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Abstract

Prior work has successfully incorporated optimization lay-
ers as the last layer in neural networks for various problems,
thereby allowing joint learning and planning in one neural
network forward pass. In this work, we identify a weakness
in such a set-up where inputs to the optimization layer lead to
undefined output of the neural network. Such undefined de-
cision outputs can lead to possible catastrophic outcomes in
critical real time applications. We show that an adversary can
cause such failures by forcing rank deficiency on the matrix
fed to the optimization layer which results in the optimization
failing to produce a solution. We provide a defense for the
failure cases by controlling the condition number of the input
matrix. We study the problem in the settings of synthetic data,
Jigsaw Sudoku, and in speed planning for autonomous driv-
ing. We show that our proposed defense effectively prevents
the framework from failing with undefined output. Finally, we
surface a number of edge cases which lead to serious bugs in
popular optimization solvers which can be abused as well.

Introduction
There is a recent trend of incorporating optimization and
equation solvers as the final layer in a neural network, where
the penultimate layer outputs parameters of the optimization
or the equation set that is to be solved (Amos and Kolter
2017; Donti, Amos, and Kolter 2017; Agrawal et al. 2019;
Wilder, Dilkina, and Tambe 2019; Wang et al. 2019; Per-
rault et al. 2020; Li et al. 2020; Paulus et al. 2021). The
learning and optimizing is performed jointly by differenti-
ating through the optimization layer, which by now is in-
corporated into standard libraries. Novel applications of this
method have appeared for decision focused learning, solv-
ing games, clustering after learning, with deployment in real
world autonomous driving (Xiao et al. 2022) and schedul-
ing (Wang et al. 2022). In this work, we explore a novel
attack vector that is applicable for this setting, but we note
that the core concepts in this attack can be applied to other
settings as well. While a lot of work exists in attacks on ma-
chine learning, in contrast, we focus on a new attack that
forces the decision output to be meaningless via specially
crafted inputs. The failure of the decision system to produce
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meaningful output can lead to catastrophic outcomes in crit-
ical domains such as autonomous driving where decisions
are needed in real time. Also, such inputs when present in
training data lead to abrupt failure of training. Our work ex-
ploits the failure conditions of the optimization layer of the
joint network in order to induce such failure. This vulnera-
bility has not been exploited in prior literature.

First, we present a numerical instability attack. Typically,
an optimization solver or an equation set solver takes in pa-
rameters θ as input. In the joint network, this parameter θ
is output by the learning layers and feeds into the last op-
timization layer (see Fig. 1). At its core, the issue lies in
using functions which are prone to numerical stability is-
sues in its parameters (see appendix). Most optimization or
equation solvers critically depend on the matrix A—part of
the parameter θ—to be sufficiently far from a singular ma-
trix to solve the problem. Our attack proceeds by searching
for input(s) that cause the matrix A to become singular. The
instability produces NaNs—undefined values in floating-
point arithmetic—which may result in undesired behavior
in downstream systems that consume them. We perform this
search via gradient descent and test three different ways of
finding a singular matrix in neighborhood of A; only one of
which works consistently in practice.

Second, to tackle the numerical instability attack, we pro-
pose a novel powerful defense via an efficiently computable
intermediate layer in the neural network. This layer utilizes
the singular value decomposition (SVD) of the matrix A
and, if needed, approximates A closely with a matrix A′ that
has bounded condition number; the bound is a hyperparam-
eter. Large condition number implies closeness to singular-
ity, hence the bounded condition number guarantees numer-
ical stability in the forward pass through the optimization
(or equation) solver. Surprisingly, we find that the training
performance with our defense in place surpasses the perfor-
mance of the undefended model, even in the absence of at-
tack, perhaps due to more stable gradients.

Finally, we show the efficacy of our attack and defense in
(1) a synthetic data problem designed in Amos and Kolter
(2017) and (2) a variant of the Sudoku experiment used
in Amos and Kolter (2017) and (3) an autonomous driving
scenario from Liu, Zhan, and Tomizuka (2017), where fail-
ures can occur even without attacks and how augmenting
with our defense prevent these failures. Lastly, we identify
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Figure 1: Optimization layers in neural networks. The neural network takes input u. Some parameters (Q, p,A, b,G, h) of the
optimization then depend on the output θ = fw(u).

other sources of failure in these optimization layers by in-
voking edge cases in the solver (see appendix). We list seri-
ous bugs in the solvers that we encountered.

