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Abstract
Deep neural networks (DNNs) have been widely adopted in
many decision-making industrial applications. Their fairness
issues, i.e., whether there exist unintended biases in the DNN,
receive much attention and become critical concerns, which
can directly cause negative impacts in our daily life and po-
tentially undermine the fairness of our society, especially with
their increasing deployment at an unprecedented speed. Re-
cently, some early attempts have been made to provide fair-
ness assurance of DNNs, such as fairness testing, which aims
at finding discriminatory samples empirically, and fairness
certification, which develops sound but not complete analysis
to certify the fairness of DNNs. Nevertheless, how to formally
compute discriminatory samples and fairness scores (i.e., the
percentage of fair input space), is still largely uninvestigated.
In this paper, we propose DeepGemini, a novel fairness for-
mal analysis technique for DNNs, which contains two key
components: discriminatory sample discovery and fairness
score computation. To uncover discriminatory samples, we
encode the fairness of DNNs as safety properties and search
for discriminatory samples by means of state-of-the-art veri-
fication techniques for DNNs. This reduction enables us to be
the first to formally compute discriminatory samples. To com-
pute the fairness score, we develop counterexample guided
fairness analysis, which utilizes four heuristics to efficiently
approximate a lower bound of fairness score. Extensive ex-
perimental evaluations demonstrate the effectiveness and ef-
ficiency of DeepGemini on commonly-used benchmarks, and
DeepGemini outperforms state-of-the-art DNN fairness certi-
fication approaches in terms of both efficiency and scalability.

Introduction
Deep neural networks (DNNs) have become the core com-
ponents of many social-critical decision-making processes,
e.g., credit classification, income prediction (Dua and Graff
2017), and recidivism risk estimation (Angwin, Larson, and
Mattu 2018), which can directly impact our daily life. Their
continuously rapid growth and widespread deployment also
pose critical fairness concerns, which have received much
attention recently. For example, in image search, when
searching for certain words, such as CEO, there can be a
gender bias (Kay, Matuszek, and Munson 2015). Conse-
quently, DNN fairness has been an important requirement
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and critical property of the software system, with urgent in-
dustrial demands for rigorous and systematical analysis.

Up to the present, there have been quite a few fairness cri-
teria used in the literature from different perspectives. For
instance, group fairness (Feldman et al. 2015) and equalised
odds (Hardt, Price, and Srebro 2016) are the two most com-
mon probability-based fairness. In this work, we take a spe-
cial focus on the important dependency fairness (Urban et al.
2020; Galhotra, Brun, and Meliou 2017) of DNNs, which is
considered as a stronger notion of group fairness because it
imposes fairness on every individual sample. In particular, a
DNN satisfies dependency fairness if its output prediction is
not influenced by values of sensitive features. Sensitive fea-
tures, typically, are the features that are considered sensitive
to bias, e.g., gender of the client in credit approval predic-
tion. We select this fairness notion, over the other notions,
because the found individual discriminatory samples can be
verified on the original network, and it is a stronger notion
of group fairness, which is amenable to verification.

Although various testing and verification techniques have
been designed against dependency fairness, challenges arise
when it comes to formally compute discriminatory samples
and fairness scores, i.e., the fraction of the region in which
no discriminatory samples are contained. For instance, Li-
bra (Urban et al. 2020) is an abstract interpretation based
technique to certify dependency fairness with definite guar-
antees. Nevertheless, it relies on over-approximation of the
space, and therefore a concrete discriminatory sample is out
of its reach. ADF (Zhang et al. 2020) is a testing technique
to search for discriminatory samples based on gradient infor-
mation. However, this technique cannot give formal guaran-
tees on the desired fairness.

