
Neural Policy Safety Verification via Predicate Abstraction: CEGAR

Marcel Vinzent1, Siddhant Sharma2, Jörg Hoffmann1,3

1 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
2 Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, India

3 German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany
{vinzent, hoffmann}@cs.uni-saarland.de, Siddhant.Sharma.ee119@ee.iitd.ac.in

Abstract

Neural networks (NN) are an increasingly important repre-
sentation of action policies π. Recent work has extended
predicate abstraction to prove safety of such π, through pol-
icy predicate abstraction (PPA) which over-approximates the
state space subgraph induced by π. The advantage of PPA is
that reasoning about the NN – calls to SMT solvers – is re-
quired only locally, at individual abstract state transitions, in
contrast to bounded model checking (BMC) where SMT must
reason globally about sequences of NN decisions. Indeed,
it has been shown that PPA can outperform a simple BMC
implementation. However, the abstractions underlying these
results (i.e., the abstraction predicates) were supplied manu-
ally. Here we automate this step. We extend counterexample-
guided abstraction refinement (CEGAR) to PPA. This in-
volves dealing with a new source of spuriousness in abstract
unsafe paths, pertaining not to transition behavior but to the
decisions of the neural network π. We introduce two methods
tackling this issue based on the states involved, and we show
that global SMT calls deciding spuriousness exactly can be
avoided. We devise algorithmic enhancements leveraging in-
cremental computation and heuristic search. We show empir-
ically that the resulting verification tool has significant advan-
tages over an encoding into the state-of-the-art model checker
nuXmv. In particular, ours is the only approach in our exper-
iments that succeeds in proving policies safe.

1 Introduction
Neural networks (NN) are an increasingly important rep-
resentation of action policies, in particular in planning (Is-
sakkimuthu, Fern, and Tadepalli 2018; Groshev et al. 2018;
Garg, Bajpai, and Mausam 2019; Toyer et al. 2020). But
how to verify that such a policy is safe? Given a policy π,
a start condition ϕ0, and an unsafety condition ϕu, how
to verify whether a state su |= ϕu is reachable from a state
s0 |= ϕ0 under π? Such verification is potentially very hard
as it compounds the state space explosion with the difficulty
of analyzing even single NN decision episodes.

Research on this question still is in its early stages. A
prominent line of works addresses neural controllers of dy-
namical systems, where the NN outputs a vector u of re-
als forming input to a continuous state-evolution function
f (Sun, Khedr, and Shoukry 2019; Tran et al. 2019; Huang

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

et al. 2019; Dutta, Chen, and Sankaranarayanan 2019). Re-
cent work extends this thread to hybrid systems, addressing
smooth (tanh/sigmoid) activation functions by compilation
into such systems (Ivanov et al. 2021). Another thread ex-
plores bounded-length verification of neural controllers (Ak-
intunde et al. 2018, 2019; Amir, Schapira, and Katz 2021).

Here we follow up on the work by Vinzent et al. (2022)
(henceforth: Vea22), which tackles NN policies π with
ReLU activation functions taking discrete action choices in
non-deterministic state spaces over bounded-integer state
variables. The approach extends predicate abstraction
(PA) (Graf and Saı̈di 1997; Ball et al. 2001; Henzinger et al.
2004) to what Vea22 baptise policy predicate abstraction
(PPA). Like PA, PPA builds an over-approximating abstrac-
tion defined through a set P of predicates, where each
p ∈ P is a linear constraint over the state variables (e.g.
x = 7 or x ≤ y). Unlike PA however, PPA abstracts not the
full state space Θ, but the policy-restricted state space Θπ ,
i.e., the state-space subgraph containing only the transitions
taken by π. Vea22’s method builds the fragment of Θπ

P – the
predicate abstraction of Θπ – reachable from ϕ0, and checks
whether ϕu is reached. If this is not the case, then π is safe.1

Compared to bounded model checking (BMC), which
iteratively checks length-L safety through an encoding into
SMT (de Moura and Bjørner 2008), the advantage of PPA
is that the required SMT calls are much cheaper. PPA uses
SMT to decide about the existence of individual abstract
state transitions. While many such SMT calls are needed,
each is local to a single NN decision, requiring a singly copy
of the NN π in the SMT encoding. In contrast, BMC requires
global SMT encodings pertaining to sequences of NN deci-
sion steps, with one copy of π in each step, which incurs a
blow-up prohibitive in L. Indeed, Vea22 show that PPA can
outperform a simple implementation of BMC.

The central weakness of this result, thus far, is that Vea22
supplied the underlying predicate sets P manually. They ex-
amined performance as a function of |P|, with predicate
sets scaled according to simple manually designed schemes.
Their positive results pertain to particular points in these
scaling schemes: particular instances of P that work well,

1Note here that this safety result is specific to ϕ0, i.e., checking
different start conditions requires to re-run PPA. The advantage is
that, given a fixed ϕ0, we can leverage restricted reachability under
π. Vea22 show that this is crucial for PPA to be practicable.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

15188

which are typically located at sweetspots in the middle of
the scaling scheme, with PPA being very costly, often infea-
sible, outside the sweetspot. Can suitable P be found auto-
matically, without incurring prohibitive overhead from com-
puting abstract state spaces outside the sweetspot?

