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Abstract
Graph neural networks (GNN) based collaborative filtering
(CF) has attracted increasing attention in e-commerce and fi-
nancial marketing platforms. However, there still lack efforts
to evaluate the robustness of such CF systems in deployment.
Fundamentally different from existing attacks, this work revis-
its the item promotion task and reformulates it from a targeted
topological attack perspective for the first time. Specifically,
we first develop a targeted attack formulation to maximally
increase a target item’s popularity. We then leverage gradient-
based optimizations to find a solution. However, we observe
the gradient estimates often appear noisy due to the discrete
nature of a graph, which leads to a degradation of attack ability.
To resolve noisy gradient effects, we then propose a masked
attack objective that can remarkably enhance the topologi-
cal attack ability. Furthermore, we design a computationally
efficient approach to the proposed attack, thus making it feasi-
ble to evaluate large-large CF systems. Experiments on two
real-world datasets show the effectiveness of our attack in
analyzing the robustness of GNN-based CF more practically.

Introduction
Collaborative filtering-based recommendation systems (RS)
aim to recommend a personalized list of top-K products
(a.k.a items) to each user that matches best with her/his inter-
ests (Ekstrand et al. 2011; Deldjoo, Noia, and Merra 2021).
Due to its effectiveness in promoting items, RS have been
widely adopted in popular platforms, ranging from financial
product marketing to short-video discovery and e-shopping
(Wang et al. 2021). The mainstream paradigm of RS is collab-
orative filtering (CF), which assumes that users with similar
behaviors are likely to show interest to similar items (He
et al. 2017). As a result, CF attempts to exploit the observed
user-item interactions, modeled as a user-item matrix (a.k.a a
bipartite graph), to make predictions for the unobserved ones.
To better capture such interactions, graph neural networks
(GNN) (Kipf and Welling 2016) have attracted increasing
attention in RS, and GNN-based RS achieve state-of-the-art
performances in recommendation (Wang et al. 2019; He et al.
2020). Therefore, this work focuses on the GNN-based RS.

Instead of trying to improve a recommender’s prediction
accuracy, this work investigates how to maximally boost the
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ranking of a low-popularity item on a potentially deployed
recommendation system (Liu and Larson 2021). An item at-
tains higher popularity than another one if it is displayed in a
larger number of users’ recommendation lists. This task finds
favorable applications in scenarios where a seller expects to
maximize profits by promoting her/his items to as many po-
tential users as possible. An intuitive solution is to encourage
a number of users to show preference (i.e., adding positive
rating) to the target item, e.g., by sending vouchers. However,
there exist two crucial challenges to make the solution valid.
The first challenge is how to ensure the newly-added ratings
do contribute to the target item’s popularity; and the other
one is how to minimize the seller’s budget (e.g., vouchers) by
limiting the number of ratings to be added.

The item promotion scenario is closely related to the ro-
bustness of a collaborative filtering recommendation system.
Existing works attempt to address the challenges above by
creating and injecting numerous fake users into the data, a
technique known as shilling attacks or data poisoning attacks
(Li et al. 2016; Tang, Wen, and Wang 2020; Fang, Gong, and
Liu 2020; Wu et al. 2021b). However, these existing methods
were generally specially designed for matrix factorization-
based collaborative filtering recommenders, a type of con-
ventional RS. Thus they are inapplicable to evaluating the
robustness of an advanced GNN-based collaborative filtering
RS. To our best knowledge, only limited studies propose data
poisoning methods that may apply for GNN-based RS (Tang,
Wen, and Wang 2020; Wu et al. 2021b).

Unfortunately, these recently proposed methods still de-
mand adding a large number of fake users/ratings. Besides,
due to the statistical differences in rating between real and
fake users, fake users may be detected and removed to mit-
igate the attack ability. These issues hinder attacks to take
place in real scenes. Therefore, it is urgent to develop practi-
cal and effective attacks to evaluate GNN-based collaborative
filtering models in real scenes.

For the first time, this work proposes a simple yet effective
item promotion method on GNN-based RS from a masked
topological attack perspective. The developed objective func-
tion allows us to maximize a target item’s popularity with
only a small number of interaction changes in the user-item
graph topology. Yet it is challenging to solve the optimization
problem mainly due to its combinatorial nature. To effectively
address this issue, we employ a gradient-based solution and
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Figure 1: Illustration of an advanced GNN-based collaborative filtering model in recommender system. Users and items consist
of a bipartite graph which is then input to a GNN-based collaborative filtering model to generate user and item embeddings.
Items that match best with a user in the embedding space will appear in the user’s recommendation list.

then propose a node masking mechanism to significantly
enhance the attack ability. Moreover, we present a resource-
efficient approach to enable our method to evaluate the ro-
bustness of large-scale GNN-based collaborative filtering
systems.

Our major contributions can be summarized as follows:

• This work revisits the item promotion task in a GNN-
based collaborative filtering system and re-formulates it
as a targeted topological attack problem for the first time.
This new formulation is fundamentally different from
existing mainstream item promotion attacks in which we
do not create and inject fake user profiles into the system.