Towards addressing these challenges, we propose a novel
technique DeepGemini, for formally computing discrimi-
natory samples and fairness scores, which is schematically
shown in Figure 1. It mainly consists of two novel key com-
ponents, discriminatory sample computation and Counterex-
ample Guided Fairness Analysis (CEGFA). First, to formally
compute discriminatory samples, we propose a simple and
effective reduction to reduce dependency fairness to safety
properties of DNNs. After reduction, discriminatory sam-
ples of DNNs can be viewed as violations of safety prop-
erties so that we can use existing safety verification tech-
niques, e.g., techniques based on Satisfiability Modulo The-
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Figure 1: Overview of DeepGemini.

ories (Katz et al. 2017) or Mixed-Integer Linear Program-
ming (Tjeng, Xiao, and Tedrake 2017), for DNNs to find
discriminatory samples. To the best of our knowledge, we
are the first to formally compute discriminatory samples for
deep neural networks. Second, to compute fairness score, we
propose counterexample guided fairness analysis, with iter-
ative region refinement, towards fairness region discovering
(Chowdhary 2020). By taking the formally computed coun-
terexamples into consideration, we design four novel itera-
tive region refinement approaches: random based, saliency
map based, important neuron based, and ε-greedy based ap-
proaches. These novel refinement approaches are shown em-
pirically to be effective in the fairness score computation.

To demonstrate the usefulness of DeepGemini, we eval-
uate its performance on two commonly-used benchmarks,
German credit dataset, and COMPAS dataset. The results
confirm that DeepGemini can discover discriminatory sam-
ples effectively and efficiently. Moreover, the effectiveness
of diverse fairness region refinement approaches is also
demonstrated. Furthermore, DeepGemini achieves higher
efficiency and more scalability than state-of-the-art fairness
certification approaches.

In summary, the key contributions of this paper are three-
fold:

• We introduce a simple and effective technique to verify
dependency fairness by reducing the fairness verification
to the safety verification of DNNs.

• We develop an effective refinement strategy, Counterex-
ample Guided Fairness Analysis (CEGFA), to reduce the
verification of large input space into that of smaller input
space, and formally compute fairness scores.

• We conduct experimental evaluations on three popular
verification datasets, and show the effectiveness of our
approach in answering bias queries and computing fair-
ness scores. We also compare the performance of Deep-
Gemini with the state-of-the-art verification method.

Background and Problem Definition
In this section, we first briefly introduce deep neural network
verification and fairness criteria in machine learning, which
is the background for defining our problem. Following that,
we discuss our fairness verification problem.

A neural network N that classifies inputs on Rn to m
classes {l1, ..., lm} is considered as a function N : Rn →
Rm. Assume that we write Ni : Rn → R for the function
that returns the evaluation ofN on the ith class, i.e.,N (x) =
(N1(x), ...,Nm(x)). N classifies an input x into class lj if
and only if j = argmaxiNi. In the rest of the paper, we use
x = (x1, ..., xn) to denote input variables of N and write
y = (y1, ..., ym) for output variables of N .

Neural Network Verification
Several safety and fairness issues of DNNs have been identi-
fied in recent years (Goodfellow, Shlens, and Szegedy 2014;
Szegedy et al. 2013), which results in the study on the prob-
lem of Neural Network Verification (NNV). NNV (Katz et al.
2017; Gehr et al. 2018; Obermeyer et al. 2019) aims at mak-
ing sure DNNs run correctly and giving rigorous guaran-
tees to neural network models. Given a DNN model N and
the desired specification φ, the neural network verifier veri-
fies whether N satisfies φ on all inputs x. The specification
holds if no counterexample exists. Otherwise, a counterex-
ample, found by the neural network verifier, is returned. Typ-
ically, φ is of the form:{

φpre(x)
}
y ← N (x)

{
φpost(x, y)

}
,

where {φpre(x)} is the precondition over the input of N ,
{φpost(x, y)} is the postcondition over the input and the out-
put ofN , and y ← N (x) refers to the procedure of comput-
ing the output of N for input x and assigning the output
value to y. The meaning of the above triple is equivalent to
the implication: ∀x, φpre(x)∧y ← N (x) =⇒ φpost(x, y).

Although DNN verification can be quite challenging, re-
cent researches have made some early attempts to design
various verification techniques. For instance, Reluplex (Katz
et al. 2017) is an SMT solver specialized for neural net-
works, which is based on the classical simplex algorithm
and aims at handling the theory of linear real arithmetic with
ReLU constraints. AI2 (Gehr et al. 2018) certifies adversar-
ial robustness by transforming DNN analysis into the frame-
work of abstract interpretation, which over-approximates the
computation of a deep neural network on a symbolic set of
the infinite set of inputs.

