
User-Oriented Robust Reinforcement Learning

Haoyi You, Beichen Yu, Haiming Jin*, Zhaoxing Yang, Jiahui Sun
Shanghai Jiao Tong University, Shanghai, China

{yuri-you, polarisybc, jinhaiming, yiannis, jhsun1997}@sjtu.edu.cn

Abstract

Recently, improving the robustness of policies across different
environments attracts increasing attention in the reinforcement
learning (RL) community. Existing robust RL methods mostly
aim to achieve the max-min robustness by optimizing the pol-
icy’s performance in the worst-case environment. However, in
practice, a user that uses an RL policy may have different pref-
erences over its performance across environments. Clearly, the
aforementioned max-min robustness is oftentimes too conser-
vative to satisfy user preference. Therefore, in this paper, we
integrate user preference into policy learning in robust RL, and
propose a novel User-Oriented Robust RL (UOR-RL) frame-
work. Specifically, we define a new User-Oriented Robustness
(UOR) metric for RL, which allocates different weights to the
environments according to user preference and generalizes the
max-min robustness metric. To optimize the UOR metric, we
develop two different UOR-RL training algorithms for the sce-
narios with or without a priori known environment distribution,
respectively. Theoretically, we prove that our UOR-RL train-
ing algorithms converge to near-optimal policies even with
inaccurate or completely no knowledge about the environment
distribution. Furthermore, we carry out extensive experimen-
tal evaluations in 6 MuJoCo tasks. The experimental results
demonstrate that UOR-RL is comparable to the state-of-the-art
baselines under the average-case and worst-case performance
metrics, and more importantly establishes new state-of-the-art
performance under the UOR metric.

Introduction
Recently, reinforcement learning (RL) raises a high level of
interest in both the research community and the industry due
to its satisfactory performance in a variety of decision-making
tasks, such as playing computer games (Mnih et al. 2013),
autonomous driving (Kiran et al. 2021), robotics (Kober, Bag-
nell, and Peters 2013). Among existing RL methods, model-
free ones, such as DQN (Mnih et al. 2013), DDPG (Silver
et al. 2014), PPO (Schulman et al. 2017), which typically
train policies in simulated environments, have been widely
studied. However, it is highly possible that there exist dis-
crepancies between the training and execution environments,
which could severely degrade the performance of the trained

*Corresponding author.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

policies. Therefore, it is of significant importance to robustify
RL policies across different environments.

Existing studies of RL robustness against environment
discrepancies (Wiesemann, Kuhn, and Rustem 2013; Ra-
jeswaran et al. 2016; Tessler, Efroni, and Mannor 2019; Curi,
Bogunovic, and Krause 2021) mostly aim to achieve the max-
min robustness by optimizing the performance of the policy
in the worst-case environment. However, such max-min ro-
bustness could oftentimes be overly conservative, since it
only concentrates on the performance of the policy in the
worst case, regardless of its performance in any other case.
As a matter of fact, it is usually extremely rare for the worst
case (e.g., extreme weather conditions in autonomous driving,
power failure incidence in robot control) to happen in many
applications. Therefore, we should take the environment dis-
tribution into consideration and pay more attention to the
environments with higher probabilities though they are not
the worst.

Besides, a user that uses an RL policy for real-world tasks
may have different preferences over her performance across
environments. Furthermore, for the same decision-making
task, the preferences of different users may vary, resulting
that they are in favor of different policies. For instance, in
computer games, some users prefer to attack others and take
an aggressive policy, while others may prefer a defensive
policy. Therefore, user preference is a crucial factor that
should be considered in RL policy training, which is ignored
by the max-min robustness.

Due to the significance of user preference and environ-
ment distribution, we design a new User-Oriented Robust-
ness (UOR) metric, which integrates both user preference and
environment distribution into the measurement of robustness.
Specifically, the UOR metric allocates different weights to
different environments, based on user preference, environ-
ment distribution, and relative policy performance. In fact,
the max-min robustness is a special case of the UOR metric
that the user prefers extremely conservative robustness, and
thus, the UOR metric is a generalization of the max-min ro-
bustness. Hence, in this paper, we focus on optimizing the
UOR metric during policy training, which can help obtain
policies better aligned with user preference.

To optimize the UOR metric, we propose the User-
Oriented Robust RL (UOR-RL) framework. One of the
training algorithms of the UOR-RL framework, namely

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

15269

Distribution-Based UOR-RL (DB-UOR-RL), takes the en-
vironment distribution as input to help optimize the UOR
metric. In real-world applications, however, the environment
distribution may sometimes be unknown to the user. To tackle
such case, we design another training algorithm, namely
Distribution-Free UOR-RL (DF-UOR-RL), which works even
without any knowledge of the environment distribution. Both
algorithms evaluate the UOR metric and use it to update the
policy, while they differ in their approaches for UOR metric
evaluation, because of the different prior knowledge of the
environment distribution.

Theoretically, under several mild assumptions, we prove
that UOR-RL guarantees the following series of desirable
properties. For DB-UOR-RL, we prove that with O(1

ϵd
) com-

putational complexity, where d denotes the dimension of the
parameter that parameterizes the environment, the output
policy of DB-UOR-RL is ϵ-suboptimal to the optimal policy
under the UOR metric. Furthermore, even when DB-UOR-
RL takes an inaccurate empirical environment distribution as
input, we prove that, as long as the total variation distance
between the empirical distribution and the accurate one is
no larger than O(ϵd), the output policy of DB-UOR-RL is
still guaranteed to be ϵ-suboptimal to the optimal policy. For
DF-UOR-RL, though without any prior knowledge of the
environment distribution, our proof shows that DF-UOR-RL
could still generate an ϵ-suboptimal policy with O(1

ϵ2d+4)
computational complexity.

The contributions of this paper are summarized as follows.

• We propose a user-oriented metric for robustness measure-
ment, namely UOR, allocating different weights to differ-
ent environments according to user preference. To the best
of our knowledge, UOR is the first metric that integrates
user preference into the measurement of robustness in RL.