• We develop a novel node masking mechanism that can re-
markably boost the attack ability of vanilla gradient-based
optimization solutions. To address the memory consump-
tion issue in large-scale graphs in a real deployment, we
further propose a resource-efficient approach that signifi-
cantly reduces the memory cost from the quadratic to a
linear one regarding the number of nodes.

• We conduct experiments on real-world recommendation
datasets with advanced GNN-based collaborative filtering
models. Our results reveal that our proposed methods
can substantially promote an item’s popularity even given
limited perturbation budgets, and it is demonstrated to
consistently outperform baseline attack methods.

Related Work
GNN-based Collaborative Filtering
Collaborative filtering is mainstream research in recommen-
dation systems to predict users’ preferences given collabora-
tive signals. The essence of collaborative filtering is to learn
user and item representations (a.k.a embeddings) jointly by
leveraging the user-item interaction graph (Wu et al. 2020a).
Then, items will be recommended to a user whose embed-
dings match the best with the user’s embedding. Early explo-
rations in collaborative filtering mainly focus on the matrix-
factorization (MF) model (Hu, Koren, and Volinsky 2008;
Koren, Bell, and Volinsky 2009) and its variants that encode
the interaction history (Koren 2008; He et al. 2018). How-
ever, these methods only utilize a user’s one-hop neighbors
to generate the embeddings.

Inspired by the recent progress in GNN studies that exploit
multi-hop neighbors in node embedding, GNN-based collab-
orative filtering methods have been proposed and achieved

state-of-the-art performances. Wang et al. (Wang et al. 2019)
proposed neural graph collaborative filtering (NGCF), a new
collaborative filtering framework based on graph neural net-
works to capture the higher-order connectivity of user/item
nodes. More recently, He et al. proposed LightGCN (He et al.
2020) to simplify and improve NGCF. Specifically, Light-
GCN removed the use of feature transformation and nonlin-
ear activation in network design, since these two components
were observed to have negative effects on model training.
To supplement supervised learning, self-supervised graph
learning (SGL) (Wu et al. 2021c) explored self-supervised
learning and achieved state-of-the-art performance in the con-
text of collaborative filtering to assist learning node and item
representations.

Promoting Items in Collaborative Filtering
Although user-item interactions can effectively assist collab-
orative filtering, some of them may be intentionally falsified
to mislead the recommender system. In the collaborative fil-
tering regime, a most common threat is the item promotion
attack (Li et al. 2016; Tang, Wen, and Wang 2020; Fang,
Gong, and Liu 2020; Wu et al. 2021a), in which an attacker
aims to influence a specific item recommendation list of users.
More concretely, the attacker may be an incentive-driven item
owner and craves to increase the chance of their own items
to be recommended by a victim collaborative model.

Many existing item promotion attacks can be broadly clas-
sified into two categories: model-agnostic attacks and model-
specific attacks. Model-agnostic attacks (e.g., RandFilter at-
tack (Lam and Riedl 2004), average attack (Lam and Riedl
2004)) do not assume knowledge of victim collaborative
models, therefore they can apply to both conventional col-
laborative filtering models and GNN-based ones. In contrast,
model-specific attacks design attacking strategies only ap-
plicable for certain types of collaborative filtering models.
For example, Li et al. (Li et al. 2016) formulated an integrity
attack objective for MF-based models (Cai, Candès, and Shen
2010; Jain, Netrapalli, and Sanghavi 2013), then solved the
attack problem using gradient-based optimization methods.
Fang et al. (Fang, Gong, and Liu 2020) proposed to utilize
the influence function to select and craft fake users for top-K
MF-based recommenders. Tang et al. observed that many
model-specific attacks lacked exactness in gradient computa-
tion, then proposed a more precise solution to improve the
attack ability (Tang, Wen, and Wang 2020). Wu et al. de-
signed a neural network-instantiated influence module and
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incorporated it into a triple generative adversarial network to
craft fake users to launch attacks (Wu et al. 2021a).

Unfortunately, the model-agnostic attack methods were
specially designed for MF-based models, thus they are not
applicable to promoting items in GNN-based collaborative
filtering RS. Meanwhile, recent studies show that graph neu-
ral networks can be vulnerable to adversarial attacks — some
unnoticeable feature or edge perturbations may significantly
reduce the performance of a GNN model (Zügner, Akbarne-
jad, and Günnemann 2018; Dai et al. 2018; Xu et al. 2019;
Geisler et al. 2021). Intuitively, adversarial attacks can be
leveraged to promote items in GNN-based recommendation
models. However, these existing attacks focus on GNN-based
classifiers, leaving the vulnerability of GNN-based collabora-
tive filtering largely unexplored.