Fairness Criteria
The discrimination, hidden in the training data or the gen-
eralization process, causes the discriminative prediction of
machine learning models, and this motivates researchers to
develop several fairness criteria to measure the degree of
fairness of the models. There are a significant number of
fairness metrics that mainly fall into three categories: indi-
vidual, group, and subgroup (Mehrabi et al. 2019). Individ-
ual fairness, such as dependency fairness and counterfactual
fairness, requires that the model gives similar predictions to
similar individuals (Urban et al. 2020; Kusner et al. 2017).
Group fairness, e.g., demographic parity, equalized odds,
and equal opportunity, tries to ensure the machine learning
model treats different groups of people equally (Hardt, Price,
and Srebro 2016; Dwork et al. 2012). Subgroup fairness ap-
plies the constraint of group fairness to a subset of the group
(Kearns et al. 2018).
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In this work, we target at verifying dependency fairness,
i.e., the prediction result of a DNN model does not depend
on the sensitive input features. Dependency fairness is a
stronger notion than the group-based fairness notions (Ur-
ban et al. 2020). This specification requires the investigation
of full input space, or a fraction of the space. Notice that,
in general, this problem is very challenging because of the
intractability of the potentially infinite number of inputs ex-
ploration.

Problem Definition
In this work, we focus on DNNs that are used to perform
classification tasks in decision-making procedures. Due to
the existence of explicit or underlying bias in the DNNs, we
are motivated to give rigorous guarantees to the degree of
dependency fairness of DNN models. More specifically, our
goal is to find discriminatory samples and further quantify
the fairness regions.

As a first step towards this goal, we define the notion of
discriminatory samples. Intuitively speaking, a discrimina-
tory sample is an input such that changing its sensitive fea-
tures could cause different prediction results. A DNN is fair
on an input region if there exist no discriminatory samples
in that region.
Definition 1 (Discriminatory Samples). LetN be a neural
network and K be the set of indices of sensitive features. An
input x = (x1, x2, ..., xn) is a discriminatory sample if there
exists x′ = (x′

1, x
′
2, ..., x

′
n), such that

• ∀i ̸∈ K : xi = x′
i,

• ∃i ∈ K, xi ̸= x′
i,

• and N classifies x and x′ into two different classes.

In the context of fairness-critical DNN-enabled software,
however, it is not enough to identify discriminatory samples
only. It is also necessary to know the percentage of the re-
gion where there are no discriminatory samples, i.e., fair-
ness score. It serves as a fairness metric for DNN models
that reflect how fair the DNN is in the desired region. In-
tuitively, fairness score is the fraction of input space where
there is no violation of dependency fairness. For example,
consider a DNN N with a small input space, consisting of
only 1000 inputs. Assume that there are only 800 inputs for
which changing sensitive features cannot alter their network
predictions. Then, the fairness score of N is 80%.
Definition 2 (Fairness Score). Let N be a DNN and Sin be
the set of its inputs. Assume that XK is a set of sensitive fea-
tures. The fairness score of N , denoted Tfair, with respect
to XK is the fraction of inputs in Sin for which changing
sensitive features cannot change the prediction of N .

Having defined discriminatory samples and fairness
scores, we now define the main problem that we focus in
this paper.
Problem 1 (Fairness Verification). Given a DNNN and the
sensitive features, find discriminatory samples and compute
the fairness score of N .

In general, Problem 1 is very challenging as it involves
reasoning about an infinite number of inputs. In the follow-

n1,2n1,1

Y N

race age

N

n1,2n1,1 n′
1,1 n′

1,2

N ′Y ′Y N

race age race′

N ⊕N ′

Figure 2: A small illustrative example of DNN N used for
credit approval. N ⊕ N ′ is the newly constructed DNN for
verification.

ing section, we propose a novel technique, named Deep-
Gemini, to tackle this problem.

DeepGemini: A Dependency Fairness Analysis
Framework

In this section, we present our fairness analysis framework,
which consists of two key parts. The first part is about how
we verify dependency fairness through reducing it to the
safety verification problem so that we can leverage the state-
of-the-art verification engines, e.g. Reluplex (Katz et al.
2017) or Neurify (Wang et al. 2018). The second part is
our counterexample guided fairness analysis, which first an-
alyzes the entire input region and then performs iterative re-
finement to regions that contain discriminatory samples for
further analysis.

