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Abstract
In robust Markov decision processes (MDPs), the uncertainty
in the transition kernel is addressed by finding a policy that
optimizes the worst-case performance over an uncertainty set
of MDPs. While much of the literature has focused on dis-
counted MDPs, robust average-reward MDPs remain largely
unexplored. In this paper, we focus on robust average-reward
MDPs, where the goal is to find a policy that optimizes the
worst-case average reward over an uncertainty set. We first
take an approach that approximates average-reward MDPs
using discounted MDPs. We prove that the robust discounted
value function converges to the robust average-reward as the
discount factor goes to 1, and moreover when it is large, any
optimal policy of the robust discounted MDP is also an op-
timal policy of the robust average-reward. We further design
a robust dynamic programming approach, and theoretically
characterize its convergence to the optimum. Then, we in-
vestigate robust average-reward MDPs directly without us-
ing discounted MDPs as an intermediate step. We derive the
robust Bellman equation for robust average-reward MDPs,
prove that the optimal policy can be derived from its solution,
and further design a robust relative value iteration algorithm
that provably finds its solution, or equivalently, the optimal
robust policy.

Introduction
A Markov decision process (MDP) is an effective mathemat-
ical tool for sequential decision-making in stochastic envi-
ronments (Derman 1970; Puterman 1994). Solving an MDP
problem entails finding an optimal policy that maximizes
a cumulative reward according to a given criterion. How-
ever, in practice there could exist a mismatch between the
assumed MDP model and the underlying environment due to
various factors, such as non-stationarity of the environment,
modeling error, exogenous perturbation, partial observabil-
ity, and adversarial attacks. The ensuing model mismatch
could result in solution policies with poor performance.

This challenge spurred noteworthy efforts on developing
and analyzing a framework of robust MDPs e.g., (Bagnell,
Ng, and Schneider 2001; Nilim and El Ghaoui 2004; Iyengar
2005). Rather than adopting a fixed MDP model, in the ro-
bust MDP setting, one seeks to optimize the worst-case per-
formance over an uncertainty set of possible MDP models.
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The solution to the robust MDP problem provides perfor-
mance guarantee for all uncertain MDP models, and is thus
robust to the model mismatch.

Robust MDP problems falling under different reward op-
timality criteria are fundamentally different. In robust dis-
counted MDPs, the goal is to find a policy that maximizes
the discounted cumulative reward in the worst case. In this
setting, as the agent interacts with the environment, the re-
ward received diminishes exponentially over time. Much of
the prior work in the robust setting has focused on the dis-
counted reward formulation. The model-based method, e.g.,
(Iyengar 2005; Nilim and El Ghaoui 2004; Bagnell, Ng,
and Schneider 2001; Satia and Lave Jr 1973; Wiesemann,
Kuhn, and Rustem 2013; Tamar, Mannor, and Xu 2014; Lim
and Autef 2019; Xu and Mannor 2010; Yu and Xu 2015;
Lim, Xu, and Mannor 2013), where information about the
uncertainty set is assumed to be known to the learner, un-
veiled several fundamental characterizations of robust dis-
counted MDPs. This was further extended to the more prac-
tical model-free setting in which only samples from a sim-
ulator (the centroid of the uncertainty set) are available to
the learner. For example, the value-based method (Roy, Xu,
and Pokutta 2017; Badrinath and Kalathil 2021; Wang and
Zou 2021; Tessler, Efroni, and Mannor 2019; Zhou et al.
2021; Yang, Zhang, and Zhang 2021; Panaganti and Kalathil
2021; Goyal and Grand-Clement 2018; Kaufman and Schae-
fer 2013; Ho, Petrik, and Wiesemann 2018, 2021; Si et al.
2020) optimizes the worst-case performance using the ro-
bust value function as an intermediate step; on the other
hand, the model-free policy-based method (Russel, Benos-
man, and Van Baar 2020; Derman, Geist, and Mannor 2021;
Eysenbach and Levine 2021; Wang and Zou 2022) directly
optimizes the policy and is thus scalable to large/continuous
state and action spaces.

Although discounted MDPs induce an elegant Bellman
operator that is a contraction, and have been studied exten-
sively, the policy obtained usually has poor long-term per-
formance when a system operates for an extended period
of time. When the discount factor is very close to 1, the
agent may prefer to compare policies on the basis of their
average expected reward instead of their expected total dis-
counted reward, e.g., queueing control, inventory manage-
ment in supply chains, scheduling automatic guided vehi-
cles and applications in communication networks (Kober,
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Bagnell, and Peters 2013). Therefore, it is also important to
optimize the long-term average performance of a system.

