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Abstract

Graph meta-learning has become a preferable paradigm for
graph-based node classification with long-tail distribution,
owing to its capability of capturing the intrinsic manifold
of support and query nodes. Despite the remarkable success,
graph meta-learning suffers from severe performance degra-
dation when training on graph data with structural noise.
In this work, we observe that the structural noise may im-
pair the smoothness of the intrinsic manifold supporting the
support and query nodes, leading to the poor transferable
priori of the meta-learner. To address the issue, we pro-
pose a new approach for graph meta-learning that is ro-
bust against structural noise, called Proxy subgraph based
Manifold Calibration method (Pro-MC). Concretely, a sub-
graph generator is designed to generate proxy subgraphs that
can calibrate the smoothness of the manifold. The proxy sub-
graph compromises two types of subgraphs with two biases,
thus preventing the manifold from being rugged and straight-
forward. By doing so, our proposed meta-learner can obtain
generalizable and transferable prior knowledge. In addition,
we provide a theoretical analysis to illustrate the effective-
ness of Pro-MC. Experimental results have demonstrated that
our approach can achieve state-of-the-art performance under
various structural noises.

Introduction
Graph neural networks (GNNs) (Kipf and Welling 2017),
extracting node representations by propagating and updat-
ing the representations along the graph topology, have be-
come an important research topic in various practical fron-
tiers (Xie and Grossman 2018; Fout et al. 2017). Among
those applications, various scenarios involve graph-based
node classification tasks, e.g., fake account detection in so-
cial networks (Zhu et al. 2012).

Although GNNs have shown outstanding capability in
graph-based node classification tasks, their performance sig-
nificantly degrades when they are trained on graphs with
long-tail distribution (Chauhan, Nathani, and Kaul 2020).
Specifically, in canonical graph-based few-shot node classi-
fication tasks, it is non-trivial to generalize to novel classes
as the novel classes typically only have one or very few
labeled nodes. Besides, GNNs are vulnerable to structural
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noise which refers to noisy or perturbed edges caused by un-
noticeable perturbations or attacks (Dai et al. 2022). Due to
the message-passing process, noisy information can be prop-
agated along the noisy edges, contaminating the deduced
node embedding and degrading the performance.

One paradigm to handle the long-tail issue is graph meta-
learning (Huang and Zitnik 2020; Liu et al. 2021; Zhou
et al. 2019a). In graph meta-learning, the intrinsic mani-
fold of support nodes and query nodes can be learned by
propagating information along the topological structure (see
Fig.1 (c)), thus obtaining an optimum classification bound-
ary that can be used as the transferable prior knowledge for
the meta-learner. On the contrary, the lack of topology in-
formation can induce a boundary with poor generalization
(see Fig.1 (b)). On the other hand, many efforts have been
made to alleviate the effects of structural noise. For example,
some works assume edges between dissimilar nodes as noisy
edges, and they prune such noisy edges to suppress the noisy
information (Entezari et al. 2020; Zhu et al. 2019; Wu et al.
2019; Dai et al. 2022). However, simply pruning edges may
result in information loss because even in a clean graph, the
dissimilar nodes may still have inherent relationships (Tang
et al. 2020). Others attempt to construct a low-rank approx-
imation of the adjacent matrix, as in a clean graph, the rank
of the adjacency matrix is usually lower than that of a noisy
graph (Luo et al. 2021; Zhou, Zha, and Song 2013; Jin et al.
2020). However, low-rank approximation methods often ne-
glect to exploit node features as complementary information
for purifying embedding.

Compared with long-tail distribution solely appeared,
long-tail distribution with structural noise is more challeng-
ing. Specifically, we observe the contaminated node embed-
ding may impair the smoothness S(M) 1 of the manifold
supporting the support and query nodes, thus leading to a
poor generalizable priori (see Fig.1 (d) and (e)). Inspired by
the observation, we argue that the manifold’s smoothness
property may serve as guidance to resist structural noise.