Background, Notation, and Related Work
Matrix Concepts and Notation. The identity matrix is de-
noted as I and the matrix dimensions are given by sub-
scripts, e.g., Im×m. The pseudoinverse (Laub 2004) of
any matrix A is denoted by A+; if A is invertible then
A+ = A−1.The condition number (Belsley, Kuh, and
Welsch 1980) of non-singular matrix A is defined as κ(A) =
∥A+∥ ∥A∥ for any matrix norm. We use κ2(A) when the
norm used is 2-operator norm and κF (A) when the norm
used is the Frobenius norm. The (thin) SVD of a matrix A is
given by A = UΣV T where U, V have orthogonal columns
(UTU = I = V TV ) and Σ is a diagonal matrix with non-
negative entries. If A is of dimension m× n, then U,Σ, V T

are of dimension m×r, r×r, r×n respectively. The diago-
nal entries of Σ denoted as σi = Σi,i are the singular values
of the matrix A; singular values are always non-negative.
The condition number directly depends on the largest and
smallest singular value as follows: κ2(A) = σmax/σmin .
Also, ∥A∥2 = σmax. tr(A) denotes the trace of a matrix.
Embedding Optimization in Neural Networks. Embed-
ding a solver (for optimization or a set of equations) is es-
sentially a composition of a standard neural network fw and
the solver s, where w represents weights. The function fw
takes in input u and produces parameters θ for the problem
that the solver s solves. The solver layer takes θ as input
and produces a solution s(θ). The composition s ◦ fw can
be jointly trained by differentiating through the solver s (see
Fig. 1). The main enabler of this technique is efficient dif-
ferentiation of the solver function s. Prior work has shown
how to differentiate through solver s where s is a convex op-
timization problem (Amos and Kolter 2017), linear equation
solver (Etmann, Ke, and Schönlieb 2020), clustering algo-
rithm (Wilder et al. 2019), and game solver (Li et al. 2020).
Such joint networks have been shown to provide better solu-
tion over separate learning and solving (Perrault et al. 2020).

Many applications of optimization layers focus on train-
ing the network end-to-end with the final output repre-
senting some decision of the overall AI system, typically
called decision focused learning (Donti, Amos, and Kolter
2017; Wilder, Dilkina, and Tambe 2019; Wang et al. 2022).
Though this has performed well in certain settings, such net-
works have not been investigated in terms of robustness.
Adversarial Machine Learning. There is a huge body of
work on adversarial learning and robustness that studies vul-
nerabilities of machine learning algorithms, summarized in

many surveys and papers (Goodfellow, Shlens, and Szegedy
2015; Szegedy et al. 2014; Akhtar and Mian 2018; Biggio
and Roli 2018; He, Li, and Song 2018; Papernot et al. 2018;
Li, Bradshaw, and Sharma 2019; Anil, Lucas, and Grosse
2019; Tramer et al. 2020). Our work is different from prior
work as our attack targets the stability of the optimization
solver that is embedded as a layer in the neural network and
our defense stops the attack by preventing singularity. To the
best of our knowledge, our work is the first work to explore
this aspect.
Robustness against Numerical Stability in Optimization.
Repairing is an approach proposed in recent work (Barratt,
Angeris, and Boyd 2021) to compute the closest solvable op-
timization when the input generic convex optimization is in-
feasible. While possessing the same goal as our defense, this
repairing approach is computationally prohibitive for use in
neural networks as the repairing requires solving tens to hun-
dreds of convex optimization problems just to repair a single
problem instance. Optimization layers are considered slow
even with just one optimization in the forward pass (Amos
and Kolter 2017; Agrawal et al. 2019; Wang et al. 2020),
hence multiple optimizations to repair the core optimization
in every forward pass is not practical for neural networks.
Our defense is computationally cheap due to the targeted
adjustment of specific parameters of the optimization.

Pre-conditioning (Wathen 2015) is a standard approach in
optimization that helps the solver deal with ill-conditioned
matrices better than without pre-conditioning. However,
even with preconditioning, solvers cannot handle specially
crafted singular input matrices. Our defense does not allow
any input that the solver cannot handle.