Indeed, there are three major differences between a GNN-
based classification model (Wu et al. 2020b) and a GNN-
based collaborative filtering model (Wu et al. 2020a). First,
a classification decision can be made based on the logit of
one node only, while a recommendation list returned by a
GNN recommender involves ranking the prediction scores
of all item nodes (Wang et al. 2019; He et al. 2020). There-
fore, unlike fooling one node only in a GNN-classifier at-
tack, attacking a GNN recommender requires to manipulat-
ing predictions of multiple nodes simultaneously. Thus, it
makes the latter case special and more challenging. Second,
a node classification model consists of both edges and as-
sociative semantic features, and manipulating features can
effectively enhance the attack ability (Zügner, Akbarnejad,
and Günnemann 2018). By contrast, a GNN recommender
usually only contains user-item interactions, thus increasing
the attack difficulty. Third, input graph formats and their
scales are also different. The input to the former model is
often a small symmetric graph, while there often includes
a large bipartite graph (e.g., tens of thousands of user and
item nodes) in the latter one (He et al. 2020; Wu et al. 2021c).
Therefore, memory-efficient attacks remain to be developed.

Methodology
Preliminaries
This study focuses on the LightGCN architecture (He et al.
2020), a state-of-the-art backbone in GNN-based collabo-
rative filtering models (Wu et al. 2021c; Zhou et al. 2021;
Zhang et al. 2022).

Let U = {u1, · · · , uM} and I = {i1, · · · , iN} denote
the set of M users and N items, respectively. Let O+ =
{rui|u ∈ U , i ∈ I} denote the interaction feedback of user
u for item i. Here we consider implicit feedback as in many
real recommenders (Tang, Wen, and Wang 2020), i.e., rui ∈
{0, 1}, where 1 indicates a positive recommendation and 0
means an unknown entry. Denote the user-item rating binary
matrix R ∈ RM×N with entries as rui (u = 1, · · · ,M ; i =
1, · · · , N). Then, we can construct a bipartite graph G =
(V , E), where V = U ∪ I and E = O+ represent the vertex
(or node) set and edge set, respectively.

GNN-based collaborative filtering leverages the user-item
graph G to learn embeddings. To be specific, it performs
neighborhood aggregations iteratively on G to update a node’s

representation (He et al. 2020; Wu et al. 2021c). The propa-
gation rule for the l−th (l = 1, · · · , L) layer can be formally
defined as,

z(l)u = g

( ∑
j∈Nu

R̃u,j · z(l−1)
j

)

z
(l)
i = g

( ∑
j′∈Ni

R̃T · z(l−1)
j′

) (1)

where z
(l)
u ∈ Rd denotes the feature vector of user u at layer

l, z
(0)
u = wu ∈ Rd denotes the trainable and randomly

initialized feature vector for user u, g(·) is an activation
function which is often set as an identity function in recent
works, Nu = {j|(u, j) ∈ E} represents items within the
neighborhood of a user u, and R̃u,j denotes the (u, j)-th
entry of a normalized user-item rating matrix R̃, i.e., R̃ =

Λ
−1/2
L R Λ

−1/2
R . Here ΛL ∈ RM×M is a diagonal matrix

with (u, u)-th entry as the degree of user u, ΛR ∈ RN×N

denotes a diagonal matrix with (i, i)-th entry as the degree of
item i. Similarly, we have notations for item i’s propagation
rule by changing the subscript from u to i.

After obtaining representations of L layers, the embedding
of a user (or item) node can be constructed by combining the
representations computed at each layer,

zu = fcomb(z
(l)
u ), zi = fcomb(z

(l)
i ), ∀l ∈ [L] (2)

where fcomb(·) denotes a representation combination func-
tion that may adopt representations from the final layer only,
or utilize concatenation or weighted sum of representations
from different layers (Wang et al. 2019; He et al. 2020; Wu
et al. 2021c).

In GNN-based collaborative filtering, a typical way to
obtain a recommendation prediction is by matching the em-
bedding of a user with that of an item,

r̂u,i =
〈
zu, zi

〉
(3)

where < · > denotes an inner product, r̂u,i is a rating score
estimate that indicates how likely a user u would select an
item i. The model training can be framed into a supervised
learning setting or a self-supervised learning paradigm. In
deployment, a pretrained collaborative filtering model first
predicts rating scores for each user, then it ranks and recom-
mends items with top-K highest scores to a user.

Targeted Topological Attacks
In a deployed recommender, a malicious item owner intends
to promote a target item t to as many users as possible, a
scenario called an item promotion attack. Different from
existing works that attempt to craft and inject fake users to
graph G, this work formulates it from a targeted topological
attack perspective. We assume the attacker (i.e., malicious
item owner) has white-box access to G. We also assume that
the attacker has the capability to persuade a few users to
give high positive ratings to the target item (e.g., sending
vouchers). The attacking process can be formally defined as,
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max
Ratk

Latk

(
fθ(R

atk)t

)
s.t. ||Ratk −R||0 ≤ ∆,

Ratk ∈ {0, 1}M×N

(4)

where Latk denotes an objective function to improve the
ranking of a specific item t, fθ denotes a GNN-based collab-
orative filtering model parameterized by θ, Ratk denotes a
manipulated user-item rating matrix by an attacker, || · ||0 is
an ℓ0 norm, and ∆ represents a perturbation budget for the
attack, i.e., the maximum number of user-item interactions
allowed to manipulate.