In this work, we use subgraph-level embedding to dilute
the noisy information and calibrate the smoothness of the
manifold. Firstly, noisy subgraph embedding is extracted
from the raw graph. Because the raw graph suffers from
structural noises, the manifold represented by the noisy sub-

1The smoothness S(M) is defined in Eq. (2)
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Figure 1: (a) The ground truth of a toy example. (b) A possible classification boundary (the grey dotted line) when training with
labeled samples. (c) A possible classification boundary when the manifold supporting support and query nodes are considered.
(d) The manifold is rugged due to the structural noise (red dotted lines), and the classification boundary leads to misclas-
sification. (e) The relationship between manifold smoothness S(M) and accuracy of a classic graph meta-learning method,
Meta-GNN, (Zhou et al. 2019a) with respect to varying perturbation rates on the Cora dataset (Sen et al. 2008), where a tar-
geted attack method, nettack (Zügner, Akbarnejad, and Günnemann 2018), is applied to perturb the training set.

(a)

B C

A
(b)

Figure 2: (a) Over-denoising manifold: Node A is more sim-
ilar to node B of a different class than node C of the same
class. Suppressing the dissimilar node, i.e., node C, will get
a too straightforward manifold and lead to misclassification.
(b) Rugged manifold: Injecting structural noise is prone to
lead to a rugged manifold.

graph embedding is rugged, which could misclassify nodes
affected by noisy edges (see Fig. 2 (b)). Then, smooth
subgraph embedding is obtained by suppressing dissimilar
neighbors. Simply suppressing neighbors may lose inher-
ent patterns of a class and get a straightforward manifold,
which results in misclassifying dissimilar nodes that belong
to the same class (see Fig. 2 (a)). To avoid the straightfor-
ward manifold or rugged manifold, another subgraph repre-
sentation, called proxy subgraph, is generated by a subgraph
generator. The proxy subgraph calibrates the manifold by
compromising the bias of the smooth subgraph (i.e., straight-
forward manifold) and the bias of the noisy subgraph (i.e.,
rugged manifold). With the help of the proxy subgraph, we
expect the manifold can be calibrated with proper smooth-
ness, thus improving the quality of transferable priori of the
meta-learner. The main contributions of this work are sum-
marized as follows,

1. We analyze the possible causes for the performance
degradation of graph meta-learning under structural
noise, and we propose a proxy subgraph-based robust
graph meta-learning method to address long-tail distri-
bution with structural noise.

2. A subgraph generator is designed to synthesize proxy
subgraphs to calibrate the manifold with moderate
smoothness. Compared with existing denoising methods,
our proxy subgraph method considers both node features

and graph topology and prevents the manifold from being
straightforward or rugged, so that the meta-learner can
obtain generalizable and transferable prior knowledge.

3. We conduct extensive experiments on three representa-
tive datasets. Experimental results show that the pro-
posed algorithm achieves promising results under vari-
ous structural noises. In addition, we provide a theoret-
ical generalized error of the proposed proxy subgraph-
based graph meta-learning on structural noise.

Preliminaries
Few-shot Node Classification: Let G = (V, E ,X) denotes
an undirected graph with a set of nodes V and a set of edges
E , where X = (x1, ..., x|V|)

T ∈ R|V|×d is a set of feature
vectors, and x ∈ Rd is a d-dimensional feature vector for
each node in V . Cb and Cn stand for the base and novel
classes, respectively, where Cb ∩ Cn = ∅. Given the base
classes with a sufficient number of labeled nodes and k la-
beled nodes per class for m novel classes, few-shot node
classification aims to get a learner f : V → Cn for the re-
maining unlabeled novel nodes. This setting is called m-way
k-shot node classification.

Graph Meta-learning: Graph meta-learning has shown
great promise in few-shot node classification. In graph meta-
learning, the base classes Cb and novel classes Cn are used
for the meta-train tasks and the meta-test task, respectively.
To construct a meta-train task Tt = {St, Qt}, k labeled
nodes per class for m classes are firstly randomly sampled
from the base classes Cb, and this set of nodes is denoted
as the support set St, and the set of remaining unlabeled
nodes among the m classes is denoted as the query set Qt.
After sampling a series of meta-train tasks and perform-
ing the learning process on these tasks, the meta-test task
is used for optimizing the meta-learner with the obtained
transferable priori. Similarly, to construct a meta-test task
T ′

t = {S′

t, Q
′

t}, m-way k-shot nodes served as the support
set S

′

t are sampled from the novel classes Cn, and the set
of remaining unlabeled nodes from the novel classes Cn is
denoted as the query set Q