• We design two UOR-RL training algorithms for the sce-
narios with or without a priori known environment distri-
bution, respectively. Both algorithms take the UOR metric
as the optimization objective so as to obtain policies better
aligned with user preference.

• We prove a series of results, through rigorous theoretical
analysis, showing that our UOR-RL training algorithms
converge to near-optimal policies even with inaccurate or
entirely no knowledge about the environment distribution.

• We conduct extensive experiments in 6 MuJoCo tasks. The
experimental results demonstrate that UOR-RL is compa-
rable to the state-of-the-art baselines under the average-
case and worst-case performance metrics, and more impor-
tantly establishes new state-of-the-art performance under
the UOR metric.

Problem Statement
Preliminary
We introduce parameterized Markov Decision Process
(PMDP) (Rajeswaran et al. 2016) represented by a 6-tuple
(S,A, γ, S0, T, R), as it is the basis of the UOR-PMDP that
will be defined in Section . S and A are respectively the set
of states and actions. γ is the discount factor. S0 ∈ ∆(S)

denotes the initial state distribution1. Furthermore, differ-
ent from the traditional MDP, a PMDP’s transition func-
tion T : S × A × P → ∆(S) and reward function
R : S × A × S × P → ∆(R) take an additional envi-
ronment parameter p as input, with R denoting the set of all
real numbers. The environment parameter p is a random vari-
able in range P ⊂ Rd, following a probability distribution
D. In PMDP, the parameter p is sampled at the beginning
of each trajectory, and keeps constant during the trajectory.
We consider the scenario where p is unknown to the user
during execution, but our work can extend to the scenario
with known p through regarding the environment parameter
p as an additional dimension of state.

A policy π : S → ∆(A) is a mapping from a state to
a probability distribution over actions. Furthermore, the ex-
pected return J(π, p) is defined as the expected discounted
sum of rewards when the policy π is executed under the
environment parameter p, i.e.,

J(π, p) = E

[∞∑
t=0

γtR(st, at, st+1, p)|π

]
. (1)

User-Oriented Robust PMDP
Definition In this paper, we propose User-Oriented Robust
PMDP (UOR-PMDP), which is represented by an 8-tuple
(S,A, γ, S0, T, R, h,W). The first six items of UOR-PMDP
are the same as those of PMDP. Furthermore, we introduce
the last two items, namely the ranking function h and the
preference function W , to formulate our new User-Oriented
Robustness (UOR) metric that allocates more weights to the
environment parameters where the policy has relatively worse
performance, according to user preference.

As UOR requires assessing the relative performance of the
policy under different environment parameters, we define the
ranking function h : Π× P → [0, 1] as

h(π, p) =

∫
P
D(p) · 1 [J(π, p′) ≤ J(π, p)] dp′, (2)

which represents the probability that the performance of pol-
icy π under an environment parameter p′ sampled from D is
worse than that under the environment parameter p.

To represent a user’s preference, we define the preference
function W : [0, 1] → R+ ∪ {0} which assigns weights to
environment parameters with different rankings. Specifically,
given π, the weight assigned to environment parameter p is
set as W (h(π, p)). Moreover, we require function W to be
non-increasing, since UOR essentially puts more weights on
environment parameters with lower rankings.

In practice, to make it more convenient for a user to spec-
ify her preference, we could let the preference function W
belong to a family of functions parameterized by as few as
only one parameter. For example, by setting the preference
function W as

W (x) = (k + 1) · (1− x)k, (3)

a single robustness degree parameter k ∈ R+ suffices to
completely characterize the user preference.

1We use ∆(X) to denote the set of all distributions over set X .

15270

In terms of the objective, the UOR-PMDP aims to maxi-
mize the UOR metric E defined as

E(π) =
∫
P
D(p) · J(π, p) ·W (h(π, p))dp, (4)

which is the expectation of the weighted sum of J(π, p) over
the distribution D. That is, the optimal policy π∗ of the UOR-
PMDP satisfies

π∗ = argmax
π∈Π

E(π). (5)

Properties In fact, our UOR metric generalizes the worst-
case performance robustness metric minp∈P J(π, p) (Wiese-
mann, Kuhn, and Rustem 2013; Rajeswaran et al. 2016;
Tessler, Efroni, and Mannor 2019; Curi, Bogunovic, and
Krause 2021), and the average-case metric Ep∼D [J(π, p)]
without robustness consideration (Da Silva, Konidaris, and
Barto 2012; Tobin et al. 2017).

As W is non-increasing, it has the following two extreme
cases. For one extreme case, W concentrates on zero. That
is, W (x) = δ(x), where δ denotes the Dirac function, and
consequently the UOR metric becomes

E(π) =
∫
P
D(p) · J(π, p) · δ(h(π, p))dp = min

p∈P
J(π, p).

For the other extreme case, W is uniform in [0, 1]. That is,
W (x) ≡ 1, and consequently the UOR metric becomes

E(π) =
∫
P
D(p) · J(π, p)dp = Ep∼D [J(π, p)] .

Solutions for UOR-PMDP
In this section, we present two User-Oriented Robust RL
(UOR-RL) algorithms to solve UOR-PMDP in the scenar-
ios with and without a priori known environment parameter
distribution, respectively.

Distribution-Based UOR-RL
Algorithm Design We consider the scenario that the dis-
tribution D is known before training, and propose the
Distribution-Based UOR-RL (DB-UOR-RL) training algo-
rithm in Algorithm 1 which makes use of the distribution D
during the training period.

Firstly, Algorithm 1 randomly sets the initial policy πθ0 ,
and chooses the upper bound δ of the block diameter (line 1).
The criteria for setting δ will be discussed in detail in Section
15. Then, by calling the Set Division algorithm, Algorithm
1 divides P into n blocks P1,P2, · · · ,Pn, whose diameters
are less than δ (line 2). That is,

∀ Pj ∈ {P1,P2, · · · ,Pn}, ∀ px, py ∈ Pj , ||px − py||2 ≤ δ.