Reducing Fairness Verification to Safety
Verification
Our key insight is that we identify that the recent develop-
ment of safety verification of DNNs could serve as the basis
for fairness verification. If we could properly formulate and
transform the dependency fairness verification into the sim-
ilar context of DNN safety verification, our technique could
be general to utilize the existing safety verification as the
basis to perform fairness verification.

To verify dependency fairness of N w.r.t. sensitive fea-
tures, we construct a new neural network to compare the
output difference of N caused by changes in sensitive fea-
tures.

The new network is constructed by composing N and an
identical copy of N , denoted N ′, in parallel, such that

• N and N ′ share the same input values for variables on
non-sensitive dimensions, and

• N and N ′ have independent input values for sensitive
features.

We denote the newly constructed network as N ⊕ N ′. It is
easy to see that N satisfies dependency fairness if and only
if for an arbitrary input ofN ⊕N ′,N andN ′ always make
the same predictions.

Figure 2 shows an example of our construction. The orig-
inal network N is used for deciding credit approval. It has
two inputs age and race, two output variables yes and no,
and one hidden layer with two nodes. Assume that race is
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the sensitive feature. In N ⊕ N ′, both N and N ′ have the
same input age, but they have their own variables race and
race′ for race.

Assume that XK = {xk1
, ..., xkj

} is the set of sensitive
features. Then, the networkN ⊕N ′ is a functionN ⊕N ′ :
Rn+j → R2m. We use primed variables for sensitive fea-
tures and output inN ′. Hence, the input and output variables
of N ⊕N ′ are denoted as xcom = (x1, ..., xn, x

′
k1
, ..., x′

kj
)

and ycom = (y1, ..., ym, y′1, ..., y
′
m), respectively.

Let predi :=
∧

1≤j≤m,j ̸=i(yi > yj) and pred′i :=∧
1≤j≤m,j ̸=i(y

′
i > y′j) be two predicates, which means that

the prediction of network N (resp. N ′) is class li. We have
the following theorem that reduces dependency fairness to
safety properties of DNNs.

Theorem 1 (Soundness and Completeness). Let N be a
neural network and XK be a set of sensitive features. Let
N ′ be an identical copy of N . We have that N satisfies
dependency fairness if and only if the following specifica-
tion holds: ∀xcom, ycom : ycom = N ⊕ N ′(xcom) =⇒∨

i(predi ∧ pred′i).

Counterexample Guided Fairness Analysis
For deep neural networks deployed in fairness-critical do-
mains, we are also motivated to compute the percentage of
the regions where there are no discriminatory samples that
could be easily identified, i.e., fairness score. However, it is
not a trivial task, because even a fraction of the global space
could contain infinitely many inputs. Therefore, we develop
Counterexample Guided Fairness Analysis (CEGFA), shown
in Algorithm 1, to discover fair regions by leveraging dis-
criminatory samples.

The inputs of Algorithm 1 are the DNN under verification
N , a set of sensitive features XK , the total input space Sin,
and the iterative region refinement methodM. The outputs
are the set of discriminatory samples Xdis, and the fairness
score Tfair.

First, we construct N ⊕ N ′ to leverage the state-of-the-
art safety verification engine to perform fairness verification
(Line 1 in Algorithm 1). We initialize the set of discrimina-
tory samples Xdis, the region queue Q, and the set of fair-
ness region S (Line 2). The region queue maintains a list
of regions to be analysed. It collects regions that are com-
puted by our region splitting methods and possibly contain
no discriminatory samples. Computed regions are added to
the region queue in a FIFO manner, so that the regions that
have not been visited for a long period will be analyzed first.
Then, the algorithm goes into the loop of computing dis-
criminatory samples and the fairness score. The head ele-
ment of Q is dequeued and assigned to R (Line 4). By re-
ducing fairness to safety properties, introduced in Section
, we verify dependency fairness of N on region R using a
state-of-the-art safety verification engine (Line 5). If there is
no counterexample, i.e. a discriminatory sample, on R, we
append region R to S as a fair region (Line 6-7). Otherwise,
the discriminatory sample x is appended to Xdis. In the case
of returning unknown, we skip the step of adding x to Xdis

(Line 9-10). The region refinement methodM, described in

the following subsection, generates new regions by intelli-
gently refining regions that contain discriminatory samples,
and the algorithm enqueues new regions to Q (Line 11-12).
Based on the size of fair regions in S , we update the fair-
ness score (line 13). Finally, if the running time exceeds the
time budget or the fairness score is one, the algorithm returns
Xdis and Tfair (Line 14-15).
Lemma 1 Tfair, computed by the counterexample guided
fairness analysis, is an approximation of the lower bound of
the ground-truth fairness score.