′

t. Finally, the performance of the
meta-learner is evaluated on the query set Q

′

t.
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A number of graph meta-learning works have been pro-
posed in recent years. Meta-GNN (Zhou et al. 2019a) fol-
lows the episodic training paradigm and uses GNNs as the
meta-learner for few-shot node classification. Some works
focus on augmenting representation to enhance receptive
fields for efficient information propagation (Ding et al. 2022;
Zhao, Wang, and Xiang 2021; Huang and Zitnik 2020; Liu
et al. 2021, 2019; Lan et al. 2020; Liu et al. 2020). GFL (Yao
et al. 2020) draws the support from auxiliary graphs to
improve generalization ability on the target graph. RALE
and CNL (Liu et al. 2021; Zhao et al. 2021) aim to cap-
ture the potential long-ranged dependencies to learn node
embedding. Some works extract subgraphs to augment the
representation (Zhao, Wang, and Xiang 2021; Huang and
Zitnik 2020; Ma et al. 2020; Zhang et al. 2020). As dis-
cussed, richer structures of graphs, including subgraphs,
long-ranged dependencies, etc., can be considered useful
knowledge for meta-learning.

Robust GNNs: Structural noise arises in nature or is
injected deliberately by attackers. Extensive studies have
demonstrated that GNNs are vulnerable to structural noise.
To defend against structural noise, a common idea is to re-
move noisy edges (Entezari et al. 2020). RGCN (Zhu et al.
2019) introduces Gaussian constraints on model parameters
to absorb the effects of noisy changes. PA-GNN (Tang et al.
2020) leverages supervision knowledge from clean graphs
and applies the meta-optimization method to learn a robust
GNN. GCN-Jaccard (Wu et al. 2019) eliminates edges that
connect nodes with low Jaccard similarity. RS-GNN (Dai
et al. 2022) aims to learn a robust noise-resistant GNN with
limited labeled nodes by densifying graphs and eliminating
noisy edges.

Recent works show that constructing a low-rank adjacent
matrix of a graph can defend against structural noise. Pro-
GNN (Jin et al. 2020) observes that noisy edges can quickly
increase the rank of the adjacency matrix. Taking the cue,
Pro-GNN learns a robust GNN with the low-rank property.
Similarly, GCN-SVD (Entezari et al. 2020) is proposed to
resist the high-rank attack and vaccinate GCN with the low-
rank approximation of the perturbed graph. PTDNet (Luo
et al. 2021) imposes the low-rank constraint on the sparsified
graph for better generalization.

In our work, we aim to explore important graph structures,
i.e., subgraphs, to learn a robust GNN, which enables the
proposed model can recover a manifold with proper smooth-
ness from perturbed graphs under different structural noises.

Proposed Algorithm
The framework of Pro-MC is illustrated in Fig. 3. There
are three types of subgraph-level embedding, i.e., noisy sub-
graph embedding, smooth subgraph embedding, and proxy
subgraph embedding. For a node v of interest, noisy sub-
graph embedding S

(no)
v is synthesized from the raw graph,

and the generated manifold is rugged. Taking S
(no)
v as in-

put, the subgraph link reconstruction module suppresses dis-
similar neighbors by reducing the weights of their edges to
generate smooth subgraph embedding S

(sm)
v . Simply sup-

pressing dissimilar nodes results in a straightforward mani-

fold. To find a proper manifold, a subgraph generator gen-
erates proxy subgraph embedding S

(pr)
v to compromise the

biases of S(no)
v and S

(sm)
v . Finally, with the help of the proxy

subgraph embedding, a robust transferable priori can be ob-
tained.

Noisy Subgraph Embedding
Without losing generality, GNNs learn the embedding for a
node v ∈ V via a model fθg parameterized by θg . We write
the embedding as Hv = fθg (v). GNNs enforce the learned
embedding of two connected nodes to become similar so
that the homophily property can be captured. To realize the
property, prevailing GNNs implicitly optimize the following
term (Zhu et al. 2021),

argmin
θg

tr(HTLH), (1)

where L is the normalized symmetric positive semi-definite
graph Laplacian matrix. Eq. (1) can indicate the smoothness
S(M) of the manifold, because minimizing Eq. (1) is equiv-
alent to smooth the manifold M (Chapelle, Scholkopf, and
Zien 2009),

S(M) = tr(HTLH) =

∫
v

fθg (v)∆Mfθg (v)dP(V)

=

∫
v

||∇Mfθg (v)||2dP(V),
(2)

where ∆M is the weighted Laplace-Beltrami operator as-
sociated with the marginal probability P(V). Due to the
contaminated embedding caused by structural noise, the
smoothness can be impaired, as shown in Fig. 1 (d) and Fig.
1 (e).