However, robust MDPs under the average-reward crite-
rion are largely understudied. Compared to the discounted
setting, the average-reward setting depends on the limiting
behavior of the underlying stochastic process, and hence is
markedly more intricate. A recognized instance of such in-
tricacy concerns the one-to-one correspondence between the
stationary policies and the limit points of state-action fre-
quencies, which while true for discounted MDPs, breaks
down under the average-reward criterion even in the non-
robust setting except in some very special cases (Puterman
1994; Atia et al. 2021). This is largely due to dependence
of the necessary conditions for establishing a contraction
in average-reward settings on the graph structure of the
MDP, versus the discounted-reward setting where it simply
suffices to have a discount factor that is strictly less than
one. Heretofore, only a handful of studies have considered
average-reward MDPs in the robust setting. The first work
by (Tewari and Bartlett 2007) considers robust average-
reward MDPs under a specific finite interval uncertainty set,
but their method is not easily applicable to other uncertainty
sets. More recently, (Lim, Xu, and Mannor 2013) proposed
an algorithm for robust average-reward MDPs under the ℓ1
uncertainty set. However, obtaining fundamental character-
izations of the problem and convergence guarantee remains
elusive.

Challenges and Contributions
In this paper, we derive characterizations of robust average-
reward MDPs with general uncertainty sets, and develop
model-based approaches with provable theoretical guaran-
tee. Our approach is fundamentally different from previous
work on robust discounted MDPs, robust and non-robust
average-reward MDPs. In particular, the key challenges and
the main contributions are summarized below.

We characterize the limiting behavior of robust dis-
counted value function as the discount factor γ → 1. For
the standard non-robust setting and for a specific transition
kernel, the discounted non-robust value function converges
to the average-reward non-robust value function as γ → 1
(Puterman 1994). However, in the robust setting, we need to
consider the worst-case limiting behavior under all possible
transition kernels in the uncertainty set. Hence, the previous
point-wise convergence result (Puterman 1994) cannot be
directly applied. In (Tewari and Bartlett 2007), a finite inter-
val uncertainty set is studied, where due to its special struc-
ture, the number of possible worst-case transition kernels of
robust discounted MDPs is finite, and hence the order of min
(over transition kernel) and limγ→1 can be exchanged, and
therefore, the robust discounted value function converges to
the robust average-reward value function. This result, how-
ever, does not hold for general uncertainty sets investigated
in this paper. We first prove the uniform convergence of dis-
counted non-robust value function to average-reward w.r.t.
the transition kernels and policies. Based on this uniform
convergence, we show the convergence of the robust dis-
counted value function to the robust average-reward. This
uniform convergence result is the first in the literature and

is of key importance to motivate our algorithm design and
to guarantee convergence to the optimal robust policy in the
average-reward setting.

We design algorithms for robust policy evaluation and
optimal control based on the limit method. Based on the
uniform convergence, we then use robust discounted MDPs
to approximate robust average-reward MDPs. We show that
when γ is large, any optimal policy of the robust discounted
MDP is also an optimal policy of the robust average-reward,
and hence solves the robust optimal control problem in the
average reward setting. This result is similar to the Black-
well optimality (Blackwell 1962; Hordijk and Yushkevich
2002) for the non-robust setting, however, our proof is fun-
damentally different. Technically, the proof in (Blackwell
1962; Hordijk and Yushkevich 2002) is based on the fact that
the difference between the discounted value functions of two
policies is a rational function of the discount factor, which
has a finite number of zeros. However, in the robust setting
with a general uncertainty set, the difference is no longer
a rational function due to the min over the transition kernel.
We construct a novel proof based on the limiting behavior of
robust discounted MDPs, and show that the (optimal) robust
discounted value function converges to the (optimal) robust
average-reward as γ → 1. Motivated by these insights, we
then design our algorithms by applying a sequence of robust
discounted Bellman operators while increasing the discount
factor at a certain rate. We prove that our method can (i)
evaluate the robust average-reward for a given policy and;
(ii) find the optimal robust value function and, in turn, the
optimal robust policy for general uncertainty sets.

We design a robust relative value iteration method
without using the discounted MDPs as an intermediate
step. We further pursue a direct approach that solves the ro-
bust average-reward MDPs without using the limit method,
i.e., without using discounted MDPs as an intermediate step.
We derive a robust Bellman equation for robust average-
reward MDPs, and show that the pair of robust relative value
function and robust average-reward is a solution to the ro-
bust Bellman equation under the average-reward setting. We
further prove that if we can find any solution to the robust
Bellman equation, then the optimal policy can be derived by
a greedy approach. The problem hence can be equivalently
solved by solving the robust Bellman equation. We then de-
sign a robust value iteration method which provably con-
verges to the solution of the robust Bellman equation, i.e.,
solve the optimal policy for the robust average-reward MDP
problem.