For an arbitrary user u ∈ U , denote the recommen-
dation prediction scores for each item i ∈ I as su =
[r̂u,1, · · · , r̂u,N ]. The collaborative filtering system then
ranks all entries in su and selects top-K items and recom-
mends them to user u, denoted as Ωu

K = [iu1 , · · · , iuK ]. Often,
the target item t does not lie in the recommendation set Ωu

K ,
thus requiring to be promoted into the set with a minimal
perturbation budget.

To achieve the item promotion purpose, we formulate an
objective function as,

Latk =
1

M

∑
u∈U

[
λlogσ(r̂u,t)−(1−λ)

∑
j∈Ωu

K ,j ̸=t

logσ(r̂u,j)
]

(5)
where λ is a hyperparameter to balance score penalizations,
σ(·) denotes a sigmoid activation function σ(x) = 1/

(
1 +

exp(−x)
)

that converts predicted score values to the (0, 1)
interval.

By substituting Eq. (5) into Eq. (4), we obtain a constraint
optimization problem in the white-box targeted topological
attack setting. Unfortunately, this is a combinatorial problem
and finding an exact solution is NP-hard in computational
complexity. Alternatively, similar to white-box adversarial
attacks on images, we can leverage the gradient-based opti-
mization to approximate the solution (Goodfellow, Shlens,
and Szegedy 2015; Madry et al. 2018).

First, we relax a discrete R as a continuous multivariable.
We then compute its saliency map based on the gradients of
Ratk with respect to each variable. The saliency map mea-
sures the contributions of every pair of user-item interactions
to maximize the attack objective function in Eq. (5). To sat-
isfy the perturbation budget in Eq. (4), we select ∆ users that
have highest intensity in the saliency map, and do a gradient
ascent to update R. Specifically, the topological attack can
be expressed as,

Ratk = P
(
R+M ⊙ sign

(
∇RLatk

))
(6)

where P is a projection operator that clips the perturbed R
back to the {0, 1}M×N space, ⊙ denotes an element-wise
product, sign(·) is a sign function, M ∈ {0, 1}M×N denotes
a binary mask that can be computed based on the gradient
saliency map,

Mu,i =

{
1, if

(
[∇RLatk]u,i > 0

)
∩
(
(u, i) ∈ Ωg

)
0, otherwise

(7)
where Ωg is an index set that contains the top-∆ largest values
of ∇RLatk and it can be formally defined as,

argmax
Ωg⊂G,|Ωg|=∆

∑
(u,i)∈Ωg

∇Ru,i
Latk (8)

A physical interpretation of the binary mask M is how
new user-item interactions should be established in order to
maximally promote a target item.

Node Masking Mechanism
As described in the previous section, we utilize a gradient-
based optimization approach to approximate the optimal solu-
tion to Eq. (4). Given a limited perturbation budget, we select
and create user-item pair candidates that achieve the highest
responses in the gradient saliency map. However, the attack
ability can be further improved due to potential issues in this
approach. First, the gradient estimates can be noisy due to
the discrete nature of variables in R. Also, the quantization
errors due to the utilization of the sign function may hamper
the effectiveness of gradient ascent.

Notice that the derivative ∇Ru,iLatk in Eq. (6) is a summa-
tion of individual derivatives computed from the log scores
of M user nodes w.r.t. the binary variable Ru,i. To negate
noisy effects in gradient estimates, an intuitive way is to
adopt a subset of user nodes by masking out unimportant
ones. We prefer preserving nodes with high predicted scores
r̂u,t than those with lower ones r̂u′,t for the target item t.
This is because item t is more likely enter into the top-K
recommendation list of the user u than user u′ after a single
step gradient ascent.

We design a pre-filtering step for the node masking mech-
anism based on predicted scores from the GNN-based col-
laborative filtering system. Specifically, we compose a user
subset U ′ ⊂ U that satisfies,

U ′ =
{
u | u ∈ U , σ(r̂u′,t) ≥ γ

}
(9)

where γ denotes a masking threshold parameter. Then, a
masked objective function Lm

atk can be expressed as,

Lm
atk =

1

|U ′|
∑
u∈U ′

[
λlogσ(r̂u,t)− (1− λ) ·

∑
j∈Ωu

K ,j ̸=t

logσ(r̂u,j)
]
(10)

Clearly, Eq. (5) is a special case of Eq. (10) by setting γ to
be 0. It is worth noting that our node masking mechanism is
clearly different from the masked strategy used in (Geisler
et al. 2021). First of all, the research tasks are different: our
work targets an item promotion task in a collaborative filter-
ing system that involves ranking, while work (Geisler et al.
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2021) deals with a classification task. Second, we rank pre-
dicted scores and mask out user nodes with low prediction
confidence below a threshold, while work (Geisler et al. 2021)
necessitates a comparison with the ground truth labels of
nodes and removes the incorrectly classified ones. Moreover,
the objective functions are fundamentally different because
of different tasks.