Proof. Starting from the full input space, our fairness anal-
ysis bisects the space and performs verification on each sub-
space. If the subspace is proven to be fair, it will be added to
the computation of Tfair. On the other hand, if a discrimi-
natory sample is found, the subspace will be further split for
analysis. Therefore, Tfair is indeed an approximation of the
lower bound of the ground-truth fairness score.

Algorithm 1 incrementally computes an under-
approximation of the fairness score, meaning that at
each iteration the computed score is less than or equal to the
real fairness score. In this way, one can stop the algorithm
at any point in time and use the fairness score result.

Iterative Region Refinement
When N is not fair on region R, we further partition R and
verify whether N is fair on some of the subregions of R.
As mentioned in Section , we partition regions that con-
tain discriminatory samples via iterative region refinement.
More specifically, we design four kinds of region refinement
approaches: random based, saliency map based, important
neuron based, and ε-greedy based approaches.

• Random based. This method chooses a non-sensitive in-
put dimension randomly and bisects the original regions
into two subregions. For instance, for a region with one
dimension [l, u], the bisection generates two new subre-
gions:

[
l, l+u

2

]
and

[
l+u
2 , u

]
.

• Saliency Map based (SM). This method identifies the
non-sensitive input dimension that is most influential to
the network’s output, and split the input from the selected
dimension. In particular, to determine the influence of in-
put neurons, we utilize the idea of adversarial saliency
maps (Papernot et al. 2016), which indicates the input fea-
tures that an adversary should perturb to achieve the goal
to change the prediction of the DNN. The input neuron
that is the most adversarial in the saliency map is selected
as the refinement dimension.

• Important Neuron based (IN). This approach includes the
following two key steps. (1) It conducts the important neu-
ron analysis to recognize the most important neuron in
the hidden layers. More specifically, the goal of impor-
tant neuron analysis (Gerasimou et al. 2020) is to identify
neurons that have key contributions to the final decision
making process. (2) It computes the gradient of the most
important neuron with respect to the input of the network.
The non-sensitive input dimension that has the largest gra-
dient is prioritized to be split, to produce new regions. A
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Algorithm 1: CounterExample Guided Fairness Anlaysis
Input: A DNN N , a set of sensitive feature XK , the input
space Sin, and the region splitting methodM
Output: A set of discriminatory samples Xdis, and the fair-
ness score Tfair

1: Constuct N ⊕N ′, where N ′ is a copy of N ;
2: Let Xdis ← ∅, Q← {Sin}, S ← ∅;
3: while True do
4: R = DEQUEUE(Q);
5: x = VERIFYFAIRNESS(N ⊕N ′, XK , R);
6: if x = ∅ then
7: S = S ∪R;
8: else
9: if x ̸= unknown then

10: Xdis = Xdis ∪ x;
11: end if
12: Rnew =M(R);
13: Q = ENQUEUE(Q,Rnew);
14: end if
15: Tfair = ΣR∈S |R|

|Sin| ;
16: if timeout or Tfair = 1 then
17: return Xdis, Tfair;
18: end if
19: end while

greater gradient value of the input node signifies it has a
larger effect on the important neurons.

• ε-greedy based. Inspired by the exploration and ex-
ploitation strategy in reinforcement learning, we design
ε-greedy based approach, which mixes two refinement
strategies, e.g., a and b, and assigns probability ε to one
of the methods, say a, and 1− ε to the other, say b. Here,
ε is a hyperparameter that indicates how frequently the
corresponding method is chosen. We primarily show the
effect of SM-random and IN-random in Section .