Related Work
Robust discounted MDPs. Model-based methods for ro-
bust discounted MDPs were studied in, e.g., (Iyengar 2005;
Nilim and El Ghaoui 2004; Bagnell, Ng, and Schneider
2001; Satia and Lave Jr 1973; Wiesemann, Kuhn, and
Rustem 2013; Lim and Autef 2019; Xu and Mannor 2010;
Lim, Xu, and Mannor 2013), where the uncertainty set is as-
sumed to be known, and the problem can be solved using
robust dynamic programming. Later, the studies were gen-
eralized to the model-free setting where stochastic samples
from the centroid MDP of the uncertainty set are available in
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an online fashion (Roy, Xu, and Pokutta 2017; Badrinath and
Kalathil 2021; Wang and Zou 2021, 2022; Tessler, Efroni,
and Mannor 2019) and an offline fashion (Zhou et al. 2021;
Yang, Zhang, and Zhang 2021; Panaganti and Kalathil 2021;
Goyal and Grand-Clement 2018; Ho, Petrik, and Wiese-
mann 2021). There are also empirical studies on robust RL,
e.g., (Vinitsky et al. 2020; Pinto et al. 2017; Abdullah et al.
2019; Hou et al. 2020; Huang et al. 2017; Pattanaik et al.
2018; Mandlekar et al. 2017). For discounted MDPs, the ro-
bust Bellman operator is a contraction, based on which ro-
bust dynamic programming and value-based methods can be
designed. In this paper, we focus on robust average-reward
MDPs. However, the robust Bellman operator for average-
reward MDPs is not a contraction, and its fixed point may
not be unique. Moreover, the average-reward setting de-
pends on the limiting behavior of the underlying stochastic
process, which is thus more intricate.
Robust average-reward MDPs. Studies on robust average-
reward MDPs are quite limited in the literature. Robust
average-reward MDPs under a specific finite interval uncer-
tainty set was studied in (Tewari and Bartlett 2007), where
the authors showed the existence of a Blackwell optimal pol-
icy, i.e., there exists some δ ∈ [0, 1), such that the optimal
robust policy exists and remains unchanged for any discount
factor γ ∈ [δ, 1). However, this result depends on the struc-
ture of the uncertainty set. For general uncertainty sets, the
existence of a Blackwell optimal policy may not be guaran-
teed. More recently, (Lim, Xu, and Mannor 2013) designed a
model-free algorithm for a specific ℓ1-norm uncertainty set
and characterized its regret bound. However, their method
also relies on the structure of the ℓ1-norm uncertainty set,
and may not be generalizable to other types of uncertainty
sets. In this paper, our results can be applied to various types
of uncertainty sets, and thus is more general.

Preliminaries and Problem Model
In this section, we introduce some preliminaries on dis-
counted MDPs, average-reward MDPs, and robust MDPs.
Discounted MDPs. A discounted MDP (S,A,P, r, γ) is
specified by: a state space S , an action space A, a transi-
tion kernel P = {pas ∈ ∆(S), a ∈ A, s ∈ S}1, where pas is
the distribution of the next state over S upon taking action a
in state s (with pas,s′ denoting the probability of transitioning
to s′), a reward function r : S × A → [0, 1], and a discount
factor γ ∈ [0, 1). At each time step t, the agent at state st
takes an action at, the environment then transitions to the
next state st+1 according to pat

st , and produces a reward sig-
nal r(st, at) ∈ [0, 1] to the agent. In this paper, we also write
rt = r(st, at) for convenience.

A stationary policy π : S → ∆(A) is a distribution over
A for any given state s, and the agent takes action a at state
s with probability π(a|s). The discounted value function of
a stationary policy π starting from s ∈ S is defined as the
expected discounted cumulative reward by following policy
π: V π

P,γ(s) ≜ Eπ,P [
∑∞

t=0 γ
trt|S0 = s].

Average-Reward MDPs. Different from discounted MDPs,
average-reward MDPs do not discount the reward over time,

1∆(S): the (|S| − 1)-dimensional probability simplex on S.

and consider the behavior of the underlying Markov process
under the steady-state distribution. More specifically, under
a specific transition kernel P, the average-reward of a policy
π starting from s ∈ S is defined as

gπP(s) ≜ lim
n→∞

Eπ,P

[
1

n

n−1∑
t=0

rt|S0 = s

]
, (1)

which we also refer to in this paper as the average-reward
value function for convenience.