Here we answer this question in the affirmative, through
extending the well-known counterexample-guided ab-
straction refinement (CEGAR) (Clarke et al. 2003)
paradigm to the PPA setting. The key challenge here is a
new source of spuriousness in counterexamples. An abstract
unsafe path may not have a concrete correspondence be-
cause, at some point along the path, π’s decision on the
current concrete state s does not match the next abstract
state transition. We introduce two alternative methods tack-
ling this issue, by introducing predicates allowing to distin-
guish s from (a) all other states (concretization exclusion)
or (b) a witness state sw where π does decide as required
(witness splitting). We furthermore show that global SMT
calls, which would be needed to decide exactly whether an
abstract unsafe path has a concrete correspondence, can be
avoided: as we show, even when checking only a single con-
cretization candidate in each CEGAR iteration, the overall
algorithm remains complete. We finally devise two algorith-
mic enhancements, leveraging incremental computation and
heuristic search to improve individual CEGAR iterations.

We evaluate the resulting verification tool on Vea22’s
benchmarks, comparing against a broad range of state-
of-the-art verification methods implemented in NUXMV
(Cavada et al. 2014). NUXMV does not natively support
NNs, but the neural policy π can be encoded into constraints
in its input language. NUXMV is sometimes more effective
than our tool in finding unsafe paths. But the opposite also
happens, and, more importantly, ours is the only approach in
our experiments that succeeds in proving policies safe. Our
algorithmic enhancements help significantly to achieve this
success, in particular heuristic search which often improves
performance by orders of magitude.

2 Preliminaries
We consider the policy verification setting as introduced by
Vea22. A state space is a tuple ⟨V ,L,O⟩ of state variables
V , action labels L, and operators O. For each variable v ∈
V the domain Dv ̸= ∅ is a bounded integer interval. We
denote by Exp the set of linear integer expressions over V ,
of the form d1 · v1 + · · · + dr · vr + c with d1, . . . , dr, c ∈
Z. C denotes the set of linear integer constraints over V ,
i.e., constraints of the form e1 ▷◁ e2 with ▷◁ ∈ {≤,=,≥}
and e1, e2 ∈ Exp, and Boolean combinations thereof (we
use e1 < e2 as syntactic sugar for ¬(e1 ≥ e2), etc). An
operator o ∈ O is a tuple (g, l, u) with label l ∈ L, guard
g ∈ C , and (partial) update u : V → Exp.

A (partial) variable assignment s over V is a function
with domain dom(s) ⊆ V and s(v) ∈ Dv for v ∈ dom(s).
Given s1, s2, we denote by s1[s2] the update of s1 by s2, i.e.,
dom(s1[s2]) = dom(s1)∪dom(s2) with s1[s2](v) = s2(v)
if v ∈ dom(s2), else s1[s2](v) = s1(v). By e(s) we denote
the evaluation of e ∈ Exp over s, and by ϕ(s) the evaluation
of ϕ ∈ C . If ϕ(s) evaluates to true, we write s |= ϕ.

The state space of ⟨V ,L,O⟩ is a labeled transition sys-
tem (LTS) Θ = ⟨S,L, T ⟩. The set of states S is the (finite)
set of all complete variable assignments over V . The set of
transitions T ⊆ S ×L×S contains (s, l, s′) iff there exists
an operator o = (g, l, u) such that s |= g and s′ = s[u(s)],
where u(s) = {v 7→ u(v)(s) | v ∈ dom(u)}. We also write
s |= o for s |= g, and abbreviate sJoK for s[u(s)].

Observe that the separation between action labels and op-
erators allows both, state-dependent effects (different oper-
ators with the same label l applicable in different states) as
well as action outcome non-determinism (different operators
with the same label l applicable in the same state).

A policy π is a function S → L. We consider π repre-
sented by a neural network (NN). While Vea22’s approach
applies, in principle, to arbitrary NN, its current implemen-
tation is restricted to feed-forward NN with rectified linear
unit (ReLU) activation functions ReLU (x) = max(x, 0).
These NN consist of an input layer, arbitrarily many hidden
layers, and an output layer with one neuron per label l; π is
obtained by applying argmax to the output layer.

We next introduce basic safety notations pertaining to Θ
as a whole; we will later modify these to consider policy
safety instead. A safety property is a pair ρ = (ϕ0, ϕu)
where ϕ0, ϕu ∈ C . Here, ϕu identifies the set of unsafe
states that should be unreachable from the set of possible
start states represented by ϕ0. Θ is unsafe with respect to ρ
iff there exists a path ⟨s0, o0, . . . , sn−1, on−1, sn⟩ in Θ such
that s0 |= ϕ0 and sn |= ϕu. Otherwise Θ is safe.

Predicate abstraction (Graf and Saı̈di 1997) is a well-
established technique to prove safety. Assume a set of pred-
icates P ⊆ C . An abstract state sP is a (complete) truth
value assignment over P . The abstraction of a (concrete)
state s ∈ S is the abstract state s|P with s|P(p) = p(s)
for each p ∈ P . Conversely, [sP] = {s′ ∈ S | s′|P = sP}
denotes the concretization of abstract state sP , i.e., the set
of all concrete state represented by sP . The predicate ab-
straction of Θ over P is then the LTS ΘP = ⟨SP ,L, TP⟩,
where SP is the set of all abstract states over P , and TP =
{(s|P , l, s′|P) | (s, l, s′) ∈ T }. To compute ΘP , one must
solve what we call the abstract transition problem for ev-
ery possible abstract transition: (sP , l, s′P) ∈ TP iff there
exists an operator o ∈ O with label l, and a concrete state
s ∈ [sP], such that s |= o and sJoK ∈ [s′P]. Such abstract
transition problems are routinely encoded into satisfiability
modulo theories (SMT) (Barrett and Tinelli 2018), using off-
the-shelf solvers like Z3 (de Moura and Bjørner 2008).