Note that the number of blocks n is decided by how the
Set Division algorithm divides P based on δ. Because of
space limit, we put our Set Division algorithm in Appendix
??. In fact, Algorithm 1 works with any Set Division algo-
rithm that could guarantee that the diameters of the divided
blocks are upper bounded by δ. Then, for each block Pj ,
Algorithm 1 arbitrarily chooses an element pj from the block

Algorithm 1: DB-UOR-RL Algorithm
// Initialization.

1 Initialize policy πθ0 and block diameter upper bound δ;
2 {P1,P2, · · · ,Pn} ← Set Division(P, δ);
3 foreach Block Pj do
4 pj ← Arbitrarily chosen element in Pj ;
5 mj ←

∫
Pj

D(p)dp;

// Policy Training.
6 foreach Iteration i = 0 to max-iterations do
7 foreach Block Pj do
8 Execute policy πθi under pj and evaluate the

empirical expected return Ĵ(πθi , pj);

9 Sort the sequence {Ĵ(πθi , pj)} into an increasing
sequence {Ĵ(πθi , pαj)};

// Metric Calculation.

10 Initialize metric Ê(πθi)← 0 and M ← 0;
11 foreach Block Pj do
12 wj ←

∫M+mαj

M W (x)dx;
13 Ê(πθi)← Ê(πθi) + wj · Ĵ(πθi , pαj);
14 M ←M +mαj ;

// Policy Update.

15 πθi+1 ← Policy Update(πθi , Ê(πθi));

to represent it (line 4), and calculates the probability that an
environment parameter falls into the block Pj (line 5).

Next, Algorithm 1 trains the policy (line 6 to 15). In each
iteration i, it evaluates the performance Ĵ(πθi , pj) of the
policy πθi under each pj (line 8), and sorts the sequence
{Ĵ(πθi , pj)} into an increasing one {Ĵ(πθi , pαj)} (line 9).
Then, Algorithm 1 calculates the metric Ê(πθi), which is
an approximation of the UOR metric E(πθi) (line 10 to 14).
Specifically, it initializes the metric Ê(πθi) and the lower
limit M of the integral as zero (line 10). For each block Pj , it
calculates the weight wj allocated to this block based on the
ranking αj of block Pj in the sorted sequence {J(πθi , pαj

)}
and preference function W (line 12), and updates the metric
Ê(πθi) (line 13) and the lower limit of the integral (line 14).
Finally, based on the metric Ê(πθi), Algorithm 1 updates the
policy by applying a Policy Update algorithm (line 15). Note
that Policy Update could be any policy gradient algorithm
that updates the policy based on the metric Ê(πθi).

The above Algorithm 1 essentially uses integral discretiza-
tion to calculate an approximate UOR metric Ê which is used
as the optimization objective of Policy Update. To discretize
the integral for calculating the UOR metric, Algorithm 1
divides the environment parameter range into blocks. Fur-
thermore, to get the ranking function for weight allocation,
Algorithm 1 sorts the blocks according to the evaluated per-
formance on them.

Algorithm Analysis To analyze Algorithm 1, we make the
following three mild assumptions.

Assumption 1. The transition function T and reward func-
tion R are continuous to the environment parameter p.

15271

Assumption 2. The transition function T and reward func-
tion R are Lipschitz continuous to the state space S and
action space A with constants LT,S , LT,A, LR,S , and LR,A,
respectively.
Assumption 3. The policy π during the training process in
Algorithm 1 is Lipschitz continuous with constant Lπ .

Assumption 1 is natural, because the R and T functions
characterize the environment which will usually not change
abruptly as the environment parameter p changes. Further-
more, Assumptions 2 and 3 are commonly used in previ-
ous works (Curi, Berkenkamp, and Krause 2020; Curi, Bo-
gunovic, and Krause 2021). Based on Assumptions 1-3, we
prove the following Theorem 1, which demonstrates the exis-
tence of the diameter upper bound δ under which Algorithm
1 can converge to a near-optimal policy.
Theorem 1. ∀ optimality requirement ϵ = 2ϵ0 > 0,
∃ δ0, such that as long as Policy Update can learn an ϵ0-
suboptimal policy for metric Ê , by running Algorithm 1 with
any diameter upper bound δ ≤ δ0, we can guarantee that the
output policy π̂ of Algorithm 1 satisfies

E(π̂) ≥ E(π∗)− ϵ. (6)

Because of space limit, the proofs to all of the theorems
and corollary in this paper are provided in the appendix.

Theorem 1 reveals that as long as the diameter upper bound
δ is sufficiently small, the output policy π̂ of Algorithm 1
will be close enough to the optimal policy π∗. However, as δ
decreases, the number of the blocks output by Set Division
on line 2 of Algorithm 1 will increase, leading to an increased
complexity of Algorithm 1. Thus, it is of great importance to
have a quantitative relationship between ϵ and δ, which could
help us better choose the upper bound δ based on the opti-
mality requirement ϵ. To obtain the quantitative relationship
between δ and ϵ, we introduce the following Assumption 4,
which is stronger than Assumption 1.
Assumption 4. The transition function T and reward func-
tion R are Lipschitz continuous to the environment parameter
p with constants LT,p and LR,p.

Based on Assumptions 2-4, we prove Theorem 2.
Theorem 2. ∀ optimality requirement ϵ = 2ϵ0 > 0, ∃ δ0 =
υϵ = O(ϵ), such that as long as Policy Update can learn an
ϵ0-suboptimal policy for metric Ê , by running Algorithm 1
with any diameter upper bound δ ≤ δ0, we can guarantee
that the output policy π̂ of Algorithm 1 satisfies

E(π̂) ≥ E(π∗)− ϵ. (7)

Note that the constant υ depends on the Lipschitz constants in
Assumptions 2-4, whose detailed form is presented in Equa-
tion (??) in Appendix ??.