The average-reward value function can also be equiva-
lently written as follows: gπP = limn→∞

1
n

∑n−1
t=0 (P

π)trπ ≜
Pπ
∗rπ, where (Pπ)s,s′ ≜

∑
a π(a|s)pas,s′ and rπ(s) ≜∑

a π(a|s)r(s, a) are the transition matrix and reward func-
tion induced by π, and Pπ

∗ ≜ limn→∞
1
n

∑n−1
t=0 (P

π)t is the
limit matrix of Pπ .

In the average-reward setting, we also define the follow-
ing relative value function

V π
P (s) ≜ Eπ,P

[ ∞∑
t=0

(rt − gπP)|S0 = s

]
, (2)

which is the cumulative difference over time between the
reward and the average value gπP . It has been shown that
(Puterman 1994): V π

P = Hπ
P rπ, where Hπ

P ≜ (I − Pπ +
Pπ
∗ )

−1(I − Pπ
∗ ) is defined as the deviation matrix of Pπ .

The relationship between the average-reward and the rel-
ative value functions can be characterized by the following
Bellman equation (Puterman 1994):

V π
P (s) = Eπ

[
r(s,A)− gπP(s) +

∑
s′∈S

pAs,s′V
π
P (s′)

]
. (3)

Robust discounted and average-reward MDPs. For ro-
bust MDPs, the transition kernel is not fixed but belongs
to some uncertainty set P . After the agent takes an ac-
tion, the environment transits to the next state according
to an arbitrary transition kernel P ∈ P . In this paper, we
focus on the (s, a)-rectangular uncertainty set (Nilim and
El Ghaoui 2004; Iyengar 2005), i.e., P =

⊗
s,a Pa

s , where
Pa
s ⊆ ∆(S). We note that there are also studies on relaxing

the (s, a)-rectangular uncertainty set to s-rectangular uncer-
tainty set, which is not the focus of this paper.

Under the robust setting, we consider the worst-case per-
formance over the uncertainty set of MDPs. More specifi-
cally, the robust discounted value function of a policy π for
a discounted MDP is defined as

V π
P,γ(s) ≜ min

κ∈
⊗

t≥0 P
Eπ,κ

[ ∞∑
t=0

γtrt|S0 = s

]
, (4)

where κ = (P0,P1...) ∈
⊗

t≥0 P .
In this paper, we focus on the following worst-case

average-reward for a policy π:

gπP(s) ≜ min
κ∈

⊗
t≥0 P

lim
n→∞

Eπ,κ

[
1

n

n−1∑
t=0

rt|S0 = s

]
, (5)
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to which, for convenience, we refer as the robust average-
reward value function.

For robust discounted MDPs, it has been shown that
the robust discounted value function is the unique fixed-
point of the robust discounted Bellman operator (Nilim and
El Ghaoui 2004; Iyengar 2005; Puterman 1994):

TπV (s) ≜
∑
a∈A

π(a|s)
(
r(s, a) + γσPa

s
(V )

)
, (6)

where σPa
s
(V ) ≜ minp∈Pa

s
p⊤V is the support function of

V on Pa
s . Based on the contraction of Tπ , robust dynamic

programming approaches, e.g., robust value iteration, can be
designed (Nilim and El Ghaoui 2004; Iyengar 2005). How-
ever, there is no such contraction result for robust average-
reward MDPs. In this paper, our goal is to find a policy that
optimizes the robust average-reward value function:

max
π∈Π

gπP(s), for any s ∈ S, (7)

where Π is the set of all stationary policies, and we denote
by g∗P(s) ≜ maxπ g

π
P(s) the optimal robust average-reward.

Limit Approach for Robust Average-Reward
MDPs

We first take a limit approach to solve the problem of robust
average-reward MDPs in (7). It is known that under the non-
robust setting, for any fixed π and P, the discounted value
function converges to the average-reward value function as
the discount factor γ approaches 1 (Puterman 1994), i.e.,

lim
γ→1

(1− γ)V π
P,γ = gπP . (8)

We take a similar idea, and show that the same result holds
in the robust case: limγ→1(1 − γ)V π

P,γ = gπP under a mild
assumption. Based on this result, we further design algo-
rithms (Algorithms 1 and 2) that apply a sequence of robust
discounted Bellman operators while increasing the discount
factor at a certain rate. We then theoretically prove that our
algorithms converge to the optimal solutions.

