in Artificial Intelligence (UAI),
volume 124 of Proceedings of Machine Learning Research,
1198-1207. PMLR.

Wicker, M.; Laurenti, L.; Patane, A.; Paoletti, N.; Abate, A.;
and Kwiatkowska, M. 2021. Certification of iterative predic-
tions in Bayesian neural networks. In de Campos, C.; and
Maathuis, M. H., eds., Proceedings of the Thirty-Seventh
Conference on Uncertainty in Artificial Intelligence, volume
161 of Proceedings of Machine Learning Research, 1713—
1723. PMLR.

15286

Yang, Z.; Zhang, Y.; Lin, W.; Zeng, X.; Tang, X.; Zeng,
Z.; and Liu, Z. 2021. An Iterative Scheme of Safe Rein-
forcement Learning for Nonlinear Systems via Barrier Cer-
tificate Generation. In Computer Aided Verification: 33rd
International Conference, CAV 2021, Virtual Event, July
20-23, 2021, Proceedings, Part I, 467-490. Berlin, Heidel-
berg: Springer-Verlag.

Zhao, H.; Zeng, X.; Chen, T.; Liu, Z.; and Woodcock, J.
2021. Learning safe neural network controllers with barrier
certificates. Formal Aspects of Computing, 33(3): 437-455.
Zhu, H.; Xiong, Z.; Magill, S.; and Jagannathan, S. 2019. An
inductive synthesis framework for verifiable reinforcement
learning. Proceedings of the 40th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementa-
tion.