Theorem 2 indicates that when Algorithm 1 chooses δ =
υϵ = O(ϵ), the number of divided blocks is at most O(1

ϵd
).

Therefore, with such choice of δ, we can guarantee that the
complexity of each iteration in Algorithm 1 is at most O(1

ϵd
).

In practice, the user may not know the accurate distribution
D, but only has access to a biased empirical distribution
De. In the following Theorem 3, we prove the theoretical
guarantee of Algorithm 1 when it runs with De.

Theorem 3. Define the policy πe such that

πe = argmax
π

Ee(π), (8)

where Ee denotes the UOR metric under the UOR-PMDP
with the empirical environment parameter distribution De.

Then, ∀ given ϵ > 0, ∃ κ = O(ϵd), such that as long as D
and De satisfies the total variation distance DTV (D,De) ≤
κ, then we can guarantee that

E(πe) ≥ E(π∗)− ϵ. (9)

Based on Theorems 2 and 3, we have Corollary 1.
Corollary 1. ∀ optimality requirement ϵ1 = 3ϵ > 0, ∃ δ0 =
O(ϵ) and κ = O(ϵd), such that as long as DTV (D,De) ≤
κ and Policy Update can learn an ϵ-suboptimal policy for
metric Ê , by running Algorithm 1 with diameter upper bound
δ ≤ δ0 and distribution De, we can guarantee that the output
policy π̂e of Algorithm 1 satisfies

E(π̂e) ≥ E(π∗)− ϵ1. (10)

Corollary 1 demonstrates that even running Algorithm 1
with the biased distribution De, as long as De is close enough
to D, the output policy is still near-optimal.

Distribution-Free UOR-RL
Algorithm design In practice, it is likely that the distribu-
tion function D is unknown, making Algorithm 1 not appli-
cable. Therefore, we propose the Distribution-Free UOR-RL
(DF-UOR-RL) training algorithm in Algorithm 2 that trains a
satisfactory policy even without any knowledge of the distri-
bution function D.

At the beginning, Algorithm 2 randomly sets the initial
policy πθ0 and n1 empty clusters, and chooses the size of
each cluster as n2 (line 1). We will introduce in detail how
to set the number of clusters n1 and cluster size n2 in Sec-
tion 14. Then, Algorithm 2 begins to train the policy (line
2-14). In each iteration i, it samples n2 trajectories for each
cluster Cj , by executing the current policy πθi under the ob-
served environment parameters (line 5-6), and evaluates the
discounted reward of these trajectories (line 7). After that,
Algorithm 2 evaluates the performance Ĵj of each cluster
Cj by averaging the discounted reward of the trajectories
in the cluster (line 8), and sorts the sequence {Ĵj} into an
increasing one {Ĵαj} (line 9). Then, Algorithm 2 calculates
the metric Ẽ(πθi), which is an approximation of the UOR
metric E(πθi) (line 10-13). Initially, it sets the metric Ẽ(πθi)
as zero (line 10). Then, for each cluster Cj , Algorithm 2
allocates the weight to cluster according to its ranking αj

and the preference function (line 12) and updates the Ẽ(πθi)
(line 13) based on the weight and performance of the cluster.
Finally, Algorithm 2 obtains the Ẽ(πθi) and uses it to update
the policy (line 14).

Different from Algorithm 1, due to the lack of the knowl-
edge of the distribution D, Algorithm 2 observes the environ-
ment parameter rather than directly sample it according to
D. Given that it is of large bias to evaluate J(π, p) from only

15272

Algorithm 2: DF-UOR-RL Algorithm
// Initialization

1 Initialize empty trajectory clusters C1, C2, · · · , Cn1 , cluster
size n2, and policy πθ0 ;

// Policy Training
2 foreach Iteration i = 0 to max-iterations do
3 foreach j = 1 to n1 do
4 foreach k = 1 to n2 do
5 Observe environment parameter pj,k;
6 Execute πθi under pj,k, get trajectory ξj,k, and

Cj ← Cj ∪ {ξj,k};
7 Evaluate discounted reward Ĵ(ξj,k) of ξj,k;

8 Ĵj ← 1
|Cj |
·
∑

ξj,k∈Cj
Ĵ(ξj,k);

9 Sort the sequence {Ĵj} into an increasing sequence
{Ĵαj};

// Metric Calculation

10 Initialize metric Ẽ(πθi)← 0;
11 foreach j = 1 to n do
12 wj ←

∫ j/n

(j−1)/n
W (x)dx;

13 Ẽ(πθi)← Ẽ(πθi) + wj · Ĵαj ;

// Policy Update

14 πθi+1 ← Policy Update(πθi , Ẽ(πθi));

one trajectory, Algorithm 2 averages the discounted rewards
of n2 trajectories. The clusters in Algorithm 2 have the same
functionality as the blocks in Algorithm 1, and Algorithm 2
uses them to calculate an approximate UOR metric Ẽ(πθi).

Algorithm Analysis To analyze Algorithm 2, we introduce
an additional mild Assumption 5 on two properties of the
environment parameters, including the difference between
consecutively sampled environment parameters in line 5 of
Algorithm 2, and the convergence rate of the posterior dis-
tribution of the environment parameter to the distribution D.
Because of space limit, we provide the detailed description
of Assumption ?? in Appendix ??.