In the following, we first show that the convergence
limγ→1(1 − γ)V π

P,γ = gπP is uniform on the set Π × P .
In studies of average-reward MDPs, it is usually the case
that a certain class of MDPs are considered, e.g., unichain
and communicating (Wei et al. 2020; Zhang and Ross 2021;
Chen, Jain, and Luo 2022; Wan, Naik, and Sutton 2021). In
this paper, we focus on the unichain setting to highlight the
major technical novelty to achieve robustness.
Assumption 1 For any s ∈ S, a ∈ A, the uncertainty set
Pa
s is a compact subset of ∆(S). And for any π ∈ Π,P ∈ P ,

the induced MDP is a unichain.
The first part of Assumption 1 amounts to assuming that
the uncertainty set is closed. We remark that many standard
uncertainty sets satisfy this assumption, e.g., those defined
by ϵ-contamination (Huber 1965), finite interval (Tewari
and Bartlett 2007), total-variation (Rahimian, Bayraksan,
and De-Mello 2022) and KL-divergence (Hu and Hong
2013). The unichain assumption is also widely used in stud-
ies of average-reward MDPs, e.g., (Puterman 1994; Wan,

Naik, and Sutton 2021; Zhang and Ross 2021; Lan 2020;
Zhang, Zhang, and Maguluri 2021). Also it is worth not-
ing that under the unichain assumption, the robust average-
reward is identical for every starting state, i.e., gπP(s1) =
gπP(s2), ∀s1, s2 ∈ S (Bertsekas 2011).
Remark 1 The results in this section actually only require
the uniform boundedness of ∥Hπ

P∥, ∀π ∈ Π,P ∈ P . As-
sumption 1 is one sufficient condition.

In (Puterman 1994), the convergence limγ→1(1 −
γ)V π

P,γ = gπP for a fixed policy π and a fixed transition
kernel P (non-robust setting) is point-wise. However, such
point-wise convergence does not provide any convergence
guarantee on the robust discounted value function, as the
robust value function measures the worst-case performance
over the uncertainty set and the order of lim and min may
not be exchanged in general. In the following theorem, we
prove the uniform convergence of the discounted value func-
tion under the foregoing assumption.
Theorem 1 (Uniform convergence) Under Assumption 1,
the discounted value function converges uniformly to the
average-reward value function on Π× P as γ → 1, i.e.,

lim
γ→1

(1− γ)V π
P,γ = gπP , uniformly. (9)

With uniform convergence in Theorem 1, the order of the
limit γ → 1 and minP can be interchanged, then the follow-
ing convergence of the robust discounted value function can
be established.
Theorem 2 The robust discounted value function in (4) con-
verges to the robust average-reward uniformly on Π:

lim
γ→1

(1− γ)V π
P,γ = gπP uniformly. (10)

We note that a similar convergence result is shown in
(Tewari and Bartlett 2007), but only for a special uncertainty
set of finite interval. Our Theorem 2 holds for general com-
pact uncertainty sets. Moreover, it is worth highlighting that
our proof technique is fundamentally different from the one
in (Tewari and Bartlett 2007). Specifically, under the finite
interval uncertainty set, the worst-case transition kernels are
from a finite set, i.e., V π

P,γ = minP∈M V π
P,γ for a finite set

M ⊆ P . This hence implies the interchangeability of lim
and min. However, for general uncertainty sets, the num-
ber of worst-case transition kernels may not be finite. We
demonstrate the interchangeability via our uniform conver-
gence result in Theorem 1.

The previous two convergence results play a fundamental
role in limit method for robust average-reward MDPs, and
are of key importance to motivate the design of the follow-
ing two algorithms, the basic idea of which is to apply a
sequence of robust discounted Bellman operators on an ar-
bitrary initialization while increasing the discount factor.

We first consider the robust policy evaluation problem,
which aims to estimate the robust average-reward gπP for a
fixed policy π. This problem for robust discounted MDPs
is well studied in the literature, however, results for robust
average-reward MDPs are quite limited except for the one
in (Tewari and Bartlett 2007) for a specific finite interval un-
certainty set. We present the a robust value iteration (robust
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Algorithm 1: Robust VI: Policy Evaluation
Input: π, V0(s) = 0, ∀s, T

1: for t = 0, 1, ..., T − 1 do
2: γt ← t+1

t+2
3: for all s ∈ S do
4: Vt+1(s)← Eπ[(1− γt)r(s,A) + γtσPA

s
(Vt)]

5: end for
6: end for
7: return VT

VI) algorithm for evaluating the robust average-reward with
general uncertainty sets in Algorithm 1. At each time step t,
the discount factor γt is set to t+1

t+2 , which converges to 1 as
t → ∞. Subsequently, a robust Bellman operator w.r.t dis-
count factor γt is applied on the current estimate Vt of the
robust discounted value function (1 − γt)V

π
P,γt

. As the dis-
count factor approaches 1, the estimated robust discounted
value function converges to the robust average-reward gπP
by Theorem 2. The following result shows that the output of
Algorithm 1 converges to the robust average-reward.
Theorem 3 Algorithm 1 converges to robust average re-
ward.