Analogously to safety in Θ, the abstract state space ΘP
is said to be unsafe with respect to a safety property ρ =
(ϕ0, ϕu) iff there exists a path ⟨s0P , o0, . . . , on−1, snP⟩ in ΘP
such that s0P |= ϕ0 and snP |= ϕu, where sP |= ϕ iff there
exists s ∈ [sP] such that s |= ϕ. Otherwise ΘP is safe, in
which case Θ must be safe as well.

An abstract unsafe path in ΘP may be spurious, i.e.,
without concretization in Θ. Counterexample-guided ab-
straction refinement (CEGAR) (e.g. (Clarke et al. 2003;
Henzinger et al. 2004; Gupta and Strichman 2005; Podelski
and Rybalchenko 2007)) iteratively removes such spurious
abstract paths by refining P , until either the abstraction is
proven safe or a non-spurious abstract path is found.

15189

3 Vea22’s Methods and Results
We next briefly revisit Vea22 as the direct background
for our work. Safety of a given policy π is proved via
safety of the policy-restricted state space Θπ , the subgraph
⟨S,L, T π⟩ of Θ with T π = {(s, l, s′) ∈ T | π(s) = l}. In
turn, safety of Θπ is proved via safety of the policy pred-
icate abstraction (PPA) of Θπ , Θπ

P = ⟨SP ,L, T π
P ⟩ where

T π
P = {(s|P , l, s′|P) | (s, l, s′) ∈ T , π(s) = l}.
Vea22 introduce an algorithm to compute the fragment

of Θπ
P reachable from the start-state constraint ϕ0. The ab-

stract transition problems in this computation involve check-
ing whether π selects the correct label: (sP , l, s′P) ∈ TP iff
there exists an operator o ∈ O with label l, and s ∈ [sP],
such that s |= o and sJoK ∈ [s′P] and π(s) = l. This is a key
new source of complexity as the SMT sub-formula repre-
senting the NN π contains one disjunction for every neuron.
Vea22 show how this can be dealt with through approximate
SMT checks. In particular, this pertains to continuous relax-
ations of the integer state variables, solved with Marabou
(Katz et al. 2019), an SMT solver tailored to NN analysis.

Vea22 do not provide a method to automatically find the
predicate set P . Instead, for their empirical evaluation, they
use manually designed predicate sets P , consisting of box
constraints v ≥ c. They scale these P according to sim-
ple schemes, and examine performance as a function of |P|.
Figure 1 gives an illustrative excerpt of their results.

Figure 1: Excerpt of results by Vea22 for their best-
performing PPA variant, on one of their benchmarks (8-
puzzle cost-ignoring), for different hidden-layer sizes.

The runtime to compute the reachable fragment of Θπ
P

clearly has a sweetspot in the middle of the |P| range. This
is highly characteristic. To the left of the sweetspot, P is
coarse so the NN input regions are large which results in ex-
pensive SMT calls (especially for larger NN). This effect is
reduced as P becomes finer; in addition, with the abstrac-
tion becoming more fine-grained, the reduced reachability
under π kicks in. Eventually however, the state-space explo-
sion in |P| outweighs these benefits, resulting in exponential
runtime growth to the right of the sweetspot.

In summary, these results by Vea22 are encouraging, yet
leave us with the question whether suitable P can be found

automatically, without incurring prohibitive overhead from
computing abstract state spaces outside the sweetspot. We
now show how to answer this question in the affirmative.

4 Policy CEGAR: Spuriousness
We contribute a CEGAR method for policy predicate ab-
straction. Next we discuss, at an intuitive level, the new
source of spuriousness relative to standard predicate abstrac-
tion, and how we deal with it. In Section 5 we specify our
method formally and prove its completeness.

4.1 Sources of Spuriousness
In standard predicate abstraction, all spuriousness is due to
over-approximated transition behavior. In PPA however, a
path may be spurious due to policy decisions even if the re-
quired transition behavior is present. Figure 2 illustrates this.

(STD)

s

sw

s′

sP s′P

(POL)

s

sw

s′

l′ π

l

l
π

sP s′P

Figure 2: Illustration of standard spuriousness (STD) and
policy-induced spuriousness (POL). s ∈ [sP] is the concrete
state reached by a candidate concretization; s ̸= sw ∈ [sP]
is a witness of the next abstract transition (sP , l, s

′
P).

In the standard case (STD), the transition from sP to s′P
is spurious because there is no corresponding concrete tran-
sition from the state s reached by a candidate concretization
of the considered abstract path prefix. (More generally, this
kind of spuriousness occurs if all states s reachable from ϕ0,
under all possible concretizations of the abstract path prefix,
are not witnesses of (sP , l, s′P).)

In the new case (POL), in contrast, the required transition
from s is there, s is a witness for (sP , l, s′P). Yet π does not
select the required label, π(s) ̸= l, although it does from
a different state s ̸= sw ∈ [sP]. The spuriousness here is
exclusively due to policy decisions, i.e., to NN behavior.