Scaling to Large-scale Graphs
The gradient ascent-based solution in Eq. (6) requires com-
puting gradients w.r.t. each entry in R. This approach works
well on a graphics processing unit (GPU) card with limited
memory when the input user-item interaction matrix R is
of relatively small size. In real deployment scenes, however,
with a dense gradient ∇RLm

atk, computational issues can
arise if it involves a large-scale graph that consists of thou-
sands even millions of user and item nodes.

Proposition 1. In a one-layer GNN-based collaborative
filtering model defined in Eq. (1), the partial derivatives
satisfy ∇Ru,tLm

atk > ∇Ru,jLm
atk, (j ̸= t) if < z

(0)
u , z

(0)
i >

→ 1 for u = 1, · · · ,M, i = 1, · · · , N .
Remark. The analysis above indicates that there only ne-

cessitates computing gradients with respect to the target item
t, i.e., ∇Ru,t(u = 1, · · · ,M) in Eq. (6). Empirically, we
observe that ∇Ru,tLm

atk > ∇Ru,jLm
atk, (j ̸= t) also holds

for the multi-layer well trained GNN-based collaborative fil-
tering models. In this way, the memory consumption can be
reduced from S(M × N) to S(M), which is a significant
cost reduction especially when N is a large value.

In implementation (e.g., using PyTorch (Paszke et al.
2019)), we can split matrix R into three separate tensors:
R =

[
R:,:t−1,R:,t,R:,t+1:N

]
, where only tensor R:,t re-

quires a gradient computation. Then we do a regular forward
process to compute the targeted loss as in Eq. (10), and then
backpropagate gradients to tensor R:,t.

The algorithm of the proposed method is presented in
Algorithm 1.

Experiments
In this section, we demonstrate the effectiveness of our item
promotion attack method in GNN-based collaborative filter-
ing systems. We first introduce the experimental setup, then
conduct experiments on two real-world datasets for empirical
validation under different settings.

Experimental Setup
Datasets: We conduct experiments on Gowalla (Cho, Myers,
and Leskovec 2011) and Yelp2018 (He et al. 2020), two
commonly-used datasets for recommendation (Wang et al.
2019; He et al. 2020). For both datasets, we use the pre-
processed dataset with train/test split following work (He
et al. 2020). Gowalla contains 29,858 users and 40,981 items,
with an overall number of user-item interactions as 1,027,370.
Yelp2018 includes 31,667 users and 38,047 items and has
1,561,406 user-item interactions in total.

Models: We evaluate our method on the LightGCN and
variant models, the state-of-the-art GNN-based collaborative
filtering recommenders. LightGCN is trained on Gowalla and

Algorithm 1: The proposed scalable algorithm for masked
targeted attacks on GNN-based collaborative filtering models.
Data: A pretrained fθ that consists of wu and wi, data R ∈

RM×N , target item t, perturbation budget ∆, parameter λ,
masking threshold γ.

Result: A perturbed Ratk that satisfies Eq. (8).
// Initialization and forward

Initialize embeddings z(0)u = wu, z(0)i = wi, set l = 1;
Rewrite R: R←

[
R:,:t−1,R:,t,R:,t+1:N

]
;

Normalize R: R̃← Λ
−1/2
L R Λ

−1/2
R ;

while l ≤ L do
Compute users embeddings at layer l:
z
(l)
u ← g

(
R:,:t−1 ·zl−1

i [: t−1, :]+R:,t ·zl−1
i [t, :]+R:,t:N ·

zl−1
i [t : N, :]

)
;

Compute items embeddings at layer l: z
(l)
i ←

[
g
(
RT

:,t ·

zl−1
u

)
; g
(
RT

:,t · zl−1
u

)
; g
(
RT

:,t:N · zl−1
u

)]
;

l← l + 1;
end
Compute final user and item embeddings using Eq. (2);
// Backward for gradient computation
Compute masked targeted loss Lm

atk using Eq. (10);
Compute∇R:,tLm

atk using autograd, and set the rest gradients in
∇R as 0;
Find top-∆ largest values in ∇R, and compute binary mask M
using Eq. (7);
Compute Ratk using gradient ascent in Eq. (6);

Return: The perturbed Ratk.

Yelp2018 datasets, respectively, with PyTorch implementa-
tions officially released by (He et al. 2020). We adopt default
hyperparameters as shown in the official implementation.
After sufficient training, LightGCN achieves good perfor-
mances on both datasets. The recommendation performances
on the clean datasets are reported in Appendix.