Besides the robust policy evaluation problem, it is also
of great practical importance to find an optimal policy that
maximizes the worst-case average-reward, i.e., to solve (7).
Based on a similar idea as the one of Algorithm 1, we ex-
tend our limit approach to solve the robust optimal control
problem in Algorithm 2.

Similar to Algorithm 1, at each time step, the discount
factor γt is set to be closer to 1, and a one-step robust dis-
counted Bellman operator (for optimal control) w.r.t. γt is
applied to the current estimate Vt. The following theorem
establishes that VT in Algorithm 2 converges to the optimal
robust value function, hence can find the optimal robust pol-
icy.
Theorem 4 The output VT in Algorithm 2 converges to the
optimal robust average-reward g∗P : VT → g∗P as T →∞.

As discussed in (Blackwell 1962; Hordijk and Yushkevich
2002), the average-reward criterion is insensitive and under
selective since it is only interested in the performance un-
der the steady-state distribution. For example, two policies

Algorithm 2: Robust VI: Optimal Control
Input: V0(s) = 0, ∀s, T

1: for t = 0, 1, ..., T − 1 do
2: γt ← t+1

t+2
3: for all s ∈ S do
4: Vt+1(s)← max

a∈A

{
(1− γt)r(s, a) + γtσPa

s
(Vt)

}
5: end for
6: end for
7: for s ∈ S do
8: πT (s)← argmaxa∈A

{
(1− γt)r(s, a) + γtσPa

s
(VT )

}
9: end for

10: return VT , πT

providing rewards: 100 + 0 + 0 + · · · and 0 + 0 + 0 + · · ·
are equally good/bad. Towards this issue, for the non-robust
setting, a more sensitive term of optimality was introduced
by Blackwell (Blackwell 1962). More specifically, a policy
is said to be Blackwell optimal if it optimizes the discounted
value function for all discount factor γ ∈ (δ, 1) for some
δ ∈ (0, 1). Together with (8), the optimal policy obtained
by taking γ → 1 is optimal not only for the average-reward
criterion, but also for the discounted criterion with large γ.
Intuitively, it is optimal under the average-reward setting,
and is sensitive to early rewards.

Following a similar idea, we justify that the obtained
policy from Algorithm 2 is not only optimal in the robust
average-reward setting, but also sensitive to early rewards.

Denote by Π∗
D the set of all the deterministic op-

timal policies for robust average-reward, i.e. Π∗
D =

{π ∈ ΠD : gπP = g∗P} .
Theorem 5 (Blackwell optimality) There exists 0 < δ <
1, such that for any γ > δ, the deterministic optimal robust
policy for robust discounted value function V ∗

P,γ belongs to
Π∗

D. Moreover, when Π∗
D is a singleton, there exists a unique

Blackwell optimal policy.

This result implies that using the limit method in this section
to find the optimal robust policy for average-reward MDPs
has an additional advantage that the policy it finds not only
optimizes the average reward in steady state, but also is sen-
sitive to early rewards.

It is worth highlighting the distinction of our results from
the technique used in the proof of Blackwell optimality
(Blackwell 1962). In the non-robust setting, the existence
of a stationary Blackwell optimal policy is proved via con-
tradiction, where a difference function of two policies π
and ν: fπ,ν(γ) ≜ V π

P,γ − V µ
P,γ is used in the proof. It was

shown by contradiction that f has infinitely many zeros,
which however contradicts with the fact that f is a ratio-
nal function of γ with a finite number of zeros. A similar
technique was also used in (Tewari and Bartlett 2007) for
the finite interval uncertainty set. Specifically, in (Tewari
and Bartlett 2007), it was shown that the worst-case tran-
sition kernels for any π, γ are from a finite set M, hence
fπ,ν(γ) ≜ minP∈M V π

P,γ−minP∈M V µ
P,γ can also be shown

to be a rational function with a finite number of zeroes. For
a general uncertainty set P , the difference function fπ,ν(γ),
however, may not be rational. This makes the method in
(Blackwell 1962; Tewari and Bartlett 2007) inapplicable to
our problem.

Direct Approach for Robust Average-Reward
MDPs

The limit approach in Section is based on the uniform con-
vergence of the discounted value function, and uses dis-
counted MDPs to approximate average-reward MDPs. In
this section, we develop a direct approach to solving the ro-
bust average-reward MDPs that does not adopt discounted
MDPs as intermediate steps.