We assume the nodes are more similar to their original
neighbors than the neighbors connected by the noisy edges.
Based on this assumption, we get the noisy subgraph embed-
ding S

(no)
v to represent the embedding of node v to dilute the

noisy information to some extent,

S(no)
v = Readout(Hu|u ∈ Ω(v) ∪ v) =

∑
u∈Ω(v)∪v Hu

|Ω(v) ∪ v|
,

(3)
where Ω(v) is the neighbors of node v. Because the noisy
edges still exist and propagate noise information, there is
contaminated information in the noisy subgraph embedding.
Next, we will introduce a subgraph link reconstruction mod-
ule to reduce the effects of noisy edges to refine the embed-
ding.

Smooth Subgraph Embedding
The subgraph link reconstruction module aims to generate
smooth subgraph embedding by reducing the weights of
edges connecting dissimilar nodes. To suppress the effect
of dissimilar nodes, we use an information theory mecha-
nism (Ying et al. 2019) to select a subset node embedding
H̃v that is highly related to the node v, where H̃v ⊂ H. The
subset H̃v can be randomly sampled from H by maximizing
mutual information (MI),

15226



Proxy Denoising

Loss ℒ𝑑

Classification 

Loss ℒ𝑐𝑙

Meta-training Tasks 𝒯𝑡

Graph

Encoder 
θ

𝛻ℒ𝒯1

𝛻ℒ𝒯2

θ1
θ2

MAML
Noisy Subgraphs

Smooth Subgraphs

Subgraph

Generator
Proxy Subgraphs

Subgraph Link

Reconstruction

𝒢

Node Feature: X Subgraph 

Mask: M

ℒ

Step 1

Step 2

Step 3

Figure 3: The pipeline of the proposed Pro-MC: Step 1. Noisy subgraph embedding is extracted from the raw graph containing
structural noise. Step 2. Smooth subgraph embedding is obtained by suppressing dissimilar nodes. Step 3. A subgraph gener-
ator generates the proxy subgraph embedding to compromise the biases of noisy subgraph embedding and smooth subgraph
embedding. With the help of the proxy subgraph embedding, a robust transferable prior is obtained.

EH̃v⊂H

[
MI(Hv, H̃v)

]
= E[H(Hv)]− E[H(Hv|H̃v)],

(4)
where H(·) is the entropy term. In this way, the change of
the correlation between the selected embedding H̃v and the
embedding Hv can be measured. When the GNN is trained
and fixed in an epoch, Hv is constant. Therefore, we just
need to minimize the upper bound of the second term in Eq.
(4) by applying Jensen’s inequality with the convexity as-
sumption,

min
H̃v⊂H

H
(
Hv|E[H̃v]

)
. (5)

To tractably estimate E[H̃v], the probability of forming the
subgraph H̃v with different embedding sampled from H
can be decomposed into a multivariate Bernoulli distribu-
tion, P (H̃v) =

∏
Hu∈H P (Hu), where P (Hu) means the

probability of whether the embedding Hu exists in H̃v . We
can estimate P (Hu) by masking H with a mask vector
Mv ∈ R|V|×1 in which each entry Mv[u] represents the
probability of existence of Hu existing in H̃. By masking,
the conditional entropy in Eq. (5) can be replaced with

min
Mv

H
(
Hv|H̃v = σ(Mv)⊙H

)
, (6)

where ⊙ denotes element-wise multiplication, and σ(·) de-
notes the sigmoid function that maps the mask entry to [0, 1].
If the entry u, i.e., σ(Mv)[u] is lower than a threshold tm
(tm = 0.2), we can remove Hu from H̃v .