Evaluation Protocols: We demonstrate the attack ability
to promote a target item on low popular items on Gowalla
(Cho, Myers, and Leskovec 2011) and Yelp2018 datasets.
For a well-trained collaborative filtering model, an item with
fewer positive ratings in R will be less popular than an-
other that has more positive feedback. Therefore, we use
the degree of an item to quantify its popularity. To be spe-
cific, we compose three low-popular target item sets based
on an item’s original degree. The percentile of the three item
sets are: Q10, Q30, Q50, respectively. For each item from
the three item sets, two perturbation budgets are defined:
∆1

s = deg(Q65)− deg(Qs) and ∆2
s = d̄− deg(Qs), where

d̄ is the mean degree, deg(q) denotes the degree of an item
that lies in a percentile q, and s ∈ {10, 30, 50}. To better
reflect the trend of item promotion improvements, we also
adopt a continually varying number of perturbation budgets.
The perturbation budgets are shown in Table 1.

For the quantitative measure, we utilize the hit number
(HN ) to evaluate the item promotion ability. For a specific
target item, HN@50 is defined as the frequency that users
have this item to be displayed in their top-50 recommenda-
tion list. To be more accurate, we define a pruned hit number
(PHN@50) metric that removes the number of newly-added
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Dataset ∆1
10 ∆2

10 ∆1
30 ∆2

30 ∆1
50 ∆2

50

Gowalla 7 12 5 10 3 8
Yelp2018 17 25 13 21 8 16

Table 1: Perturbation budgets for topological attacks.

users from the HN@50 metric. For reproducibility, we re-
port the averaged HN@10 and PHN@K over 30 number
of randomly selected target items from three low popular
item sets individually. All reported results utilize fixed hyper-
parameters λ = 0.5, γ = 0.95.

Comparison Methods: We utilize and modify existing
model-agnostic attacks on collaborative filtering models and
use them as our baseline methods (e.g., random attack (Lam
and Riedl 2004)). Please note that we cannot compare with re-
cent model-specific attacks (e.g., (Li et al. 2016; Fang, Gong,
and Liu 2020; Tang, Wen, and Wang 2020)), because they
were developed for MF-based CF, and they do not apply for
attacking GNN-based CF models. Besides, our considered
settings are dramatically different from model-specific at-
tacks in that these methods require injecting a set of fake
users into training data, while our method focuses on select-
ing and modifying a small number of existing users. Besides
RandFilter, we also design two other heuristic attacks as our
baseline attacks. The compared methods are:

• RandFilter: RandFilter was originally used for explicit
ratings (Lam and Riedl 2004), and we modify it for im-
plicit rating. We randomly select ∆ users and asked them
to give positive ratings to the target item t.

• IUFilter: From the user’s perspective, users that have
frequent purchasing histories tend to be more influential
in positive ratings. Therefore we choose top-∆ such users
and let them rate positively to the target items.

• RUFilter: RUFilter selects users that have top-∆ pre-
dicted rating scores for item t and put corresponding en-
tries in R as 1 in the implicit recommendation setting.

Promoting Items in White-box Scenes
An attacker is first assumed to have white-box access to the
pretrained GNN-based CF model. The attacker can use three
baseline attacks and the proposed attack (in Algorithm 1) to
conduct item promotion attacks. Three sets of low popularity
items (i.e., Q10, Q30, Q50) will be evaluated with different
perturbation budgets. The comparison results are reported in
Table 2.

From Table 2, we can observe that our proposed method
achieves the highest averaged PHN@50 for all settings,
substantially outperforming baseline methods. For example,
when target items are from Q10 and a perturbation budget
as ∆1

10 on Gowalla, the PHN@50 values are 0.7, 0.5, 9.1
for RandFilter, IUFilter and RUFilter, respectively; while our
method achieves a PHN@50 as 41.4, which is 4.5× larger
than the second best method. The superiority of our method
is even more prominent for target items from Q10 with the
perturbation budget as ∆2

10, i.e., 7.5× stronger than RUFil-
ter. Although the item promotion ability tends to decrease
from Q10 to Q50, the performance of our method is still sig-

nificantly better than all baseline methods. We can arrive at a
same conclusion for experiments on Yelp2018.

In addition, we vary the perturbation budgets gradually and
show in Fig. (2) the comparison results. Fig. (2) reveals that
as the perturbation budgets increase, the promotion ability of
our method increases dramatically, and the performance gap
becomes larger compared to baseline methods. This obser-
vation indicates that GNN-based CF model is vulnerable to
the proposed masked topological attack, particularly with a
relatively large adversarial perturbation budget.

Figure 2: Performance comparisons with a gradually varying
number of budgets on low-popular items from Gowalla and
Yelp2018 datasets. (a) and (b) display PHN@50 results for
target items from Gowalla with Q10 and Q30, and (c) and (d)
show PHN@50 from Yelp2018 with Q10 and Q30, respec-
tively.