For average-reward MDPs, the relative value iteration
(RVI) approach (Puterman 1994) is commonly used since
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it is numerically stable and has convergence guarantee. In
the following, we generalize the RVI algorithm to the robust
setting, and design the robust RVI algorithm in Algorithm 3.

We first generalize the relative value function in (2) to the
robust relative value function. The robust relative value func-
tion measures the difference between the worst-case cumu-
lative reward and the worst-case average-reward for a policy
π.
Definition 1 The robust relative value function is defined as

V π
P (s) ≜ min

κ∈
⊗

t≥0 P
Eκ,π

[ ∞∑
t=0

(rt − gπP)|S0 = s

]
, (11)

where gπP is the worst-case average-reward defined in (5).
The following theorem presents a robust Bellman equa-

tion for robust average-reward MDPs.
Theorem 6 For any s and π, (V π

P , gπP) is a solution to the
following robust Bellman equation:

V (s) + g =
∑
a

π(a|s)
(
r(s, a) + σPa

s
(V )

)
. (12)

It can be seen that the robust Bellman equation for average-
reward MDPs has a similar structure to the one for dis-
counted MDPs in (6) except for a discount factor. This ac-
tually reveals a fundamental difference between the robust
Bellman operator of the discounted MDPs and the average-
reward ones. For a discounted MDP, its robust Bellman op-
erator is a contraction with constant γ (Nilim and El Ghaoui
2004; Iyengar 2005), and hence the fixed point is unique.
Based on this, the robust value function can be found by
recursively applying the robust Bellman operator. In sharp
contrast, in the average-reward setting, the robust Bellman is
not necessarily a contraction, and the fixed point may not be
unique. Therefore, repeatedly applying the robust Bellman
operator in the average-reward setting may not even con-
verge, which underscores that the two problem settings are
fundamentally different.

We first derive the following equivalent optimality condi-
tion for robust average-reward MDPs.
Theorem 7 For any (g, V ) that is a solution to

max
a

{
r(s, a)− g + σPa

s
(V )− V (s)

}
= 0, ∀s, (13)

g = g∗P . If we further set

π∗(s) = argmax
a

{
r(s, a) + σPa

s
(V )

}
(14)

for any s ∈ S , then π∗ is an optimal robust policy.
Theorem 7 suggests that as long as we find a solution (g, V )
to (13), which though may not be unique, then g is the op-
timal robust average-reward g∗P , and the greedy policy π∗ is
the optimal policy to our robust average-reward MDP prob-
lem in (7).

In the following, we generalize the RVI approach to the
robust setting, and design a robust RVI algorithm in Algo-
rithm 3. We will further show that the output of this algo-
rithm converges to a solution to (13), and further the optimal
policy could be obtained by (14). Here 1 denotes the all-

Algorithm 3: Robust RVI
Input: V0, ϵ and arbitrary s∗ ∈ S

1: w0 ← V0 − V0(s
∗)1

2: while sp(wt − wt+1) ≥ ϵ do
3: for all s ∈ S do
4: Vt+1(s)← maxa(r(s, a) + σPa

s
(wt))

5: wt+1(s)← Vt+1(s)− Vt+1(s
∗)

6: end for
7: end while
8: return wt, Vt

ones vector, and sp denotes the span semi-norm: sp(w) =
maxs w(s)−mins w(s). Different from Algorithm 2, in Al-
gorithm 3, we do not need to apply the robust discounted
Bellman operator. The method directly solves the robust op-
timal control problem for average-reward robust MDPs.

To study the convergence of the robust RVI algorithm, we
first make an additional assumption as follows.

Assumption 2 There exists a positive integer J such that
for any P = {pas ∈ ∆(S)} ∈ P and any stationary deter-
ministic policy π, there exists κ > 0 and a state s ∈ S , such
that ((Pπ)J)x,s ≥ κ, ∀x ∈ S .

This assumption is shown to be equivalent to assuming
unichain and aperiodic (Bertsekas 2011). It can be also re-
placed using some weaker ones, e.g., Proposition 4.3.2 of
(Bertsekas 2011), or be removed by designing a variant of
RVI, e.g., Proposition 4.3.4 of (Bertsekas 2011). In the fol-
lowing theorem, we show that our Algorithm 3 converges to
a solution of (13), hence according to Theorem 7 if we set π
according to (14), then π is the optimal robust policy.

Theorem 8 (wt, Vt) converges to a solution (w, V ) to (13)
as ϵ→ 0.