Remark 1 Although we can compute the fairness score of
training data, due to the generalization ability of DNNs and
their non-deterministic training process, the ground truth
fairness score of DNNs is different from the fairness score
of their training data. In fact, the ground truth fairness score
of neural networks is typically difficult, if not impossi-
ble, to acquire. The fairness score computed by Algorithm
1 is an under-approximation of the ground truth fairness
score. The precision of Algorithm 1 improves as the number
of iterations of region refinement increases. Theoretically,
given enough time, the computed fairness score would be an
asymptotic solution to the ground truth, as shown by Lemma
1.

Remark 2 Our approach can be applied to judge depen-
dency fairness of DNNs in practice. For instance, for DNNs
used in credit approval, banks could require that the fairness
score of DNNs should be higher than 95%. Moreover, not
only the fairness score should be considered, but the found
bias should also be utilized as a reference to check the sever-
ity of bias.

Model Dataset Time #Ce. #Fair

GERMAN-4*10 bias 0.42 7 3
fair 0.64 3 7

GERMAN-4*20 bias 0.34 9 1
fair 2.54 3 7

GERMAN-4*30 bias 1.23 10 0
fair 14.65 5 5

COMPAS-4*10 bias 1.91 8 2
fair 0.16 1 9

COMPAS-4*20 bias 37.0 10 0
fair 69.68 3 7

COMPAS-4*30 bias 225.96 10 0
fair 213.34 2 8

Table 1: Experiment results for RQ1. Time is the average
verification time in seconds. #Ce. is the number of models
in which a counterexample is found. #Fair is the number of
models that are verified as fair.

Experiment
In this section, we perform an evaluation of DeepGemini to
demonstrate its usefulness. In particular, we mainly investi-
gate the following research questions:
• RQ1: Is DeepGemini able to answer bias queries?
• RQ2: Can DeepGemini compute fair regions?
• RQ3: Is DeepGemini more scalable and efficient than the

state-of-the-art fairness verification method?

Experimental Setup
Implementation and Hardware Configurations We im-
plemented DeepGemini in Python, supporting Pytorch 1.0.0.
and built on top of Marabou (Katz et al. 2019), which
is an SMT-based tool specialized for neural network ver-
ification. We made our source code available online in a
repository.1 All experiments were run on a server with In-
tel(R) Core(TM) i9-10940X CPU @ 3.30GHz Processor, 28
CPUs, 62G RAM, and two NVIDIA RTX A6000.

Datasets and Sensitive Features We choose two widely
used fairness benchmark datasets for evaluation: (1) The
UCI German-credit dataset (Dua and Graff 2017), which as-
signs credits based on the information of the clients, e.g.,
age and gender, with 3,356 training samples. (2) The ProP-
ublica’s COMPAS recidivism dataset (Angwin, Larson, and
Mattu 2018). It measures the recidivism-risk score, i.e., how
likely the offenders will reoffend, of the offenders. This
dataset contains 6,762 training samples. We use the fair and
biased version, adapted by Urban et al. (Urban et al. 2020).
The fairness score of the fair and biased version are 100%
and 80%, respectively. The sensitive features are age and
race for German dataset and COMPAS dataset, respectively.

DNN Model Architecture The model architectures range
from four hidden layers with 10 neurons each to five hid-
den layers with 50 neurons each. We show the correspond-
ing model architectures in each RQ. For each model size,

1https://github.com/LebronX/DeepGemini-public
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we typically train ten neural networks for verification pro-
cedures and report the average result, to counteract the non-
deterministic and randomized training process of DNNs.

Baseline Comparison In RQ3, we choose Libra (Ur-
ban et al. 2020) for baseline comparison. There is also
work on analyzing dependency fairness of deep neural net-
works (Bastani, Zhang, and Solar-Lezama 2019; Albargh-
outhi et al. 2017). However, their work is either on providing
probabilistic guarantees (Bastani, Zhang, and Solar-Lezama
2019), or only scale to DNNs with two hidden neurons (Al-
barghouthi et al. 2017).

Experimental Results
RQ1 (Answering Bias Queries) In this RQ, we inves-
tigate whether our technique can effectively answer bias
queries for the given model, and we use the German credit
dataset and the COMPAS dataset for evaluation. The models
we select have four hidden layers and the following number
of neurons per layer: 10, 20, and 30. For the German credit
dataset, we ask the following bias queries: QG

1 : Is there bias
with respect to age for people holding a house? For COM-
PAS dataset, we ask: QC

1 : Is there bias with respect to race
for females younger than 25?