To optimize Eq. (6), we can approximate it with the Kull-
back–Leibler divergence between the selected embedding
H̃v and the embedding Hv , so that Mv can be optimized

by a few steps of gradient descent,

min
Mv

KL(Hv||H̃v) =
∑
k

Hv,k log
Hv,k∑

Hu∈H̃v
Hu,k

, (7)

where Hu,k is the k-th element of Hu. Each entry in Mv

indicates the degree of correlation of the corresponding node
to node v. Therefore, we regard each entry in σ(Mv) as the
weight of the node to form the smooth subgraph embedding
Ssm
v ,

S(sm)
v = Readout(H̃v) =

∑
Hu∈H̃v

Hu∑
u σ (Mv) [u]

. (8)

Suppressing dissimilar nodes will lose the inherent pat-
tern of a class and get a straightforward manifold, while the
manifold of the noisy subgraph embedding is rugged. To ad-
dress the issue, we generate the proxy subgraph to compro-
mise the biases of the noisy subgraph embedding S(no) and
the smooth subgraph embedding S(sm).

Proxy Subgraph Embedding
To compromise the biases of S(no)

v and S
(sm)
v , we propose

a subgraph generator to generate proxy subgraph S
(pr)
v . The

subgraph generator fθp takes the subgraph mask σ(Mv) and
raw nodes’ features of Ω(v)∪ v as inputs, and the generated
proxy subgraph is denoted as,

S(pr)
v = fθp(

∑
u∈Ω(v)∪v σ(Mv)[u]⊙Xu∑

u∈Ω(v)∪v σ (Mv) [u]
). (9)

Because optimal transport distance provides a weaker topol-
ogy which is important for data residing on a low dimen-
sional manifold (Canas and Rosasco 2012), we minimize
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the optimal transport distance to compromise the discrep-
ancy between the noisy subgraph distribution µ

S
(no)
v

and
the proxy subgraph distribution µ

S
(pr)
v

, and the proxy sub-
graph distribution µ

S
(pr)
v

and the smooth subgraph distribu-
tion µ

S
(sm)
v

,

min D(µ
S

(pr)
v

, µ
S

(no)
v

) +D(µ
S

(pr)
v

, µ
S

(sm)
v

)

= inf
γ∈Π(µ

S
(pr)
v

,µ
S
(no)
v

)
E
(S

(pr)
v ,S

(no)
v )∼γ

||S(pr)
v − S(no)

v ||

+ inf
γ∈Π(µ

S
(pr)
v

,µ
S
(sm)
v

)
E
(S

(pr)
v ,S

(sm)
v )∼γ

||S(pr)
v − S(sm)

v ||.

(10)

The infimum operation in Eq. (10) is highly intractable. Ac-
cording to the Kantorovich-Rubinstein duality (Avraham,
Zuo, and Drummond 2019), we can learn a classifier fw ∈
Fw parameterized by θw, where Fw is function family. With
the classifier fw, we can minimize the following proxy de-
noising loss,

min
θw,θp

Ld = E
S
(pr)
v ∼µ

S
(pr)
v

[fw(S
(pr)
v )] − E

S
(no)
v ∼µ

S
(no)
v

[fw(S
(no)
v )]

+ E
S
(pr)
v ∼µ

S
(pr)
v

[fw(S
(pr)
v )] − E

S
(sm)
v ∼µ

S
(sm)
v

[fw(S
(sm)
v )],

(11)

where a softmax activation function is performed on fw. Let
S(pr) = fw(S

(pr)) be the final output. For predicting the
probability of each class for each node, the cross-entropy
loss of S(pr) over the support nodes St is minimized,

min
θw,θp

Lcl = −
∑
v∈St

∑
c

Yvc ln(S
(pr)
vc ), (12)

where Y is the corresponding label indicator matrix, and
S
(pr)
vc is the probability of node v belonging to class c.

Meta Objective Function
The episodic meta-learning framework is incorporated with
our proposed Pro-MC. The meta objective function is a bi-
level optimization: Firstly, when θg is fixed, σ(Mv) and
S
(sm)
v are obtained by Eq. (7) and Eq. (8), respectively.

Based on the σ(Mv) and S
(sm)
v , S(pr)

v is generated by min-
imizing the summation of Lcl and Ld,

min
θp,θw

L = Lcl + λdLd, (13)

Then, θp, θw are fixed to conduct the optimization of θg .
S
(no)
v is generated by minimizing the following loss func-

tion,
min
θg

Lno = −
∑
v∈St

∑
c

Yvc ln(S
(no)
vc ), (14)

where a softmax activation function is performed on S(no).
Besides, the squared Euclidean distance Lp between S(no)

and S(sm), and S(no) and S(pr) is minimized. Therefore, the
θg can be optimized by Lg = Lno + Lp.