Methodology
Threat Model: We are given a trained neural network which
is a composition of two functions fw and s, where w repre-
sents neural network weights and w is known to the adver-
sary (i.e., the adversary has whitebox access to the model).
The function fw takes in input u and produces θ = fw(u).
θ defines some of the parameters to our solver (Fig. 1). In
this paper, we analyze a specific component of θ which cor-
responds to the intermediate matrix A (in Ax = b). For ex-
ample, if θ only consists of A, it can be formed by reshaping
θ, where the i, j entry of A is θi,j . The solver layer takes A
as input and produces a solution s(A). The attacker’s goal
is to craft any input u∗ such that s(fw(u∗)) fails to evalu-
ate successfully due to issues in evaluating s stemming from
numerical instability, effectively causing a denial of service.
Note that the existence of any such input u∗ is problematic
and we allow latitude to the attacker to produce any such
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(a) Original Images (b) Attack Images

Figure 2: Left shows original image u, right shows u′ = u+
δ which is semantically close. All attacks were found using
AllZeroRowCol with a upper bound on the perturbations.

input as long as syntactical properties are maintained, e.g.,
bounding image pixel values in 0 to 1. In this setting, an
attacker can also craft an attack input that is close to some
original input if needed (Fig. 2), e.g., when they need to foil
a human in the loop defense. Even in this worst case scenario
of allowing the attacker to provide any input, our proposed
defense prevents NaNs in all cases.

We emphasize the distinction between the goal of our at-
tack inputs and that of adversarial examples. In traditional
adversarial examples, small perturbations to the input image
is sought in order to show the surprising effect that two im-
ages that appear the same to the human eye are assigned dif-
ferent class labels, but these misclassified labels can still be
consumed by downstream systems. In contrast, in our work,
the surprise is the existence of inputs that cause a complete
failure in the outcome of the system, which to our knowl-
edge have not been previously studied. Here, we show the
existence of specially crafted inputs, which may be seman-
tically close to a valid input, that evaluate to outputs that
cause a complete denial of service, i.e., NaNs are produced,
leading to undefined behavior in the system. A naive re-
mediation of a default safe action for NaN outputs can fail
in complex domains (e.g., autonomous driving) which have
context-dependent safe actions (e.g., the safest action on a
highway with a speed-limit road sign depends on various
conditions such as speed of the car in front, need to change
lane, etc.). It is thus impossible to provide a rule-based safe
default action since there can be infinitely many contexts.

Numerical Instability Attack
In our attack, we seek to find an input u∗ that evaluates to a
rank deficient intermediate matrix A (Fig. 1). For any m×n
matrix A, A is rank-deficient if its rank is strictly less than
min(m,n). A rank deficient matrix is also singular, hence
the system of equations Ax = b (b ̸= 0) produces undefined
values (NaN) when solved directly or as constraints in an
optimization. Even matrices close enough to singularity can
still produce errors due to the limited precision of comput-
ers. Depending on the neural network fw (Fig. 1), finding
u that produces an arbitrary singular A (e.g., 0m×n) is not
always possible (see appendix). Our approach is guided by
the following known result

Proposition 1 (Demko (1986)). For any matrix A, the
distance to closest singular matrix is minB{∥A−B∥2 :
B is singular} = ∥A∥2 /κ2(A) = σmin

Algorithm 1 Numerical instability attack
Input: input features u, loss function ℓ, victim model fw
Parameters: learning rate α
Output: attack input u∗

Let u∗ = u.
while κ2(fw(u

∗)) ̸= ∞ do
l = ℓ(fw(u

∗)) {ℓ is a technique dependent loss}
Update u∗ based on α, δl

δu∗ , ℓ
end while
return u∗

Thus, increasing the condition number of A moves A
closer to singularity; at singularity κ2(A) is ∞. Following
Alg. 1, we start with a given u producing a well-conditioned
matrix A and aim to obtain u∗ producing singular A′ in
the vicinity of A using three approaches: AllZeroRowCol,
ZeroSingularValue, and ConditionGrad.
AllZeroRowCol: An approach to obtain a rank-deficient ma-
trix A′ from A is to zero out a row (resp. column) in case
m < n (resp. m > n) in A. Then, we use A′ as a target ma-
trix for which a gradient descent-based search is performed
to find an input u∗, that yields A′ = fw(u