Ultimately, addressing this source of spuriousness re-
quires the selection of new predicates characterizing π’s de-
cision boundary, i.e., where the NN does vs. does not select
the label l within sP . Precise characterizations of this deci-
sion boundary remain a challenge for future work. For now,
we approximate it with simple box constraint predicates that
allow to distinguish the specific states s and sw.

We remark that one can view π(s) = l as a complex tran-
sition guard and apply standard CEGAR refinement tech-
niques. This can be implemented by encoding the NN π into
standard verification languages. Yet standard tools are not
designed to handle such complex guards (one disjunction
per neuron), and indeed our experiments with NUXMV indi-
cate that CEGAR is usually not feasible on such encodings.

15190

4.2 Refinement Methods
We introduce two different methods for refining P in the
presence of policy-induced spuriousness as per Figure 2
(POL). Figure 3 illustrates these methods.

(CE)

s

sw

s′

l′ π

l

l
π

sP s′P

(WS)

s

sw

s′

l′ π

l

l
π

sP s′P

Figure 3: Illustration of concretization exclusion (CE) and
witness splitting (WS). s and sw as in Figure 2 (POL).

Our first method concretization exclusion (CE) focuses
entirely on the state s in which π disagrees with the abstract
transition (sP , l, s

′
P). We introduce predicates allowing to

distinguish s from every other state in the state space. In
other words, we approximate the complex transition guard
π(s) = l with ¬s. Specifically, we augment P with the box
constraints {v ≤ s(v)− 1, s(v) + 1 ≤ v | v ∈ V}.

Witness splitting (WS) is more targeted, by taking the
witness sw of (sP , l, s′P) into account. We introduce pred-
icates allowing to distinguish s, not from every other state,
but specifically from sw. Intuitively, we approximate the de-
cision boundary of π within sP by the difference between s
and sw. We do so via box constraints of the form v < sw(v)
where s(v) < sw(v), and v > sw(v) where s(v) > sw(v).

The box constraints used in both methods are motivated
by their simplicity (facilitating effective handing).

5 CEGAR: Algorithm and Completeness
We now spell out our CEGAR algorithm for policy predi-
cate abstraction. Specifically, we spell out a refine algo-
rithm to be used in a loop around Vea22’s method comput-
ing the fragment of Θπ

P reachable from ϕ0 (more generally,
around any method deciding reachability of ϕu from ϕ0 in
Θπ

P) starting with an empty set of predicates P = ∅.
If ϕu is not reachable, CEGAR stops with “safe”. Oth-

erwise, refine is invoked with an abstract unsafe path as
input. If refine determines that path to be non-spurious,
then CEGAR stops with “unsafe”. If the path is spurious,
then refine adds new predicates to P and we iterate.

We next spell out the refinement algorithm, then prove
that our policy predicate abstraction CEGAR is complete.

5.1 Refinement Algorithm
Consider Algorithm 1. Note first that the input is only the
start state s0P of the unsafe abstract path, along with the un-
derlying operator path ⟨o0, . . . , on−1⟩ – rather than the en-
tire unsafe abstract path ⟨s0P , . . . , snP⟩ found by policy pred-
icate abstraction. The latter would also be possible, as an
alternative basis for the refinement step. Using only the op-
erator path is a stronger form of refinement, as the same
⟨o0, . . . , on−1⟩ may underly mutiple unsafe abstract paths.

Algorithm 1: refine (Abstraction Refinement).
Input: s0P |= ϕ0, ⟨o0, . . . , on−1⟩ with oi = (gi, li, ui),

and gn := ϕu.

// Check standard spuriousness.
1 for i ∈ {0, . . . , n} do
2 if ¬∃⟨s0, o0, . . . , oi−1, si⟩ ∈ Θ : s0 ∈ [s0P] ∧ s0 |=

ϕ0 ∧ si |= gi then
3 P ← P ∪ WP(gi, ⟨o0, . . . , oi−1⟩)
4 return SPURIOUS

// Check π-spuriousness.
5 let ⟨s0, o0, . . . , on−1, sn⟩ ∈ Θ : s0 ∈ [s0P] ∧ s0 |=

ϕ0 ∧ sn |= ϕu in
6 for i ∈ {0, . . . , n− 1} do
7 if π(si) ̸= li then
8 if π-Refinement = ”witness splitting” then
9 let siw ∈ [siP] such that

10 siwJoiK ∈ [si+1
P] ∧ π(siw) = li in

11 ϕappr ← WitSplit(si, siw)

12 else
13 ϕappr ← ¬si

14 P ← P ∪ WP(ϕappr , ⟨o0, . . . , oi−1⟩)
15 return π-SPURIOUS for s0

16 return NON-SPURIOUS

17 Procedure WP(ϕ, ⟨o0, . . . , oi−1⟩):
18 ϕi

wp ← ϕ
19 for j ∈ {i− 1, . . . , 0} do
20 ϕj

wp ← wpuj (ϕj+1
wp)

21 return {ϕ0
wp , . . . , ϕ

i
wp}

22 Procedure WitSplit(s, sw):
23 ϕ← 1
24 for v ∈ V s.t. s(v) ̸= sw(v) do
25 if s(v) < sw(v) then ϕ← ϕ ∧ v < sw(v)
26 if s(v) > sw(v) then ϕ← ϕ ∧ v > sw(v)

27 return ϕ

The algorithm starts by checking standard spuriousness
(Figure 2 (STD)), as a cheap form of refinement covering
transition behavior. We incrementally check whether there
exists a start state from which a prefix of the operator path
can be taken (line 2). Such path existence checks can be en-
coded as cheap SMT queries, similar to the abstract transi-
tion problem in standard predicate abstraction. If the check
fails for some prefix, we refine with respect to the smallest
spurious prefix ⟨o0, . . . , oi−1⟩ (line 3), for the spuriousness
causing constraint gi (which we define to be ϕu for i = n).