Based on Assumptions 2-??, we have the theoretical guar-
antee of Algorithm 2 in the following Theorem 4.
Theorem 4. ∀ optimality requirement ϵ = 2ϵ0 > 0 and
confidence ρ, ∃ n1 = Θ(− ln ρ

ϵ2), n2 = Θ(− ln ρ
ϵ2d+2), such that

as long as Policy Update can learn an ϵ0-suboptimal policy
for metric Ẽ , by running Algorithm 2 with trajectory cluster
number larger than n1 and cluster size larger than n2, we
can guarantee that the output policy π̃ of Algorithm 2 satisfies

E(π) ≥ E(π̃)− ϵ (11)

with confidence more than 1− ρ.
Theorem 4 provides guidelines for setting the cluster size

n1 and cluster number n2 in Algorithm 2. In fact, as n1 and
n2 increase, the performance evaluation of the cluster and
the weight allocated to the cluster will be more accurate, both
of which lead to a more accurate approximation of the UOR
metric. However, the increase of either n1 or n2 leads to an
increased complexity of each iteration of Algorithm 2. To
deal with such trade-off, we could set n1 and n2 based on the

lower bounds in Theorem 4, through which Algorithm 2 can
guarantee both the optimality requirement ϵ and O(ln2 ρ

ϵ2d+4)
complexity of each iteration.

Experiments
Baseline Methods
We compare UOR-RL with the following four baselines.
Domain Randomization-Uniform (DR-U). Domain Ran-
domization (DR) (Tobin et al. 2017) is a method that ran-
domly samples environment parameters in a domain, and op-
timizes the expected return over all collected trajectories. DR-
U is an instance of DR, which samples environment parame-
ters from a uniform distribution. Domain Randomization-
Gaussian (DR-G). DR-G is another instance of DR, which
samples environment parameters from a Gaussian distribu-
tion. Ensemble Policy Optimization (EPOpt). EPOpt (Ra-
jeswaran et al. 2016) is a method that aims to find a robust
policy through optimizing the performance of the worst few
collected trajectories. Monotonic Robust Policy Optimiza-
tion (MRPO). MRPO (Jiang et al. 2021) is the state-of-the-
art robust RL method, which is based on EPOpt and jointly
optimizes the performance of the policy in both the average
and worst cases.

MuJoCo Tasks and Settings
We conduct experiments in six MuJoCo (Todorov, Erez, and
Tassa 2012) tasks of version-0 based on Roboschool2, in-
cluding Walker 2d, Reacher, Hopper, HalfCheetah, Ant, and
Humanoid. In each of the six tasks, by setting different en-
vironment parameters, we get a series of environments with
the same optimization goal but different dynamics. Besides,
we take 6 different random seeds for each task, and compare
the performance of our algorithms to the baselines under
these seeds. Because of space limit, we put the specific en-
vironment parameter settings and the random seed settings
during the training process in Appendix ??. For testing, in
each environment, we sample 100 environment parameters
following the Gaussian distributions truncated over the range
given in Table 1.

Task Parameters Range P Distribution D

Reacher
Body size [0.008,0.05] N (0.029, 0.0072)

Body length [0.1,0.13] N (0.015, 0.0052)

Hopper
Density [750,1250] N (1000, 83.32)

Friction [0.5, 1.1] N (0.8, 0.12)

Half Cheetah
Density [750,1250] N (1000, 83.32)

Friction [0.5, 1.1] N (0.8, 0.12)

Humanoid
Density [750,1250] N (1000, 83.32)

Friction [0.5, 1.1] N (0.8, 0.12)

Ant
Density [750,1250] N (1000, 83.32)

Friction [0.5, 1.1] N (0.8, 0.12)

Walker 2d
Density [750,1250] N (1000, 83.32)

Friction [0.5, 1.1] N (0.8, 0.12)

Table 1: Environment Parameter Settings for Testing.

2https://openai.com/blog/roboschool

15273

In the experiments, we let the preference function W take
the form as given by Equation (3), which uses a robustness
degree k to represent user preference. Thus, we conduct
experiments on various UOR metrics, including the average
and max-min robustness, by choosing different k in Equation
(3), and we use Ek0

to denote the UOR metric with k = k0.
Considering that the state and action spaces of MuJoCo

are high-dimensional and continuous, we choose to use deep
neural networks to represent the policies of UOR-RL and the
baseline methods, and use PPO (Schulman et al. 2017) to
implement the policy updating process.

Experimental Results and Discussions
We compare UOR-RL with the baseline methods when k ∈
{0, 1, 21}. Specifically, when k = 0, W (x) ≡ 1, and thus E0
is equivalent to the expected return Ep∼D [J(π, p)] over the
distribution D; when k = 21, E21 approximates the expected
return over the worst 10% trajectories, because more than
90% weight is allocated to them according to the preference
function W ; when k = 1, E1 represents the UOR metric
between E0 and E21.

Table 2 shows the test results under the UOR metric E1.
Among all algorithms, DB-UOR-RL performs the best, and
it outperforms the four baselines in each environment. Such
results indicate that DB-UOR-RL is effective under metric
E1. At the same time, although the performance of DF-UOR-
RL is not as good as that of DB-UOR-RL, it is better than
those of the baselines. This shows that DF-UOR-RL could
output competitive policies, even when the distribution of
environment parameters is unknown.

Table 3 shows the test result under the average return of all
trajectories. In most environments, DR-G achieves the best
performance among the baselines under such average-case
metric, because it directly takes this average-case metric as its
optimization objective. From Table 3, we could observe that
the performance of DB-UOR-RL and DF-UOR-RL is close
to or better than that of DR-G in most environments. Such
observation indicates that UOR-RL can also yield acceptable
results, when robustness is not considered.

Table 4 shows the test result under the average return of the
worst 10% trajectories. From the table, both DB-UOR-RL
and DF-UOR-RL perform no worse than the best baselines
in most environments, which shows that UOR-RL also yields
sufficiently good performance in terms of the traditional ro-
bustness evaluation criteria.

Apart from Tables 2-4, we also visualize the performance
of UOR-RL and the baselines in the ranges of environment pa-
rameters given by Table 1 by plotting heat maps. Because of
space limit, we only show the heat maps of the Half Cheetah
and Hopper tasks with k = 1 in Figures 1 and 2, respec-
tively. In these two figures, a darker color means a better
performance. We could observe that both DB-UOR-RL and
DF-UOR-RL are darker in color than baselines in most sub-
ranges, which supports the superiority of UOR-RL for most
environment parameters. Moreover, we place the heat maps
of the other four tasks in Appendix ??.