∗). In our exper-
iments, we choose the first row/column to zero out, though
choosing other rows/columns is equally effective.
ZeroSingularValue: From Prop. 1, A′ is a closest singular
matrix if ∥A−A′∥2 = σmin. An approach to obtain this
rank-deficient matrix A′ from A is to perform the SVD
A = UΣV T , then zero out the smallest singular value in
Σ to get Σ′, and then construct A′ = UΣ′V T . It follows
from the construction that ∥A−A′∥2 = σmin. Then, using
A′ as a target matrix a gradient descent-based search is per-
formed to find u∗ that yields A′ = fw(u

∗). In theory, since
A′ is a closest singular matrix it should be easier to find by
gradient descent compared to AllZeroRowCol. However, this
approach fails in practice because precision errors make A′

non-singular even though Σ′ has a zero singular value.
ConditionGrad: From Prop. 1, we can also use gradient de-
scent to find u∗ such that the matrix A has a very high con-
dition number. The overall gradient we seek is ∂ log κ2(A)

∂u ,
where we use log as condition numbers can be large. Follow-
ing chain rule, we get ∂ log κ2(A)

∂u = 1
κ2(A)

∂κ2(A)
∂θ

∂θ
∂u . Since

θ = fw(u), the third term is simply the gradient through
the neural network. The second term can be obtained com-
ponent wise in θ as ∂κ2(A)

∂θi,j
for all i, j. The following result

provides a closed form formula for the same (see proof in
appendix).

Lemma 1. Let A ∈ Rm×n with thin SVD A = UΣV T and
σmax = σ1 ≥ . . . ≥ σr = σmin for r = min(m,n). Then,
∂κ2(A)
∂θi,j

is given by tr
(

∂(||A+||2∗||A||2)
∂A · ∂A

∂θi,j

)
where

∂(||A+||2 ∗ ||A||2)
∂A

= BT − (A+CA+)T+

(A+)TA+C(I −A+A) + (I −AA+)CA+(A+)T

with B= ||A+||2V e1e
T
1 U

T, C= ||A||2Uere
T
r V

T and ei is
the unit vector with one in the ith position.
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Figure 3: Left is a heatmap of condition numbers for 2D sin-
gular value space (σ1, σ2) of 2× 2 matrices (high condition
number near axes, as one of σ1 or σ2 approaches 0). Right
is an enlarged version of the smaller dashed circle. A recon-
structed A using σ1,σ2 should be singular, but precision
loss makes the singular values of A almost never 0 and they
lie in the white dashed circle.

Algorithm 2 Numerical instability defense
Input: model fw, input features u
Parameter: condition number bound B
Output: well-conditioned A′

Let A′ = A = fw(u) = UΣV T .
if κ2(A) > B then

For all i, let Σ′
i,i = min(σi, σmax/B)

A′ = UΣ′V T

end if
return A′.

ConditionGrad still works less consistently than
AllZeroRowCol. This is mainly because the gradient descent
often saturates at a condition number that is high but not
large enough for instability.

A low-dimension illustration of the approaches is in
Fig. 3, which shows the 2D space of the two singu-
lar values σ1, σ2 of all 2 × 2 matrices. The condition
number (σmax/σmin) is ∞ only on the axes and is dif-
ficult to reach in ConditionGrad. The illustration also
shows why AllZeroRowCol works more consistently than
ZeroSingularValue as recovering a matrix from Σ′ involves
multiplication which leads to loss of singularity (more so in
high dimension) whereas AllZeroRowCol directly obtains a
singular matrix. This is reflected in our experiments later.

We note that simple approaches such as attempting to
use gradient descent or other existing approaches to directly
maximize model output to very high values fails due to sat-
uration (see results in appendix). Further, the optimization
output and ill-conditioning of A can have no relation at all:

Lemma 2. For an optimization min{x|Ax=b} f(x) with f
convex, the solution value (if it exists) can be made arbi-
trarily large by changing θ = {A, b} while keeping A well-
conditioned.