We refine based on weakest preconditions as specified by
procedure WP (line 17). Here, wpu(ϕ) denotes the syntacti-
cal weakest precondition of ϕ applying update u, which is
computed by substituting each v ∈ dom(u) in ϕ by u(v).
In essence, WP computes the set {ϕ0

wp , . . . , ϕ
i
wp} where ϕj

wp

is the weakest precondition of ϕ taking ⟨oj , . . . , oi−1⟩. This
enables the refined abstraction to explicitly trace the truth
value of ϕ along the entire path ⟨o0, . . . , oi−1⟩.

15191

Our implementation somewhat diverges from this proce-
dure in that it splits formulas (Boolean combinations of con-
straints, as produced by the WP procedure) into their atoms.
This is because the Vea22 implementation of policy predi-
cate abstraction supports only atomic predicates (motivated
by some of their algorithmic optimizations). Obviously, as
new predicates, the collection of atoms allows to make all
distinctions made by the overall formula.

If the checks for standard spuriousness result in a com-
plete concrete path ⟨s0, o0, . . . , on−1, sn⟩, then we check
that path for policy-induced spuriousness (Figure 2 (POL)),
simply by evaluating the policy on each state and checking
whether the desired label is selected. If yes (line 16), we have
found a concrete unsafe path, thus proving unsafety. If no
(line 7), the path is π-spurious for s0. We then refine with re-
spect to the shortest π-spurious prefix (line 14), using either
witness splitting (line 11) or concretization exclusion (line
13). For the case of concretization exclusion, Algorithm 1
specifies a simple variant that suffices for completeness; our
implementation uses {v ≤ s(v)− 1, s(v) + 1 ≤ v | v ∈ V}
as specified in Section 4.2 because the Vea22 implementa-
tion does not support = (respectively ̸=) predicates.

Importantly, observe that, since we only consider a sin-
gle concrete path ⟨s0, o0, . . . , on−1, sn⟩, the π-spuriousness
check is incomplete: even if ⟨s0, o0, . . . , on−1, sn⟩ is π-
spurious, there may exist a different non-π-spurious un-
safe path using ⟨o0, . . . , on−1⟩ (starting from another state
s0 ̸= s ∈ [s0P]). For a complete test, we would need to en-
code the existence of such a path into a global SMT test,
i.e., an SMT formula containing n copies of the neural net-
work π. We do not pursue that option and instead settle for
the cheap test in Algorithm 1. This source of incompleteness
in our CEGAR refinement step is, however, counteracted by
the iterative refinement of predicates, so that, as we show
next, the overall algorithm is still complete.

5.2 Completeness
Theorem 1 (Completeness). For any predicate set P ,
CEGAR with Algorithm 1 will in finitely many iterations
either prove unsafety or safety, i.e., either find a concrete
unsafe path from ϕ0 to ϕu, or terminate with a predicate set
for which no abstract unsafe path exists.

Due to space constraints, we move the formal proof to
an online TR. In the following, we give an overview of
the progress guarantees provided by each of the refinement
methods (i.e., standard, concretization exclusion and wit-
ness splitting), and we sketch the proof of Theorem 1. For
all these methods, the weakest precondition computation
WP(ϕ, ⟨o0, . . . , oi−1⟩) constitutes the key element towards
progress. It enables to explicitly trace the truth value of ϕ in
the refined abstraction when taking ⟨o0, . . . , oi−1⟩. There-
fore, spurious abstract paths ⟨s0P , o0, . . . , oi−1, siP⟩ must be
spurious for a reason different from siP |= ϕ. For standard
refinement, the progress guarantee is as follows:
Lemma 2 (Standard). Let {ϕ0

wp , . . . , ϕ
i
wp} ⊆ P

as computed by WP(ϕ, ⟨o0, . . . , oi−1⟩) and let
⟨s0P , o0, . . . , oi−1, siP⟩ in ΘP with siP |= ϕ. For any
⟨s0, o0, . . . , oi−1, si⟩ in Θ with s0 ∈ [s0P] we have si |= ϕ.

Lemma 2 guarantees that – after the refinement step
– if there still exists a spurious abstract path σ =
⟨s0P , o0, . . . , oi−1, siP⟩ with siP |= ϕ, then the spuriousness
is due to a strict sub-prefix of σ. This spurious prefix can
be detected and removed in subsequent CEGAR iterations.
Since each iteration strictly decreases the size of the prefix,
it is removed completely in finitely many steps.