Promoting Items in Black-box Scenes
In addition to white-box attacks, we study the effectiveness
of our method in a black-box setting, in which an attacker
is assumed to have no knowledge of the victim models. In
this setting, an attacker first adopts the pertrained model
as a substitute model (sub. model) and creates a perturbed
graph for a target item. The attacker then attempts to promote
the target item on an unknown collaborative filtering model.
Based on (He et al. 2020), we obtain three victim models
by setting a different number of layers and the length of
embeddings. Please refer to Appendix for a detailed setup.

In Fig. 3, we compare and visualize the attack perfor-
mance of different methods on three substitute models (i.e.,
sub. models 1–3) on Gowalla. Although the three substitute
models are different from the source model, clearly, we can
conclude that the proposed method still achieves satisfactory
attack performances.

Effectiveness of Node Masking Mechanism
This section evaluates the performance of our method with
different choices of parameter γ. Specifically, we vary γ from
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Dataset Attack
Low popularity items

Q10 Q30 Q50

PHN@50 (∆1
10) PHN@50 (∆2

10) PHN@50 (∆1
30) PHN@50 (∆2

30) PHN@50 (∆1
50) PHN@50 (∆2

50)

Gowalla

RandFilter 0.7 0.5 2.2 0.8 3.9 1.8
IUFilter 0.5 0.3 1.9 0.7 4.5 1.5
RUFilter 9.1 15.6 14.2 25.7 17.1 29.0
Proposed 41.4 117.6 39.1 106.3 28.9 87.7

Yelp2018

RandFilter 0 0 0.2 0.1 1.2 0.4
IUFilter 0 0 0.2 0.1 0.8 0.2
RUFilter 7.4 19.1 4.8 10.5 7.6 16.5
Proposed 60.6 140.8 32.6 106.7 20.7 75.0

Table 2: Performance comparisons of different attacks in improving a target item’s popularity on Gowalla and Yelp2018 datasets.
Three low popularity item sets (Q10, Q30, Q50) are used for performance evaluation with perturbation budgets as ∆1

s and
∆2

s(s = 10, 30, 50). PHN@50 is averaged over 30 randomly selected target items at each item set.

sub. model 1 sub. model 2 sub. model 3
0

20
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80

100

120
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N
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50

RandFilter
IUFilter
RUFilter
Proposed

Figure 3: Visualization of attack performance comparisons
on three different substitute models on Gowalla.

0.05 to 0.95 and compare PHN@50. Figure 4 displays the
performance curve using target items from Q10 item set.
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Figure 4: Performance variations versus masking thresholds
γ. (a) and (b) show PHN@50 results vs γ for target items
from Q10 on Gowalla and Yelp2018 datasets, respectively.

In Figure 4, we can see that the item promotion ability of
our method is low when we use all users to establish the attack
objective (i.e., γ as 0). As we increase the masking threshold
γ, PHN@50 increases remarkably. This observation con-
firms the effectiveness of the node masking mechanism.

Dataset Attack
Low popularity items

Q10 Q30 Q50

PHN@50 PHN@50 PHN@50

Gowalla

RandFilter 8.8 12.4 14.9
IUFilter 1.9 5.0 7.8
RUFilter 5.2 11.3 13.6
Proposed 23.4 23.3 20.5

Yelp2018

RandFilter 5.0 6.4 8.3
IUFilter 1.2 1.7 3.9
RUFilter 5.1 3.6 6.4
Proposed 23.1 16.7 13.0

Table 3: Performance comparisons of different attacks in im-
proving a target item’s popularity on Gowalla and Yelp2018
datasets with retraining. Three low popularity item sets
(Q10, Q30, Q50) are used for performance evaluation with
perturbation budgets as ∆1

s (s = 10, 30, 50). PHN@50 is
averaged over 30 randomly selected target items at each set.

Promoting Items in Retraining Scenes
In real deployment scenarios, a collaborative filtering model
may be retrained from scratch to capture the dynamics of an
input graph. We simulate such an item promotion scene by
first perturbing a user-item graph followed by retraining a
new model on the perturbed graph. We keep all experimental
settings the same as that used for the source model.

Table 3 reveals that, compared with baseline methods, our
method consistently achieves the highest PHN@50 with a
same perturbation budget. On both datasets, we have about
1.4× to 4.6× larger attack ability than the second-best
method. Therefore, the proposed attack method successfully
maintains a strong promotion ability even when we retrain the
collaborative filtering model after topological perturbations.