Lemma 2 implies that A can remain well-conditioned
even though output min{x|Ax=b} f(x) is large. Thus, specif-
ically targeting to directly obtain a singular matrix A is im-
portant for a successful NaN attack (proof in appendix).

Defense Against Numerical Instability
First, we note that our goal is to fix the instability in the

optimization used in the final layer, which is distinctly differ-
ent from the general problem of instability of training neu-
ral networks (Colbrook, Antun, and Hansen 2022). Next,
we discuss defense for square matrices A. For symmetric
square matrices, the condition number can be stated in term
of eigenvalues: κ2(A) = |λ|max

|λ|min
where |λ|max is the largest

eigenvalue by magnitude. A typical heuristic to avoid nu-
merical instability for square matrices is to add ηI for some
small η (Haber and Ruthotto 2017). However, this approach
only works for square positive semi-definite (PSD) matrices.
If some eigenvalue of A happens to −η then this heuristic
actually makes the resultant matrix non-invertible (i.e., infi-
nite condition number). Besides, clearly this heuristic does
not apply for non-square matrices.

As a consequence, we propose a differentiable technique
(Alg. 2) that directly guarantees the condition number of
any intermediate matrix to be a bounded by a hyperparam-
eter B. In the forward pass, we perform a SVD of A =
UΣV T ; the computation steps in SVD are differentiable and
the matrix Σ gives the singular values σi’s. Recall that the
condition number κ2 = σmax/σmin. The condition number
can be controlled by clamping the σi’s to a minimum value
σmax/B to obtain a modified Σ′. Then, we recover the ap-
proximate A′ = UΣ′V T . We present the following proposi-
tion (proof in appendix).

Proposition 2. For the approximate A′ obtained from A as
described above and x′ a solution for A′x = b, the follow-
ing hold: (1) ∥A′ −A∥2 ≤ σmax/B and (2) ||x∗−x′||2

||x′||2 ≤
κ2(A)/B for some solution x∗ of Ax = b.

The second item (2) shows that approximation of the so-
lution obtained from the solver depends on κ2(A), which
can be large if κ2(A) is close to infinity. This error estimate
can be provided to downstream systems which can be used
in the decision on whether to use the solver’s output.

Experiments
We showcase our attacks and defenses on three different
domains: (i) synthetic data modelling an assignment prob-
lem, (ii) decision-focused solving of Jigsaw Sudoku puzzles,
and (iii) real world speed profile planning for autonomous
driving. We compare the success rate of the three attack
methods, namely AllZeroRowCol, ZeroSingularValue and
ConditionGrad. We show that the defense is effective by
comparing the condition numbers of the constraint matrix
A during test time. We also show that the attack fails with
the defense for varying values of B: 2, 10, 100, and 200. Fur-
ther, we augment our model with the defense during training
time and show that it effectively prevents NaNs in training
while not sacrificing performance compared to the original
model. We discuss the results in detail at the end in Section .

For all experiments, we used the qpth batched QP solver
as the optimization layer (Amos and Kolter 2017) and Py-
Torch 1.8.1 for SVD. For the synthetic data, we ran the ex-
periments on a cloud instance (16 vCPUs, 104 GB mem-
ory) on CPU. For other settings, we ran the experiments on a
server (Intel(R) Xeon(R) Gold 5218R CPU, 2x Quadro RTX
6000, 128GB RAM) on the GPU.
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Figure 4: The Jigsaw Sudoku network architecture. The input is an image of the Jigsaw Sudoku puzzle (0 indicates blank cell
that needs to be filled with a value in {1, 2, 3, 4}) and the output is the solution to the puzzle given the constraint that no two
numbers in the same colored region are the same. The solution to the blank cells given by the neural network is indicated in red.