The details of the meta-learning processes can be seen in
Algorithm 1 of the supplementary material.

Theoretical Analysis
We provide the generalization bound of the proposed Pro-
MC to illustrate the effectiveness of using proxy subgraph
embedding to calibrate the smoothness of the manifold. The
proof is given in the supplementary material.

Theorem 1 (Generalization bound of the proposed Pro-
MC). For the m-way k-shot node classification task, as-
sume that F is a function class consisting of functions with
range [a, b]. S(pr), S(sm), and S(no) are drawn from domain
Z(pr), Z(sm), and Z(no), respectively. Assume that the pro-
posed Pro-MC algorithm Θ = {θg, θp, θw} has n meta-train
tasks {Tt}nt=1 that are drawn from any task distribution τ ,
if Θ ∈ F has uniform stability β w.r.t a loss function L
bounded M . Then, for any δ ∈ (0, 1), with probability at
least 1− δ, the expected generalization bound R is given by

R(Θ, τ) ≤ R̂(Θ,S(pr))

+2β + (4nβ +M)

√
ln (1/δ)

2n

+DF (Z(sm),Z(no))

+

√
(b− a)2 ln(4/δ)

2kmn
,

(15)

where R̂ is the empirical error and DF (Z(sm),Z(no)) mea-
sures the gap between the domain Z(sm) and the domain
Z(no). In this work, we minimize the empirical error R̂ by
Eq. (12), and implicitly minimize DF by Eq. (11), so that
the expected generalization bound can be minimized.

Experiments
Benchmark Datasets
We evaluate our proposed method on three real-world graph
datasets: Cora (Sen et al. 2008), Citeseer (Sen et al. 2008),
and Amazon Photo (McAuley et al. 2015). Cora dataset and
Citeseer dataset are citation networks for node classifica-
tion. Amazon Photo is the Amazon co-purchase graph. The
details of the three graph datasets including the number of
nodes, edges, features, and classes, are listed in Table 1 of
the supplementary material.

Experimental Settings
To endow existing robust GNNs with the ability to han-
dle long-tail distribution, we incorporate the model-agnostic
meta-learning framework MAML into robust GNNs for
comparison. We select the following algorithms as the base-
lines,

1. Meta-GCN (Zhou et al. 2019b): Meta-GCN incorporates
the MAML paradigm into GNNs, enabling tackling the
few-shot node classification tasks.

2. GCN-SVD (Wu et al. 2019): GCN-SVD is proposed to
vaccinate GCNs with the low-rank approximation adja-
cency matrix of the perturbed graph.

3. GCN-Jaccard (Wu et al. 2019): GCN-Jaccard calculates
the Jaccard similarity of pairs of nodes and eliminates
edges between nodes with low similarity.

15228



Dataset Attack
Meta- Meta- Meta- Meta- Meta- Meta-

Pro-MCGCN GCN-SVD GCN-Jaccard RGCN Pro-GNN RS-GNN
2-

w
ay

-1
-s

ho
t

Cora
R. A. 61.2±1.0 64.5±2.3 61.6±1.6 66.8±1.3 66.4±1.5 66.8±2.2 67.8±2.2
N. A. 60.1±1.0 60.6±1.4 61.3±1.3 64.5±1.4 60.3±2.7 64.5±1.6 66.9±1.7
T. A. 52.1±1.6 53.2±1.9 54.3±1.2 54.8±1.4 54.7±1.1 53.5±1.9 55.2±2.0

Citeseer
R. A. 55.4±1.9 57.0±1.7 56.1±1.9 57.4±3.0 56.2±1.4 56.4±2.3 58.2±2.6
N. A. 52.9±1.5 54.7±2.8 55.3±2.7 57.4±3.0 55.0±1.2 55.5±1.5 54.6±1.7
T. A. 50.3±2.3 53.2±1.4 51.6±1.2 52.8±2.0 51.5±1.7 54.1±2.3 54.3±2.1

Amazon Photo
R. A. 57.2±2.3 60.2±1.5 60.0±1.6 60.1±1.7 58.5±2.0 59.0±1.6 60.7±1.3
N. A. 51.3±1.8 56.4±1.5 55.4±1.5 56.1±1.7 54.0±1.8 52.1±1.2 57.4±1.1
T. A. 50.7±2.1 55.2±1.8 55.0±1.8 55.2±1.2 51.8±2.3 53.3±1.2 56.9±0.7