Table 1 summarizes the experimental results. For each
model trained on different versions of the dataset, it re-
ports the average verification time, the number of models,
in which a counterexample is discovered, and the number
of models that are verified to be fair. Our in-depth analy-
sis reveals the following observations from the results. First,
DeepGemini can efficiently capture the underlying bias in
the models. On the German credit dataset, the query answer-
ing time for models trained on the biased dataset is shorter
than that for models trained on the fair dataset. For instance,
the average query answering time for QG

1 in the fair ver-
sion is 5.94 seconds, whereas the time for QG

1 in the biased
version is 0.66 seconds. However, on the COMPAS dataset,
the query answering time for models trained on both ver-
sions are close. For example, the average query answering
time for QC

1 in the fair version is 94.39 seconds, whereas the
corresponding time in the biased version is 88.29 seconds.
Second, it takes more time for querying as the size of the
networks increase. The average querying time for COMPAS-
4*20 in fair version is 69.68 seconds, and the average query-
ing time for COMPAS-4*30 in fair version is 213.34 sec-
onds. Note that there is no timeout case on two benchmarks.
The backend SMT-based verification engine, although de-
veloped specifically for the verification of DNNs, is based
on an NP-complete algorithm (Katz et al. 2017). As the size
of models increases, the verification time increases dramat-
ically on models for the COMPAS dataset. Third, there are
typically more discriminatory samples hidden in the DNNs
trained on the biased dataset, where 9.0 counterexamples on
average are found, than the ones trained on the fair dataset,
where 2.8 counterexamples are discovered.

Answer to RQ1: DeepGemini is effective and efficient
in terms of answering bias queries, which indicates its
usefulness when applying it in practice.

(a) BIAS (b) FAIR

Figure 3: Fairness scores computed on the German dataset

(a) BIAS (b) FAIR

Figure 4: Fairness score computed on COMPAS dataset

RQ2 (Computing Fairness Score) In this RQ, we study
the effectiveness of the counterexample guided fairness
analysis, by evaluating on the COMPAS dataset and the Ger-
man credit dataset (both with the fair and the biased version).
The models we select for both datasets have four hidden lay-
ers and 15 neurons per layer. The query for the COMPAS
dataset is: Is there bias with respect to race? The query for
the German credit dataset is: Is there bias with respect to
age? The time budget for computing the fairness score in all
the experiments is 1800 seconds.

Figure 3 and 4 show the result of the fairness analy-
sis. The x-axis is the time in second, and the y-axis is the
fairness score. We mainly compare random, pure impor-
tant neuron-based (IN), pure saliency map (SM) and the
ε−greedy method.

We make the following observations. First, it is clear that
the fairness score increases over time, which indicates the
effectiveness of our iterative region refinement technique.
Second, for both datasets, models trained on the fair version
have higher fairness scores than models trained on the biased
version. This is consistent with our expectations as models
trained on biased datasets would contain more discrimina-
tory samples. Third, sometimes the random approach has a
better performance than other region refinement approaches,
e.g., in Figure 3(b). We also noticed that in Figure 4(b), the
random approach is one of the best among all the compared
approaches.

The performance of fair analysis varies across different
region refinement strategies. Our experimental results show
that no single refinement method can outperform all other re-
finement methods. In practice, we would recommend users
to try the random method first, as it does not involve param-
eter tuning and has very good performance. If the result is
not satisfying, we recommend users tune the parameters of
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Figure 5: Comparing the performance of DeepGemini to Li-
bra in the COMPAS dataset.

the ε-greedy approach to obtain better results if possible.

Answer to RQ2: The experimental result demonstrates
that CEGFA is effective and efficient in computing fair-
ness scores. In general, there is no best iterative region
refinement method over all heuristics.