In what follows, we denote π(sP) = {π(s) | s ∈ [sP]}.
Lemma 3 (Concretization Exclusion). Let l ∈ L,
⟨s0, o0, . . . , oi−1, si⟩ in Θ with π(si) ̸= l and {ϕ0

wp , . . . ,

ϕi
wp} ⊆ P as computed by WP(¬si, ⟨o0, . . . , oi−1⟩). For

any ⟨s0P , o0, . . . , oi−1, siP⟩ in ΘP with l ∈ π(siP) we have
s0 /∈ [s0P].

In words, si (respectively the path to si) is excluded from
the set of concretizations for ⟨s0P , o0, . . . , oi−1, siP⟩ with l ∈
π(siP). Since in each iteration we remove at least one path
from the set of possible concretizations, within finitely many
iterations we either find a concretization that is valid under
π, or remove the abstract (spurious) path completely.
Lemma 4 (Witness Splitting). Let ⟨s0, o0, . . . , oi−1, si⟩
in Θ and {ϕ0

wp , . . . , ϕ
i
wp} ⊆ P as computed by

WP(WitSplit(si, siw), ⟨o0, . . . , oi−1⟩) for si ̸= siw ∈ S .
For any ⟨s0P , o0, . . . , oi−1, siP⟩ in ΘP with siw ∈ [siP] we
have s0 /∈ [s0P].

In words, the path to si is excluded from the set of con-
cretizations for ⟨s0P , o0, . . . , oi−1, siP⟩ with witness siw ∈
[siP]. Again, in each iteration we split at least one state from
the set of possible concretizations.

Proof sketch of Theorem 1. We show that Algorithm 1
strictly refines the abstraction, in the following sense: given
the refined predicate set P ′ = P ∪ {ϕ0

wp , . . . , ϕ
i
wp}, there

exist concrete states s, s′ ∈ S such that s|P′ ̸= s′|P′ while
s|P = s′|P . Hence each refinement step distinguishes at
least two new (non-empty) abstract states, s|P′ and s′|P′ ,
and thus the number of iterations is finite.

Let s0w, . . . , s
i
w be the witness trace of abstract prefix

⟨s0P , o0, . . . , oi−1, siP⟩. Suppose s0w, . . . , s
i
w is no longer a

valid witness trace under P ′. Then, for some j, sjwJojK|P′ ̸=
sj+1
w |P′ while sjwJojK|P = sj+1

w |P . Hence s = sjwJojK and
s′ = sj+1

w satisfy the claim. Now suppose that s0w, . . . , s
i
w is

still a valid witness trace. Then we can invoke Lemma 2, 3
or 4, according to which refinement step was used. This al-
lows us to conclude that s0|P′ ̸= s0w|P′ while s0|P = s0w|P ,
where s0 is the start state of the concretization (prefix) found
by Algorithm 1 for s0P and ⟨o0, . . . , oi−1⟩. Hence s = s0 and
s′ = s0w satisfy the claim in this case.

6 Algorithmic Enhancements
The vanilla configuration of CEGAR– running a complete
policy predicate abstraction from scratch in every iteration
– is wasteful in at least two respects, that we address with
algorithmic enhancements in our tool implementation.

Heuristic Search. Within CEGAR, policy predicate ab-
straction can stop as soon as the first unsafe abstract path is
found. We hence employ heuristic search to find such paths

15192

quickly. This requires a heuristic function h mapping ab-
stract states sP to an estimate h(sP) of the distance to ϕu in
Θπ

P . We have so far instantiated this as follows:
Definition 5 (Hamming Distance). Let P0

u = {p ∈ P |
ϕu ⊢ ¬p} and P1

u = {p ∈ P | ϕu ⊢ p}. The ham-
ming distance of abstract state sP ∈ SP is hd(sP) =∣∣{p ∈ P0

u | sP(p) = 1}
∣∣+ ∣∣{p ∈ P1

u | sP(p) = 0}
∣∣.

This heuristic function hd counts the number of predi-
cates for which sP differs from the truth value entailed by
the unsafety condition ϕu. We use hd in a standard greedy
best-first search (which expands search nodes by order of
increasing heuristic value). As our experiments show, this
simple method often improves performance drastically.

We remark that, although this idea is very natural, we are
not aware of prior work using heuristic search in CEGAR
for verification purposes.

Incremental Computation of Θπ
P . An enhancement that

has previously been explored in CEGAR is incremental
computation (e.g., (Henzinger et al. 2002)). Rather than
starting from scratch, we can reuse the transition informa-
tion of already computed coarser abstractions:
Proposition 6. Given predicate sets P ⊆ P ′ and abstract
states sP ⊆ sP′ , s′P ⊆ s′P′ then:
1. (sP′ , l, s′P′) /∈ T π

P′ , if (sP , l, s′P) /∈ T π
P .

2. (sP′ , l, s′P′) ∈ T π
P′ , if (sP , l, s

′
P) ∈ T π

P with witness
(sw, l, s

′) ∈ T π such that sw ∈ [sP′] and s′ ∈ [s′P′].
Due to (1.), we can skip checks for abstract transitions not

possible in coarser abstractions. Due to (2.), we can reuse the
transition witnesses computed in coarser abstractions.

7 Experiments
We implemented our CEGAR approach on top of Vea22’s
C++ code base. We fix Vea22’s best-performing configura-
tion of policy predicate abstraction. For the standard spuri-
ousness check (Algorithm 1, line 2) we query Z3 (de Moura
and Bjørner 2008). 2 All experiments were run on machines
with Intel Xenon E5- 2650 processors at 2.2 GHz, with time
and memory limits of 12 h and 4 GB. We next describe the
experiments setup, then summarize our results.