To show the effect of the robustness degree parameter k
on the performance of UOR-RL, we carry out experiments
with four robustness degree parameters k ∈ {0, 1, 5, 21} in

Half Cheetah under the same environment parameters. The
results are shown in Figures 3 and 4. To plot these two figures,
we sort the collected trajectories by return into an increas-
ing order, divide the trajectories under such order into 10
equal-size groups, calculate the average return of the tra-
jectories (ART) in each group, and compute the normalized
differences between the ARTs that correspond to each con-
secutive pair of k’s in {0, 1, 5, 21}. We could observe that
every curve in these two figures shows a decreasing trend as
the group index increases. Such observation indicates that, as
k increases, both DB-UOR-RL and DF-UOR-RL pay more
attention to the trajectories that perform poorer, and thus the
trained policies become more robust.

Additionally, we plot the training curves of the baselines
and UOR-RL, and place them in Appendix ??.

Related Work
Robust RL (Iyengar 2005; Nilim and El Ghaoui 2005; Wiese-
mann, Kuhn, and Rustem 2013) aims to optimize policies
under the worst-case environment, traditionally by the zero-
sum game formulation (Littman 1994; Littman and Szepes-
vari 1996). Several recent works focus on finite or linear
MDPs, and propose robust RL algorithms with theoretical
guarantees (Derman, Geist, and Mannor 2021; Wang and
Zou 2021; Badrinath and Kalathil 2021; Zhang et al. 2021b;
Grand-Clément and Kroer 2020; Kallus and Uehara 2020).
However, real-world applications are usually with continu-
ous state and action spaces, as well as complex non-linear
dynamics (Kumar et al. 2020; Zhang, Hu, and Basar 2020).

A line of deep robust RL works robustify policies against
different factors that generate the worst-case environment,
such as agents’ observations (Zhang et al. 2020, 2021a;
Oikarinen, Weng, and Daniel 2020), agents’ actions (Tessler,
Efroni, and Mannor 2019; Kamalaruban et al. 2020), tran-
sition function (Mankowitz et al. 2020; Viano et al. 2021;
Chen, Du, and Jamieson 2021), and reward function (Wang,
Liu, and Li 2020). Another line of recent works (Kumar et al.
2020; Tobin et al. 2017; Jiang et al. 2021; Igl et al. 2019;
Cobbe et al. 2019) aim to improve the average performance
over all possible environments. Considering only the worst or
average case may cause the policy to be overly conservative
or aggressive, and limit (Zhang et al. 2020, 2021a; Oikari-
nen, Weng, and Daniel 2020; Tessler, Efroni, and Mannor
2019; Kamalaruban et al. 2020; Mankowitz et al. 2020; Viano
et al. 2021; Chen, Du, and Jamieson 2021; Wang, Liu, and
Li 2020; Kumar et al. 2020; Tobin et al. 2017; Jiang et al.
2021; Igl et al. 2019; Cobbe et al. 2019) for boarder appli-
cations. Hence, some researches study to use other cases to
characterize the robustness of the policy. (Chow et al. 2015)
optimizes the policy performance on α-percentile worst-case
environments; (Derman et al. 2018) considers the robustness
with a given environment distribution; (Xu and Mannor 2010;
Yu and Xu 2015) aim to improve the policy performance on
the worst distribution in an environment distribution set.

Each of (Zhang et al. 2020, 2021a; Oikarinen, Weng, and
Daniel 2020; Tessler, Efroni, and Mannor 2019; Kamalaruban
et al. 2020; Mankowitz et al. 2020; Viano et al. 2021; Chen,
Du, and Jamieson 2021; Wang, Liu, and Li 2020; Kumar
et al. 2020; Tobin et al. 2017; Jiang et al. 2021; Igl et al.

15274

Algorithm Reacher Hopper Half Cheetah Humanoid Ant Walker 2d
DR-U 10.92± 1.90 1465± 447.78 2375± 70.36 54.73± 3.73 2247± 568.53 1022± 368.74
DR-G 10.86± 2.34 1557± 346.97 2382± 64.94 56.43± 12.77 2258± 538.72 838± 211.86
EPOpt 12.57± 0.59 1360± 631.32 2450± 84.62 65.37± 7.53 2307± 192.94 1058± 432.98
MRPO 11.88± 2.27 1578± 333.85 2665± 147.89 89.48± 5.72 2303± 560.06 1368± 519.04

DB-UOR-RL 14.38± 0.86 1942± 348.97 3067± 169.31 95.57± 17.64 3212± 187.34 1373± 567.17
DF-UOR-RL 13.63± 0.59 1772± 313.59 2760± 238.41 93.97± 20.36 3213± 399.13 1268± 348.03

Table 2: Test results (k = 1). Each value denotes the mean and std of E1 over 6 seeds.

Algorithm Reacher Hopper Half Cheetah Humanoid Ant Walker 2d
DR-U 16.47± 1.91 1768± 471.06 2428± 89.76 71.32± 5.10 2272± 572.20 1159± 369.08
DR-G 19.28± 1.21 1993± 159.17 2420± 61.21 72.38± 15.77 2475± 86.20 1145± 503.29
EPOpt 17.83± 0.49 1455± 675.24 2555± 142.51 82.30± 7.81 2328± 203.12 1160± 418.16
MRPO 17.55± 1.43 1940± 193.08 2652± 125.13 99.83± 6.89 2295± 574.06 1268± 548.13

DB-UOR-RL 19.97± 1.11 2007± 379.03 2910± 135.06 104.53± 18.68 3393± 240.89 1403± 234.75
DF-UOR-RL 19.53± 0.65 1805± 246.96 2698± 293.90 98.28± 11.51 3410± 106.21 1208± 200.76

Table 3: Test results (k = 0). Each value denotes the mean and std of the average return of all trajectories over 6 seeds.