Synthetic Data
The setting used follows prior work (Amos and Kolter 2017)
to test varying constraint matrix sizes used in optimization.
We interpret this prior abstract problem as an assignment
problem under constraints, where inputs are assigned to bins
with constraints that are learnable. The model learns param-
eters in the network to best match the bin assignment in the
data. The input features of input u are generated from the
Gaussian distribution and assigned one out of n bins uni-
formly. Bin assignment is a constrained maximization op-
timization, where only the constraint affects binning; thus,
the objective is arbitrarily set to ∥x∥2 with the constraint
Ax = b, where A, b are learned and x ∈ Rn gives the bin
assignment. Here, A has the size m × n, where m is the
number of equalities and n is the number of bins. A softmax
layer at the end enforces an assignment constraint.
Experimental Setup: For the training of the network, in
each of the randomly seeded training run, we draw 30 in-
put feature vectors u ∈ R500 from the Gaussian distribution
and assign them uniformly to n bins. We do the same for the
test set comprising of 10 test samples. We ran the training
over 1000 epochs using the Adam optimizer (Kingma and
Ba 2015) with a fixed learning rate of 1e−3. For the attack
experiments, we ran each of the attacks for 5000 epochs on
30 input samples drawn from the Gaussian distribution on
each of the 10 models that were trained. An attack is marked
successful if any of the modified inputs produces a NaN. For
the training of the defended models, we varied the hyper-
parameter B. The models are evaluated using cross-entropy
loss against the true bin in which the sample was assigned.
The test loss is averaged over 10 randomly seeded runs.
Results: In this setting where an attacker can arbitrarily
change the input vector at test time, we report the success
rate of each of the attack methods in Table 1 and the loss
results of models trained with the defense in Table 2 for
the non-square matrix A ∈ R40×50 case and square matrix
A ∈ R50×50 case. We see our methods are broadly applica-
ble to all matrices as both the attack and the defense achieve
their goals regardless of the shape of the matrix. Further, test
performance in the baseline ηI defense (with η = 10−8, ap-
plicable only for square matrices) in the A ∈ R50×50 case is
worse than both the original and our proposed defense when
B = 200, with a higher loss at 4.86 ± 1.74 (see appendix).

Jigsaw Sudoku
Sudoku is a constraint satisfaction problem, where the goal
is to find numbers to put into cells on a board (typically
9 × 9) with the constraint that no two numbers in a row,
column, or square are the same. In prior work (Amos and
Kolter 2017), optimization layers were used to learn con-
straints and obtain solutions satisfying those constraints on
a simpler 4× 4 board. We note that in the above setting, the
constraints (A, b) are fixed and do not vary with the input
Sudoku instances and hence, our test time attack does not ap-
ply in this case. Instead, we consider a popular variant of the
4 × 4 Sudoku—Jigsaw Sudoku—where constraints are not
just on the rows and columns, but also on other geometric
shapes made from four contiguous cells. In this setting, the
constraints now vary with input puzzle instances. We repre-
sent each Sudoku puzzle as an image (see Fig. 4) and mark
each constraint on contiguous shapes with a different color.

The network (Fig. 4) has to (i) infer the one-hot encoded
representation of the Sudoku problem p (a 4 × 4 × 4 ten-
sor with a one-hot encoding for known entries and zeros
for unknown entries); (ii) infer the constraints to apply (A, b
in Ax = b); and (iii) solve the optimization task to output
the solution that satisfies the constraints of the puzzle — all
these steps have to be derived just from the image of the Jig-
saw Sudoku puzzle. A small Q = 0.1I ensures strict positive
definiteness and convexity of the quadratic program.
Experimental Setup: We generated 24000 puzzles of the
form shown in Fig. 4 by composing and modifying images in
the MNIST dataset (Lecun et al. 1998) using a modified gen-
erator from (Amos and Kolter 2017) (details in appendix).
We trained the model architecture in Fig. 4 on 20000 Jig-
saw Sudoku images, utilizing Adadelta (Zeiler 2012) with a
learning rate of 1, batch size of 500, training over 20 epochs,
minimizing the MSE loss against the actual solution to the
puzzle. We then test the model on 4000 different held-out
puzzles. We repeat the experiments with 30 random seeds
for each configuration. For the defense, we restrict the condi-
tion number by applying our defense in Section over several
values of the hyperparameter B. For all models, we measure
MSE loss and accuracy which is the percentage of cells with
the correct label in the solution produced by the network. For
all attack methods, we apply a model-tuned learning rate and
optimize for the attack loss for a given image for 500 epochs

15246



Conv/ReLU/Maxpool

Sensor Data
{c, d, f}

Autonomous Vehicle
Speed Profile

{a, s}

argmin waa2+ps2-wss

st. A(θ)x = b(θ)
*Gx ≤ h

*Gx ≤ h enforces physical

constraints a ≤ 14m/s2,
s ≥ 0m/h

Speed Planning
Network

(FC/CeLU/OptNet)c: speed (m/h)
d:distance to destination (m)
f: distance to next car (m)