7.1 Experiments Setup
CEGAR Configurations. Witness splitting is denoted
WS, concretization exclusion CE. To provide an ablation
study, we also run WS (which tends to perform best) without
heuristic search in hd -WS, and without incremental compu-
tation in inc-WS. All configurations start with P = ∅.

Competitors in NUXMV. We compare against a broad
range of state-of-the-art verification methods implemented
in NUXMV (Cavada et al. 2014), by encoding the neural pol-
icy π into constraints in NUXMV’s input language. A de-
scription of the encoding is available in the online TR. We
experiment with: bounded model checking (BMC) (Biere
et al. 1999) and simple bounded model checking (SBMC)

2Our tool (and all experiments) are publicly available (https:
//fai.cs.uni-saarland.de/vinzent/downloads/aaai23.zip) .

(Biere et al. 2006), both using SMT instead of SAT; implicit
predicate abstraction (IPA) (Tonetta 2009), running BMC
with k-induction (Sheeran, Singh, and Stålmarck 2000)
within a CEGAR loop; explicit predicate abstraction within
a CEGAR loop (EPA); an SMT-based cone of influence
(COI) algorithm, a form of CEGAR over projections onto
iteratively larger variable subsets (see, e.g., (Clarke, Grum-
berg, and Peled 2001)); as well as NUXMV’s IC3 (Cimatti
and Griggio 2012). Except for BMC, all these algorithms are
complete, i.e., can prove safety.

Benchmarks. We use Vea22’s benchmarks, except for
Racetrack which has a polynomial-size state space and is
easily tackled by naı̈ve explicit enumeration. To give a brief
overview, the benchmarks are variants of the planning do-
mains Blocksworld, SlidingTiles and Transport. In the for-
mer two domains, actions moving a block/tile x may prob-
abilistically fail, in which case the cost of moving x (rep-
resented by a state variable) is incremented. These proba-
bilistic transitions (over which the policy is learned) are ab-
stracted into non-deterministic ones for the purpose of veri-
fication, amounting to a worst-case analysis. In all domains,
the start conditions impose a partial order on the block/tile
positions. In Blocksworld, a state is unsafe if the number
of blocks on the table exceeds a fixed limit. In SlidingTiles,
unsafe states are specified in terms of a set of unsafe tile
positions. In Transport, a truck must deliver packages while
safely crossing a bridge with limited capacity.

For each domain instance, there are three NN policies
trained by Vea22 using Q-learning (Mnih et al. 2015), each
with 2 hidden layers of size 16, 32, respectively 64. On
Blocksworld and SlidingTiles, there are policies that do, and
ones that do not, take move costs into account.

7.2 Experiments Results
Table 1 shows our results. The conclusions are:

CE vs. WS. For policy-induced spuriousness, WS is gen-
erally the better refinement method than CE. While CE out-
performs WS on 11 problem instances, this pertains to eas-
ier instances and WS scales up further (solving 3 more in-
stances). This makes sense as the rather aggressive refine-
ment strategy pursued by CE is feasible only on smaller
instances, where it terminates more quickly than the more
cautious strategy taken by WS.

Ablation Study. Heuristic search improves performance
drastically, often by orders of magitude. WS succeeds in 7
more instances than hd -WS, outperforming it on all bench-
marks except Transport. The impact of incremental com-
putation is less drastic, but it nevertheless helps, with WS
having better runtime than inc-WS in 17 cases, albeit of-
ten to small extents. We remark that the impact is much
higher when not using heuristic search, i.e., that enhance-
ment somewhat overshadows incremental computation.

Comparison against the state of the art in NUXMV. Our
key result is that our approach tends to outperform the (non-
NN-tailored) state of the art in NUXMV. In particular, ours
is the only approach in our experiments that succeeds in

15193

Benchmark NN Safe CEGAR Configurations NUXMV Configurations WS
WS hd -WS inc-WS CE BMC SBMC IPA COI |σ| |P | # It. π-It.

16 ✓ 8.6 12.6 10.9 4.1 - - - - 19 10 3
4 Blocks 32 ✓ 13.4 22.3 14.2 6.9 - - - - 20 9 3
(cost-ignoring) 64 ✓ 81.9 310.4 112.5 53.5 - - - - 20 10 2

16 ✓ 255.3 959.5 302.7 360.0 - - - - 40 23 4
6 Blocks 32 ✓ 280.7 3659.5 337.2 208.6 - - - - 38 18 5
(cost-ignoring) 64 ✓ 5934.2 - 8929.9 1147.8 - - - - 34 19 7

16 ✓ 29155.7 - 20036.0 31234.4 - - - - 64 32 7
8 Blocks 32 ? - - - - - - - - 63 36 4
(cost-ignoring) 64 ? - - - - - - - - 14 5 1

16 × 280.5 3936.3 300.9 221.5 16.5 38.0 - 26.6 2 50 26 18
8 Puzzle 32 ✓ 39868.1 - 42098.4 31168.2 - - - - 123 72 14
(cost-ignoring) 64 ✓ 42285.7 - 42813.3 - - - - - 128 66 12

16 ✓ 370.4 442.6 378.8 88.5 - - - - 26 11 4
4 Blocks 32 ✓ 604.2 827.5 5041.1 599.1 - - - - 26 11 5
(cost-aware) 64 ✓ 25081.5 - 25893.1 - - - - - 29 10 4