RQ3 (Comparison with Libra) In this RQ, we compare
the performance of DeepGemini with the abstract interpreta-
tion based verification technique Libra (Urban et al. 2020),
in the COMPAS dataset. We use the default parameters in
Libra, i.e., symbolic as abstract domains, four as the num-
ber of tolerated disjunctions, and 0.25 as the smallest parti-
tion for each dimension. The DNN models, in the COMPAS
dataset, have five hidden layers and the following number
of neurons per layer: 10, 15, 20, 30, and 50. We train four
neural networks for each model size for the experiment. The
query for the COMPAS dataset is: Is there bias with respect
to race? The verification time budget is 1,800 seconds.

Figure 5 summarizes the obtained results. Overall, Deep-
Gemini can efficiently compute fairness scores in small and
big networks. The average computed fairness score when us-
ing saliency map mixed with random approach is 51.48%.
However, the corresponding average fairness score com-
puted by Libra is 26.79%. Our in-depth analysis finds that
this is because Libra spends most of the time in its pre-
analysis period, which is designed for analyzing abstract ac-
tivation patterns, and thus cannot progress for the fairness
verification procedure. The data shows that DeepGemini can
analyze the fairness region efficiently, which indicates its
usefulness in practical scenarios.

Answer to RQ3: DeepGemini exhibits better scalabil-
ity and efficiency in verifying dependency fairness than
the state-of-the-art verification technique Libra.

Related Work
Verification of Fairness. Libra (Urban et al. 2020) is an
abstract interpretation based approach to certifying depen-
dency fairness for DNNs with ReLU activation function. Li-
bra performs backward analysis by analyzing the output of
the network and acquires the abstraction of the input space

to conduct the intersection check. It leverages the abstract
activation pattern to reduce the intractability of the explo-
sion of ReLU analysis and several abstract domains, e.g.,
box and symbolic domains, are incorporated. As shown in
the experiment, for a small network that contains 150 neu-
rons in the hidden layers, Libra cannot finish fairness verifi-
cation within 30 minutes, whereas DeepGemini can perform
efficient verification, which demonstrates the scalability and
efficiency of our technique.

For other fairness criteria, Justicia (Ghosh, Basu, and
Meel 2021) is a stochastic satisfiability framework to verify
multiple fairness criteria, such as disparate impact, statistical
parity, and equalized odds. Sun et al. (Sun et al. 2021) pro-
pose a technique for verifying group fairness, which learns
a Discrete-Time Markov Chain by sampling with the Prob-
ably Approximate Correctness guarantee and then performs
probabilistic model checking, e.g., probabilistic reachability
analysis, on the learned surrogate model.

Formal Analysis of Deep Neural Networks. Numerous
techniques for giving rigorous guarantees to DNNs has been
developed. Reluplex (Katz et al. 2017) and AI2 (Gehr et al.
2018) are two early steps on verifying safety and robustness
of DNNs. Recently, bound propagation based verifiers on
GPU has recently become the main trend in this field (Zhang
et al. 2018; Wang et al. 2021; Ferrari et al. 2022). Other work
also considers performing model-based analysis on recur-
rent neural networks (Khmelnitsky et al. 2021; Zhang et al.
2021), or verifying neuro-symbolic property (Xie, Kersting,
and Neider 2022).

The reduction to safety proposed in the paper, compos-
ing the neural network with an identical copy, is also called
self-composition (Clarkson and Schneider 2010) and a sim-
ilar idea is used for verifying the monotonicity properties
of DNN models for predicting future blood glucose levels
(Kushner, Sankaranarayanan, and Breton 2020). Our work
focus on verifying dependency fairness, which can be con-
sidered as a type of global robustness, as it requires the DNN
to be robust with respect to the sensitive features.

Conclusion

In this work, we propose DeepGemini, a novel framework
for formally computing discriminatory samples and fairness
scores. We formulate and transform the dependency fairness
verification to the safety specification problem, which en-
ables us to leverage existing safety verification techniques to
formally compute discriminatory samples. We also propose
counterexample-guided fairness analysis, which is based on
four iterative region refinement techniques: random based,
saliency map based, important neuron based, and ε−greedy
based approaches. The empirical evaluation of our approach
demonstrates that we are able to answer bias queries, and
perform scalable and efficient fairness computation. For fu-
ture work, we plan to study how to leverage the computed
discriminatory samples in the retraining process in order to
enhance the fairness of DNNs with rigorous formal analysis.
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