Algorithm Reacher Hopper Half Cheetah Humanoid Ant Walker 2d
DR-U −0.81± 1.86 442± 136.28 1895± 112.92 8.00± 7.19 2163± 564.79 461± 369.96
DR-G −1.90± 3.73 593± 367.47 1957± 225.45 8.55± 7.37 2133± 531.10 380± 388.40
EPOpt −0.14± 1.79 664± 495.87 2132± 418.40 10.47± 4.20 2192± 153.55 360± 222.00
MRPO −3.66± 7.54 678± 640.70 2523± 195.72 34.92± 5.70 2187± 555.22 515± 419.33

DB-UOR-RL 3.82± 0.85 824± 583.20 2497± 404.51 35.45± 7.97 3132± 119.07 624± 283.99
DF-UOR-RL 1.75± 1.66 452± 641.92 2383± 581.09 33.18± 44.76 3265± 196.34 497± 278.93

Table 4: Test results(k = 21). Each value denotes the mean and std of the average return of worst 10% trajectories over 6 seeds.

DR-U DR-G EPOpt MRPO DB-UOR-RL DF-UOR-RL

1800

2000

2200

2400

2600

2800

3000

3200

Figure 1: Heat map of E1 in sub-ranges (Half Cheetah). The x-axis and y-axis denote friction and density, respectively. The
ranges of these two parameters are chosen as in Table 1, and are evenly divided into 10 sub-ranges.

DR-U DR-G EPOpt MRPO DB-UOR-RL DF-UOR-RL

750

1000

1250

1500

1750

2000

2250

2500

2750

Figure 2: Heat map of E1 in sub-ranges (Hopper). The x-axis and y-axis denote friction and density, respectively. The ranges of
these two parameters are chosen as in Table 1, and are evenly divided into 10 sub-ranges.

2019; Cobbe et al. 2019; Chow et al. 2015; Derman et al.
2018; Xu and Mannor 2010; Yu and Xu 2015) optimizes a
specific type of robustness, and is only suitable to a specific
preference to robustness (e.g. methods focusing on worst
case suit the most conservative preference to robustness).

However, user preference varies in different scenarios, and
an RL method that optimizes a specific type of robustness
will be no more suitable when user preference changes. In
real applications, it is significant to take user preference into
consideration and design a general framework suitable to

15275

1 2 3 4 5 6 7 8 9 10
Group…Index

-0.02

0.0

0.02

0.04

0.06
N
or
m
al
iz
ed
…A
R
T…

D
iff
eren
ce ART(1) ART(0)

ART(5) ART(1)
ART(21) ART(5)

Figure 3: Normalized ART difference for each sorted group
(DB-UOR-RL). ART(k0) denotes the ART with k = k0.

1 2 3 4 5 6 7 8 9 10
Group…Index

-0.02

0.0

0.02

0.04

0.06

N
or
m
al
iz
ed
…A
R
T…

D
iff
eren
ce ART(1) ART(0)

ART(5) ART(1)
ART(21) ART(5)

Figure 4: Normalized ART difference for each sorted group
(DF-UOR-RL). ART(k0) denotes the ART with k = k0.

various types of robustness. Therefore, we design UOR-RL as
a general framework, which can be applied to satisfy a variety
of preference to robustness. As far as we know, UOR is the
first RL framework to take user preference into consideration.

Conclusion

In this paper, we propose the UOR metric, which integrates
user preference into the measurement of robustness. Aiming
at optimizing such metric, we design two UOR-RL training
algorithms, which work in the scenarios with or without a
priori known environment distribution, respectively. Theo-
retically, we prove that the output policies of the UOR-RL
training algorithms, in the scenarios with accurate, inaccu-
rate or even completely no knowledge of the environment
distribution, are all ϵ-suboptimal to the optimal policy. Also,
we conduct extensive experiments in 6 MuJoCo tasks, and
the results validate that UOR-RL is comparable to the state-
of-the-art baselines under traditional metrics and establishes
new state-of-the-art performance under the UOR metric.

Acknowledgements

This work was supported by NSF China (No. U21A20519,
U20A20181, 61902244).

References
Badrinath, K. P.; and Kalathil, D. 2021. Robust reinforcement
learning using least squares policy iteration with provable
performance guarantees. In International Conference on
Machine Learning, 511–520. PMLR.

Chen, Y.; Du, S. S.; and Jamieson, K. 2021. Improved corrup-
tion robust algorithms for episodic reinforcement learning.
In International Conference on Machine Learning. PMLR.

Chow, Y.; Tamar, A.; Mannor, S.; and Pavone, M. 2015. Risk-
sensitive and robust decision-making: a cvar optimization
approach. Advances in neural information processing sys-
tems, 28.

Cobbe, K.; Klimov, O.; Hesse, C.; Kim, T.; and Schulman, J.
2019. Quantifying generalization in reinforcement learning.
In International Conference on Machine Learning, 1282–
1289. PMLR.

Curi, S.; Berkenkamp, F.; and Krause, A. 2020. Efficient
model-based reinforcement learning through optimistic pol-
icy search and planning. arXiv preprint arXiv:2006.08684.

Curi, S.; Bogunovic, I.; and Krause, A. 2021. Combin-
ing Pessimism with Optimism for Robust and Efficient
Model-Based Deep Reinforcement Learning. arXiv preprint
arXiv:2103.10369.

Da Silva, B.; Konidaris, G.; and Barto, A. 2012. Learning
parameterized skills. arXiv preprint arXiv:1206.6398.

Derman, E.; Geist, M.; and Mannor, S. 2021. Twice regu-
larized MDPs and the equivalence between robustness and
regularization. In Advances in Neural Information Processing
Systems.

Derman, E.; Mankowitz, D. J.; Mann, T. A.; and Mannor, S.
2018. Soft-robust actor-critic policy-gradient. arXiv preprint
arXiv:1803.04848.

Grand-Clément, J.; and Kroer, C. 2020. First-Order Methods
for Wasserstein Distributionally Robust MDP. arXiv preprint
arXiv:2009.06790.