Conclusion
In this work, we have proposed a novel view on promoting
items in GNN-based collaborative filtering models based on
topological attacks. Our formulation identifies users that play
pivotal roles to promote a target item. We then propose a node
masking mechanism to effectively improve vanilla gradient-
based solutions. A resource-efficient approach is developed
to make our method scalable to large-scale graphs.
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A.; and Günnemann, S. 2021. Robustness of graph neural net-
works at scale. Advances in Neural Information Processing
Systems, 34: 7637–7649.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2015. Ex-
plaining and harnessing adversarial examples. International
Conference on Learning Representations.
He, X.; Deng, K.; Wang, X.; Li, Y.; Zhang, Y.; and Wang,
M. 2020. Lightgcn: Simplifying and powering graph convo-
lution network for recommendation. In Proceedings of the
43rd International ACM SIGIR conference on research and
development in Information Retrieval, 639–648.
He, X.; He, Z.; Song, J.; Liu, Z.; Jiang, Y.-G.; and Chua,
T.-S. 2018. Nais: Neural attentive item similarity model for
recommendation. IEEE Transactions on Knowledge and
Data Engineering, 30(12): 2354–2366.
He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; and Chua, T.-S.
2017. Neural collaborative filtering. In Proceedings of the
26th international conference on world wide web, 173–182.
Hu, Y.; Koren, Y.; and Volinsky, C. 2008. Collaborative
filtering for implicit feedback datasets. In 2008 Eighth IEEE
international conference on data mining, 263–272. Ieee.
Jain, P.; Netrapalli, P.; and Sanghavi, S. 2013. Low-rank
matrix completion using alternating minimization. In Pro-
ceedings of the forty-fifth annual ACM symposium on Theory
of computing, 665–674.

Kipf, T. N.; and Welling, M. 2016. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907.
Koren, Y. 2008. Factorization meets the neighborhood: a mul-
tifaceted collaborative filtering model. In Proceedings of the
14th ACM SIGKDD international conference on Knowledge
discovery and data mining, 426–434.
Koren, Y.; Bell, R.; and Volinsky, C. 2009. Matrix factoriza-
tion techniques for recommender systems. Computer, 42(8):
30–37.
Lam, S. K.; and Riedl, J. 2004. Shilling recommender sys-
tems for fun and profit. In Proceedings of the 13th interna-
tional conference on World Wide Web, 393–402.
Li, B.; Wang, Y.; Singh, A.; and Vorobeychik, Y. 2016. Data
poisoning attacks on factorization-based collaborative filter-
ing. Advances in neural information processing systems,
29.
Liu, Z.; and Larson, M. 2021. Adversarial Item Promotion:
Vulnerabilities at the Core of Top-N Recommenders that Use
Images to Address Cold Start. In Proceedings of the Web
Conference 2021, 3590–3602.
Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and Vladu,
A. 2018. Towards deep learning models resistant to adversar-
ial attacks. International Conference on Learning Represen-
tations.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information pro-
cessing systems, 32.
Tang, J.; Wen, H.; and Wang, K. 2020. Revisiting adversari-
ally learned injection attacks against recommender systems.
In Fourteenth ACM conference on recommender systems,
318–327.
Wang, J.; Zhang, S.; Xiao, Y.; and Song, R. 2021. A review
on graph neural network methods in financial applications.
arXiv preprint arXiv:2111.15367.
Wang, X.; He, X.; Wang, M.; Feng, F.; and Chua, T.-S. 2019.
Neural graph collaborative filtering. In Proceedings of the
42nd international ACM SIGIR conference on Research and
development in Information Retrieval, 165–174.
Wu, C.; Lian, D.; Ge, Y.; Zhu, Z.; Chen, E.; and Yuan, S.
2021a. Fight Fire with Fire: Towards Robust Recommender
Systems via Adversarial Poisoning Training. In Proceed-
ings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval, 1074–
1083.
Wu, F.; Gao, M.; Yu, J.; Wang, Z.; Liu, K.; and Wang, X.
2021b. Ready for emerging threats to recommender sys-
tems? A graph convolution-based generative shilling attack.
Information Sciences, 578: 683–701.
Wu, J.; Wang, X.; Feng, F.; He, X.; Chen, L.; Lian, J.; and
Xie, X. 2021c. Self-supervised graph learning for recommen-
dation. In Proceedings of the 44th international ACM SIGIR
conference on research and development in information re-
trieval, 726–735.

15213



Wu, S.; Sun, F.; Zhang, W.; Xie, X.; and Cui, B. 2020a. Graph
neural networks in recommender systems: a survey. ACM
Computing Surveys (CSUR).
Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; and Philip,
S. Y. 2020b. A comprehensive survey on graph neural net-
works. IEEE transactions on neural networks and learning
systems, 32(1): 4–24.
Xu, K.; Chen, H.; Liu, S.; Chen, P.-Y.; Weng, T.-W.; Hong,
M.; and Lin, X. 2019. Topology attack and defense for graph
neural networks: An optimization perspective. arXiv preprint
arXiv:1906.04214.
Zhang, L.; Liu, Y.; Zhou, X.; Miao, C.; Wang, G.; and Tang,
H. 2022. Diffusion-Based Graph Contrastive Learning for
Recommendation with Implicit Feedback. In International
Conference on Database Systems for Advanced Applications,
232–247. Springer.
Zhou, X.; Sun, A.; Liu, Y.; Zhang, J.; and Miao, C. 2021.
SelfCF: A Simple Framework for Self-supervised Collabora-
tive Filtering. arXiv preprint arXiv:2107.03019.
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