Remark 2 In this section, we mainly present the robust RVI
algorithm for the robust optimal control problem, and its
convergence and optimality guarantee. A robust RVI algo-
rithm for robust policy evaluation can be similarly designed
by replacing the max in line 4, Algorithm 3 with an expecta-
tion w.r.t. π. The convergence results in Theorem 8 can also
be similarly derived.

Examples and Numerical Results
In this section, we study several commonly used uncer-
tainty set models, including contamination model, Kullback-
Lerbler (KL) divergence and total-variation defined model.

As can be observed from Algorithms 1,2,3, for different
uncertainty sets, the only difference lies in how the support
function σPa

s
(V ) is calculated. In the sequel, we discuss how

to efficiently calculate the support function for various un-
certainty sets.

We numerically compare our robust (relative) value it-
eration methods v.s. non-robust (relative) value iteration
method on different uncertainty sets. Our experiments are
based on the Garnet problem G(20, 40) (Archibald, McK-
innon, and Thomas 1995). More specifically, there are
20 states and 30 actions; the nominal transition kernel
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P = {pas ∈ ∆(S)} is randomly generated according to the
uniform distribution, and the reward functions r(s, a) ∼
N (0, σs,a), where σs,a ∼ Uniform[0, 1]. In our experi-
ments, the uncertainty sets are designed to be centered at the
nominal transition kernel. We run different algorithms, i.e.,
(robust) value iteration and (robust) relative value iteration,
and obtain the greedy policies at each time step. Then, we
use robust average-reward policy evaluation (Algorithm 1)
to evaluate the robust average-reward of these policies. We
plot the robust average-reward against the number of itera-
tions.
Contamination model. For any (s, a) the
uncertainty set Pa

s is defined as Pa
s =

{q : q = (1−R)pas +Rp′, p′ ∈ ∆(S)}, where pas is the
nominal transition kernel. It can be viewed as an adversarial
model, where at each time-step, the environment transits
according to the nominal transition kernel p with probability
1−R, and according to an arbitrary kernel p′ with probabil-
ity R. Note that σPa

s
(V ) = (1−R)(pas)

⊤V +Rmins V (s).
Our experimental results under the contamination model are
shown in Fig 1.

Figure 1: Comparison on contamination model, R = 0.4.

Total variation. The total variation distance is
another commonly used distance metric to mea-
sure the difference between two distributions.
For two distributions p and q, it is defined as
DTV (p, q) = 1

2∥p − q∥1. Consider an uncertainty set
defined via total variation: Pa

s = {q : DTV (q||pas) ≤ R}.
Then, its support function can be efficiently solved
as follows (Iyengar 2005): σPa

s
(V ) = p⊤V −

Rminµ≥0 {maxs(V (s)− µ(s))−mins(V (s)− µ(s))} .
Our experimental results under the total variation model

are shown in Fig 2.

Figure 2: Comparison on total variation model, R = 0.6.

Kullback-Lerbler (KL) divergence. The Kullback–Leibler
divergence is widely used to measure the distance be-
tween two probability distributions. For distributions p, q,

it is defined as DKL(q||p) =
∑

s q(s) log
q(s)
p(s) . Con-

sider an uncertainty set defined via KL divergence: Pa
s =

{q : DKL(q||pas) ≤ R}. Then, its support function can be
efficiently solved using the duality result in (Hu and Hong
2013): σPa

s
(V ) = −minα≥0

{
Rα+ α log

(
p⊤e

−V
α

)}
.

Our experimental results under the KL-divergence model are
shown in Fig 3.

Figure 3: Comparison on KL-divergence model, R = 0.8.

It can be seen that our robust methods can obtain poli-
cies that achieve higher worst-case reward. Also, both our
limit-based robust value iteration and our direct method of
robust relative value iteration converge to the optimal robust
policies, which validates our theoretical results.

Conclusion
In this paper, we investigated the problem of robust MDPs
under the average-reward setting. We established uniform
convergence of the discounted value function to average-
reward, which further implies the uniform convergence of
the robust discounted value function to robust average-
reward. Based on this insight, we designed a robust dynamic
programming approach using the robust discounted MDPs
as an approximation (the limit method). We theoretically
proved their convergence and optimality and proved a robust
version of the Blackwell optimality (Blackwell 1962). We
then designed a direct approach for robust average-reward
MDPs, where we derived the robust Bellman equation for
robust average-reward MDPs. We further designed a robust
RVI method, which was proven to converge to the optimal
robust solution. Technically, our proof techniques are funda-
mentally different from existing studies on average-reward
robust MDPs, e.g., those in (Blackwell 1962; Tewari and
Bartlett 2007).
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