2-
w

ay
-5

-s
ho

t

Cora
R. A. 66.8±2.1 67.7±2.7 68.8±2.7 68.1±1.3 69.5±1.6 68.0±2.6 71.5±1.6
N. A. 64.4±1.8 63.8±3.2 68.4±1.3 67.1±3.7 66.2±1.9 69.1±1.6 69.8±1.4
T. A. 58.9±1.6 60.6±2.3 60.2±3.1 62.0±1.9 60.4±2.2 60.0±2.8 63.4±1.4

Citeseer
R. A. 62.5±2.1 64.3±1.9 65.0±1.7 66.5±1.9 63.6±2.3 68.2±2.6 69.8±1.7
N. A. 60.3±2.0 61.5±2.6 66.8±2.5 66.1±1.1 60.5±1.4 67.2±1.5 67.7±1.5
T. A. 59.2±2.0 60.3±1.8 65.8±2.1 63.8±1.3 59.8±1.7 66.8±2.2 67.3±2.2

Amazon Photo
R. A. 63.4±1.4 66.6±1.4 65.4±2.0 65.6±1.7 65.0±2.2 65.2±1.5 66.5±2.4
N. A. 59.1±2.2 63.5±1.5 63.8±1.0 63.7±1.1 62.9±2.0 62.1±1.2 64.4±1.9
T. A. 57.9±2.0 58.4±2.2 59.4±2.4 60.6±1.1 58.8±1.5 59.1±1.3 59.5±1.4

Table 1: Classification accuracy (Mean±Std) (%), R. A.: Random Attack. N. A.: Non-targeted Attack. T. A.: Targeted Attack.

4. RGCN (Zhu et al. 2019): RGCN aims to defend against
noisy edges by introducing Gaussian distributions to ab-
sorb the negative effects of noisy edges.

5. Pro-GNN (Jin et al. 2020): Pro-GNN learns a robust
GNN model by imposing the low-rank constraint and
smoothing the embedding.

6. RS-GNN (Dai et al. 2022): RS-GNN eliminates noisy
edges by imposing the low-rank constraint and smooth-
ing the embedding to handle both noisy graphs and label
sparsity issues.

The compared robust GNNs are renamed as ”Meta-” with
their original name in the following part.

To show the effectiveness of the compared algorithms in
resisting various structural noises, three types of structural
noises are imposed on the datasets:
1. Random attack: Random attack randomly removes edges

connecting nodes with the same label and then adds noisy
edges connecting a node with a different label. The per-
turbation rate (i.e., for each node, the ratio of edges be
flipped) is set to 20%.

2. Non-targeted attack: Metattack (Zügner and Günnemann
2018) is adopted to poison the graph globally by chang-
ing 10% edges.

3. Targeted attack: Targeted attack focuses on misclassify-
ing specific target nodes. We adopt nettack (Zügner, Ak-
barnejad, and Günnemann 2018) as the targeted attack
method to perturb 20% nodes.

The learning rate, dropout rate, and λd are set to 0.01,
0.5, and 0.5, respectively. We employ GraphSAGE (Hamil-
ton, Ying, and Leskovec 2017) as the graph encoder θg . The
subgraph generator θp includes an encoder with two FC lay-
ers and a decoder with two FC layers. The experiments in

the paper are run 5 times independently, and we report the
average classification accuracy over these repetitions.

Comparisons with Baselines
Table 1 shows the performance comparison of few-shot node
classification with three types of structural noises on three
datasets. The best performance is highlighted in bold. The
findings are listed as follows.

Firstly, experimental results show that Pro-MC outper-
forms other methods under different types of structural
noises in 15 out of 18 cases. Specifically, compared with
vanilla Meta-GCN, our proposed Pro-MC improves accu-
racy by 2%∼7%, demonstrating the ability to handle both
long-tail distribution and structural noise.

Secondly, our proposed Pro-MC can achieve better re-
sults than low-rank constraint-based methods such as Meta-
GCN-SVD, Meta-Pro-GNN, and Meta-RS-GNN. Low-rank
constraint-based methods focus on refining the graph topol-
ogy, while often ignoring node features that can provide
complementary information for purifying the graphs. Meta-
Pro-GNN and Meta-RS-GNN smooth features by minimiz-
ing Eq. (1), and this way can bring limited improvement as
GNNs have the intrinsic ability to minimize Eq. (1) (Zhu
et al. 2021).