Igl, M.; Ciosek, K.; Li, Y.; Tschiatschek, S.; Zhang, C.; De-
vlin, S.; and Hofmann, K. 2019. Generalization in reinforce-
ment learning with selective noise injection and information
bottleneck. arXiv preprint arXiv:1910.12911.

Iyengar, G. N. 2005. Robust dynamic programming. Mathe-
matics of Operations Research, 30(2): 257–280.

Jiang, Y.; Li, C.; Dai, W.; Zou, J.; and Xiong, H. 2021. Mono-
tonic robust policy optimization with model discrepancy. In
International Conference on Machine Learning, 4951–4960.
PMLR.

Kallus, N.; and Uehara, M. 2020. Double reinforcement
learning for efficient and robust off-policy evaluation. In
International Conference on Machine Learning, 5078–5088.
PMLR.

Kamalaruban, P.; Huang, Y.-T.; Hsieh, Y.-P.; Rolland, P.; Shi,
C.; and Cevher, V. 2020. Robust reinforcement learning via
adversarial training with langevin dynamics. arXiv preprint
arXiv:2002.06063.

15276

Kiran, B. R.; Sobh, I.; Talpaert, V.; Mannion, P.; Sallab, A.
A. A.; Yogamani, S.; and Pérez, P. 2021. Deep Reinforce-
ment Learning for Autonomous Driving: A Survey. IEEE
Transactions on Intelligent Transportation Systems.
Kober, J.; Bagnell, J. A.; and Peters, J. 2013. Reinforcement
learning in robotics: A survey. The International Journal of
Robotics Research, 32(11): 1238–1274.
Kumar, S.; Kumar, A.; Levine, S.; and Finn, C. 2020. One
Solution is Not All You Need: Few-Shot Extrapolation via
Structured MaxEnt RL. In Advances in Neural Information
Processing Systems, 8198–8210.
Littman, M. L. 1994. Markov games as a framework for
multi-agent reinforcement learning. In Machine Learning
Proceedings 1994, 157–163.
Littman, M. L.; and Szepesvari, C. 1996. A Generalized
Reinforcement-Learning Model: Convergence and Applica-
tions. In International Conference on Machine Learning,
310–318.
Mankowitz, D. J.; Levine, N.; Jeong, R.; Shi, Y.; Kay, J.; Ab-
dolmaleki, A.; Springenberg, J. T.; Mann, T.; Hester, T.; and
Riedmiller, M. 2020. Robust reinforcement learning for con-
tinuous control with model misspecification. In International
Conference on Learning Representations.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.
Nilim, A.; and El Ghaoui, L. 2005. Robust control of Markov
decision processes with uncertain transition matrices. Opera-
tions Research, 53(5): 780–798.
Oikarinen, T.; Weng, T.-W.; and Daniel, L. 2020. Robust
deep reinforcement learning through adversarial loss. arXiv
preprint arXiv:2008.01976.
Rajeswaran, A.; Ghotra, S.; Ravindran, B.; and Levine, S.
2016. Epopt: Learning robust neural network policies using
model ensembles. arXiv preprint arXiv:1610.01283.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.;
and Riedmiller, M. 2014. Deterministic policy gradient algo-
rithms. In International Conference on Machine Learning,
387–395. PMLR.
Tessler, C.; Efroni, Y.; and Mannor, S. 2019. Action robust
reinforcement learning and applications in continuous control.
In International Conference on Machine Learning, 6215–
6224. PMLR.
Tobin, J.; Fong, R.; Ray, A.; Schneider, J.; Zaremba, W.;
and Abbeel, P. 2017. Domain randomization for transferring
deep neural networks from simulation to the real world. In
International Conference on Intelligent Robots and Systems,
23–30. IEEE.
Todorov, E.; Erez, T.; and Tassa, Y. 2012. MuJoCo: A physics
engine for model-based control. In International Conference
on Intelligent Robots and Systems, 5026–5033. IEEE.

Viano, L.; Huang, Y.-T.; Kamalaruban, P.; Weller, A.; and
Cevher, V. 2021. Robust Inverse Reinforcement Learning
under Transition Dynamics Mismatch. In Advances in Neural
Information Processing Systems.
Wang, J.; Liu, Y.; and Li, B. 2020. Reinforcement learning
with perturbed rewards. In AAAI Conference on Artificial
Intelligence, 6202–6209.
Wang, Y.; and Zou, S. 2021. Online Robust Reinforcement
Learning with Model Uncertainty. In Advances in Neural
Information Processing Systems.
Wiesemann, W.; Kuhn, D.; and Rustem, B. 2013. Robust
Markov decision processes. Mathematics of Operations Re-
search, 38(1): 153–183.
Xu, H.; and Mannor, S. 2010. Distributionally Robust
Markov Decision Processes. In NIPS, 2505–2513.
Yu, P.; and Xu, H. 2015. Distributionally robust counterpart in
Markov decision processes. IEEE Transactions on Automatic
Control, 61(9): 2538–2543.
Zhang, H.; Chen, H.; Boning, D.; and Hsieh, C.-J. 2021a.
Robust reinforcement learning on state observations with
learned optimal adversary. arXiv preprint arXiv:2101.08452.
Zhang, H.; Chen, H.; Xiao, C.; Li, B.; Liu, M.; Boning, D.;
and Hsieh, C.-J. 2020. Robust deep reinforcement learning
against adversarial perturbations on state observations. arXiv
preprint arXiv:2003.08938.
Zhang, K.; Hu, B.; and Basar, T. 2020. On the stability and
convergence of robust adversarial reinforcement learning:
A case study on linear quadratic systems. In Advances in
Neural Information Processing Systems.
Zhang, X.; Chen, Y.; Zhu, X.; and Sun, W. 2021b. Robust
policy gradient against strong data corruption. arXiv preprint
arXiv:2102.05800.

15277