(56 X 56 X 3)

Figure 5: Autonomous vehicle speed planning architecture with CeLU (Barron 2017) activated layers.
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f
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Figure 6: The car determines the optimal speed profile based
on the signage and distance f from the car ahead. When the
optimization fails, the car exhibits undefined behavior and
may assume an unsafe profile, leading to a crash.

until we generate an image that causes failure. We then re-
peat this for 30 test images.
Results: In this setting, the attack may only modify the input
image, which is constrained as a tensor with pixel values in
the range [0, 1]. Even with these constraints, AllZeroRowCol
consistently finds an input that results in NaNs in the output
(Table 1), showing the effectiveness of our attack. Looking
at the difference in loss (Fig. 7(b)) and condition number of
the matrix A (Fig. 7(c)) for the defended and original unde-
fended network, we see the efficacy of our defense in con-
trolling the condition number and preventing the NaN out-
puts during test time. Finally, plotting the change in training
loss over the epochs for B = 100 and the original model in
Fig. 7(a), we see virtually no difference in epochs to conver-
gence when the defense is applied in training time. We note
the observations above apply for all experimental settings
for all reported values of B, see appendix for details.

Autonomous Vehicle Speed Planning
In autonomous driving, a layered framework with separate
path planning and speed profile generation is often used
due to advantages in computational complexity (Gu et al.
2015). Here, we focus on speed profile generation, where
constrained optimization is employed to maximize comfort
of the passengers while ensuring their safety and adhering to
physical limitations of the vehicle (Ziegler et al. 2014). We
consider the scenario where a traffic sign is observed and the
autonomous vehicle has to make a decision on the accelera-
tion and target speed of the vehicle as shown in Fig. 6.

The autonomous vehicle seeks to make the optimal deci-
sion in speed planning taking into account the constraints
presented. The learning problem involves identifying the

traffic sign and inferring the rules to apply based on the
current aggregate state of the autonomous vehicle collected
from sensors. We provide as input u an image of the traf-
fic sign along with the state of the vehicle, defined as V =
{c, d, f}, where c, d, f ∈ R≥0, where, c is the current speed
of the vehicle (in meters per hour), d is the distance to the
destination (in meters), and f is the distance to the vehi-
cle ahead (in meters). Similar to (Liu, Zhan, and Tomizuka
2017), we aim to minimize discomfort a2 ,where accelera-
tion a ∈ R, and maximize the target speed s ∈ R≥0 us-
ing the quadratic program shown in Fig. 5, where wa, ws ∈
R are tunable weights on the speed and acceleration, and
p ∈ R≥0 is a small penalty term to ensure the problem is a
quadratic program. When input u is fed into the network, θ is
the output of the network right before the optimization layer,
and A(θ) and b(θ) depend on θ. These equalities encode
rules that will apply based on the traffic sign observed, e.g. a
Stop sign would signal to the vehicle to set its target speed s
to 0. We encode physical constraints of the autonomous ve-
hicle (e.g., maximum acceleration, positivity constraints on
speed) in G and h which do not depend on θ.
Experimental Setup: To generate the input, we utilize 5
traffic sign classes of the BelgiumTS dataset (Timofte, Zim-
mermann, and Van Gool 2011) for the images. These traf-
fic signs require an immediate change in speed/acceleration
(e.g. Stop, Yield). We combine the image with the current
state of the vehicle V = {c, d, f} at the decision point and
generate 10000 training samples and 1000 test samples for
use in our holdout set. We enforce the following constraints
through the matrix G, h: all acceleration is at most 14m/s2,
and speed must be positive. We setup the network as in Fig. 5
and employ the Adam optimizer (Kingma and Ba 2015) with
a learning rate of 1e−4, run the experiments for 30 epochs,
and average the result over 30 random seeds. The models
were evaluated using loss functions which penalizes differ-
ent aspects of the decision: Lsafety loss due to impact of colli-
sion with vehicle ahead, Lcomfort loss due to discomfort from
acceleration, Ldistance loss due to slowing down and Lviolation
loss from violating the traffic sign. The Ltotal loss which is
a weighted sum of the above losses is reported (details in
appendix). For the attack, we apply a model-tuned learning
rate and optimize for various attack losses for 500 epochs
over 30 random images from the test set.
Results: Even in this restricted and complex setting where
we only allow the attacker to modify the images and not
the state of the vehicle, the test time attack success rate is
still high for AllZeroRowCol (see Table 1). We note that this
setting is analogous to the real world where attackers can
easily control the environment but not the sensor inputs of
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AllZeroRowCol ZeroSingularValue ConditionGrad