Lastly, Pro-MC steadily performs better than other base-
lines under various types of structural noises. The targeted
attack adds noisy edges on targeted nodes, which makes the
local manifold of the attacked nodes damaged. Non-targeted
attack generates poisoning attacks based on meta-learning to
globally perturb the graph, which skews the global manifold.
For both two attacks, our proposed method can still generate
a proper manifold. We can conclude that Pro-MC is able to
resist various types of structural noises, which is the desired
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(a) Cora (b) Citeseer (c) Amazon Photo

Figure 4: Node classification accuracy of different algorithms under the targeted attack with varying ratios of noises.

property in practice.

Impacts of Perturbation Rates
We also investigate the performance of compared algorithms
under the targeted attack with varying ratios from 5% to
25%. The accuracy results on the Cora dataset, Citeseer
dataset, and Amazon Photo dataset are plotted in Fig. 4.
The experimental results indicate that Pro-MC can consis-
tently achieve promising results and effectively resists struc-
tural noises. Together with the above experimental findings,
we can conclude that Pro-MC achieves comparable perfor-
mance under different degrees of structural noises, showing
its advantage.

Ablation Study
Pro-MC has three types of subgraph-level embedding, noisy
subgraph embedding, smooth subgraph embedding, and
proxy subgraph embedding. To examine the behaviors of
different types of embedding, we evaluate the accuracy by
using noisy subgraph embedding or smooth subgraph em-
bedding for classification. The corresponding ablation algo-
rithms are renamed as Pro-MC (S(no)) and Pro-MC (S(sm)),
respectively.

The experimental results are shown in Table 2 of the sup-
plementary material. It can be obviously found Pro-MC can
achieve a better performance than Pro-MC (S(no)) and Pro-
MC (S(sm)), which verifies the effectiveness of the proxy
subgraph embedding. Therefore, compromising the biases
of S(no) and S(sm) is helpful in generating a proper man-
ifold to improve the accuracy. We also perform ablation
learning on Lp, and Pro-MC (−Lp) demonstrates the ef-
fectiveness of Lp. The smoothness S(M) of the generated
manifold of Pro-MC (S(no)), Pro-MC (S(sm)), and Pro-MC
is plotted in Fig. 2 of the supplementary material. We can
see that Pro-MC can generate the manifold with moderate
smoothness.

To verify the effectiveness of Ld, we perform ablation
learning on this part to evaluate the contribution of Ld in the
Pro-MC. The corresponding ablation algorithm is renamed
as Pro-MC (−Ld). From Table 2 of the supplementary mate-
rial, we can see that Ld has a positive impact on the accuracy
of few-shot classification for the proposed Pro-MC.

We also analyze the effectiveness of using subgraph-level
embedding. As can be seen from Table 2 of the supplemen-
tary material, we can see that compared with Pro-MC (NE)
(where S(no)

v and S
(sm)
v are replaced with the corresponding

embedding of the node v, respectively), the improvement of
subgraph-level embedding is significant.

Parameter Sensitivity
The sensitivity results regarding the threshold tm in Mv and
λd on Cora, Citeseer, and Amazon Photo datasets are shown
in Fig. 1 (see supplementary material). We can conclude
that different datasets have different optimal values of the
threshold values, which need to be set carefully. When λd

increases from the corresponding minimum value to a max-
imum value, the classification accuracy firstly improves and
then drops down. The choice of parameter λd also depends
on the specific dataset.

Conclusion
In this work, we advanced graph meta-learning that is ro-
bust against structural noise. We found that the structural
noise induces the manifold to become rugged, thus impair-
ing the transferable priori of the meta-learner. Taking this
cue, we propose Pro-MC to learn a proper manifold that can
resist structural noise. Specifically, we generate proxy sub-
graph embedding to compromise the biases of smooth sub-
graph embedding and noisy subgraph embedding to prevent
the manifold from being rugged and straightforward. In this
way, the smoothness of the manifold can be calibrated. With
the manifold with proper smoothness, the meta-learner can
learn a generalizable priori. We also provide a theoretical
generalized error of the proposed Pro-MC. The experiments
on canonical few-shot node classification tasks with various
structural noises exhibit substantial improvements.
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