Synthetic (m=40, n=50) 100.00 0.67 85.33
Synthetic (m=50, n=50) 98.00 0.00 0.00
Jigsaw Sudoku 100.00 6.67 53.33
Speed Planning 100.00 0.00 0.00
Defense (B=2,10,100,200) 0.00 0.00 0.00

Table 1: Comparison of attack success (% of Successful NaNs) for all methods and datasets. Last row shows defense.

Synthetic Data (CE) Jigsaw Sudoku Speed Planning
m=40, n=50 m=50, n=50 Test Loss Test Acc. Test Loss

Original 24.99 ± 2.03 4.43± 0.93 1.09± 1.03 0.91± 0.20 7928.76 ± 38565
B=2 9.14 ± 0.77 6.41± 0.58 0.93± 0.73 0.94± 0.15 6.64 ± 3.52
B=10 11.67± 1.26 11.53± 0.71 0.82 ± 0.53 0.96 ± 0.09 83.3 ± 404.8
B=100 23.36± 2.08 6.36± 1.50 0.96± 0.87 0.93± 0.16 117.8 ± 443
B=200 23.27 ± 1.75 3.93 ± 0.07 0.99± 0.87 0.93± 0.16 1381.9 ± 6905.5

Table 2: Performance of different models trained with defense in place. The loss is on a held-out validation set. For Synthetic
Data, loss is cross-entropy (CE). For Jigsaw Sudoku, loss is MSE in order of ×10−4. For Speed Planning, loss is Ltotal.
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Figure 7: Effect of attacks and defense in Jigsaw Sudoku

the vehicle or the physical constraints of the car (the attacker
has no control over Gx ≤ h). We report the overall loss Ltotal
when training with defense in Table 2.

Discussion of Results
Efficacy of the attack methods: The simplest
AllZeroRowCol attack was the most effective for all
experiment settings (see Table 1) for a range of activation
functions—ReLU, CeLU, and also tanh (see appendix).
This is surprising, given that the theoretically principled
ZeroSingularValue worked the least consistently empiri-
cally, and even the theoretically motivated ConditionGrad
attack worked inconsistently. This highlights the diffi-
culty of transferring theoretical results to the real world,

especially with limited numerical precision.
Stabilizing effect of defense: All attacks are thwarted by
our defense, showing the effectiveness of controlling the
condition number. We also observe that by tuning the B hy-
perparameter, we are able to train with the defense without
any tradeoffs in terms of learning or accuracy (Table 2), and
across all domains, we find that it adds less overhead (a con-
stant factor less than 2) than the actual optimization. In fact,
at certain values of B, we achieve lower loss and higher ac-
curacy compared to the original undefended model. We con-
jecture that this occurs when the true matrix exists within the
space of the bounded condition number, and the low number
makes the gradients of the optimization layer stable.
On achieving general trustworthiness: Further auditing li-
brary functions, we noted several related issues which can be
abused (some found by us, others by practitioners as benign
flaws). Attackers can exploit these to produce solutions that
violate the constraints of the optimization or even produce
incorrect results when the input is a singular matrix (see ap-
pendix). Careful audits should be performed on the imple-
mentation, down to potential edge cases in the data types.

Conclusion

Our work scratches the surface of a new class of vulnerabil-
ities that underlie neural networks, where rogue inputs trig-
ger edge cases that are not handled in the underlying math or
engineering of the layers, which lead to undefined behavior.
We showed methods of constructing inputs that force sin-
gularity on the input matrix of equality constraints for opti-
mization layers, and proposed a guaranteed defense via con-
trolling the condition number. We hope that our work raises
awareness of this new class of problems so the community
can band together to resolve them with novel solutions.
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