16 ✓ 2413.2 - 2524.1 27314.0 - - - - 42 21 6
6 Blocks 32 ✓ 1323.7 8650.9 1344.6 - - - - - 42 17 5
(cost-aware) 64 ? - - - - - - - - 26 6 2

16 × 169.2 28756.8 207.5 10.0 11.1 7.8 1052.5 25.1 2 63 13 8
8 Blocks 32 ? - - - - - - - - 63 20 8
(cost-aware) 64 ? - - - - - - - - 21 4 1

16 × 8039.2 - 9342.9 7383.4 4609.7 811.4 - 2740.9 4 87 30 15
8 Puzzle 32 ? - - - - - - - - 86 34 13
(cost-aware) 64 ? - - - - - - - - 79 25 11

16 × 1.3 1.2 1.2 335.4 245.7 2283.0 - 2194.4 1 16 4 3
Transport 32 × 63.7 68.0 67.4 360.7 1500.1 38549.0 - 43190.1 1 39 22 20

64 × 1.4 1.4 1.4 608.6 - 15.7 - 112.0 1 12 3 2

Table 1: Runtime results in seconds for the evaluated CEGAR configurations (WS, hd -WS, inc-WS, CE) and NUXMV competi-
tors (BMC, SBMC, IPA, COI) over different benchmarks and NN policies (distinguishing cost-aware policies and cost-ignoring
policies where applicable). The NUXMV competitors IC3 and EPA did not terminate for any instance and are therefore omitted.
- indicates timeouts (exceeding the 12h time limit). For WS we additionally provide the length of the unsafe path |σ| (if found),
the size of the final predicate set (|P|), the number of CEGAR iterations (# It.) and the number of iterations with π-spuriousness
refinement (π-It.). |σ| agrees with the unsafe path lengths of all NUXMV competitors.

proving policies safe. Although all NUXMV algorithms ex-
cept BMC can prove safety in principle, they never succeed
in doing so here. On the 6 problem instances shown to be un-
safe, the picture is more mixed. On 3 of these, at least one of
the NUXMV competitors is faster than our approach, by 1-2
orders of magnitude. In Transport though, our methods are 2
orders of magnitude faster than the best NUXMV competitor
BMC (we remark that the length of the unsafe paths here is
small – all tools find paths of the same length as specified for
WS in column |σ|). NUXMV IC3 and CEGAR do not termi-
nate for any instance at all. The bad performance of EPA and
IPA indicates strongly that non-NN-tailored CEGAR tech-
niques are not feasible for neural policy verification.

CEGAR statistics for WS. On the right-hand side of Ta-
ble 1, we shed some light on the scale of predicate sets
and CEGAR processes (data shown for non-terminated runs
is the largest number reached). As one would expect, the
final number of predicates is typically correlated with in-
stance scale (low numbers for non-terminated runs are due to
slow progress). The data also indicates a current scalability
limit around 80 predicates, though there are exceptions. The
number of CEGAR iterations behaves similarly. Standard
transition-spuriousness refinement dominates, which makes

sense when starting from P = ∅ where a sensible abstrac-
tion must be built up in the first place. In Transport though,
almost all refinement steps pertain to π-spuriousness. Pre-
sumably this is due to repeated iterations to find the correct
start state of the final non-π-spurious unsafe path.

8 Conclusion
The verification of neural network behavior is important.
Here we contribute a CEGAR method dealing with the new
source of spuriousness induced by policy decisions, thus
fully automating verification via policy predicate abstrac-
tion. Our experimental results are highly encouraging, vastly
outperforming non-NN-tailored state-of-the-art algorithms
in the ability to prove safety on a collection of benchmarks.

The sky is the limit for further extensions of this ap-
proach. One should be able to obtain much better heuristic
functions, and partial safety verification is possible by con-
tinuing CEGAR on instances already proved to be unsafe.
Probabilistic transition systems, infinite transition systems,
continuous-state transition systems can all in principle be
handled. A major step will be to support more advanced NN
structures such as graph neural networks (Toyer et al. 2020;
Stahlberg, Bonet, and Geffner 2022).

15194

Acknowledgments
This work was funded by DFG Grant 389792660 as part of
TRR 248 – CPEC (https://perspicuous-computing.science).
This work has received funding from the European Union’s
Horizon Europe Research and Innovation program under the
grant agreement TUPLES No 101070149.

References
Akintunde, M.; Lomuscio, A.; Maganti, L.; and Pirovano, E.
2018. Reachability Analysis for Neural Agent-Environment
Systems. In Thielscher, M.; Toni, F.; and Wolter, F., eds.,
Principles of Knowledge Representation and Reasoning:
Proceedings of the Sixteenth International Conference, KR
2018, Tempe, Arizona 30 October - 2 November 2018, 184–
193. AAAI Press.
Akintunde, M. E.; Kevorchian, A.; Lomuscio, A.; and
Pirovano, E. 2019. Verification of RNN-Based Neural
Agent-Environment Systems. In The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii USA, January 27 - February 1, 2019,
6006–6013. AAAI Press.
Amir, G.; Schapira, M.; and Katz, G. 2021. Towards Scal-
able Verification of Deep Reinforcement Learning. In For-
mal Methods in Computer Aided Design, FMCAD 2021,
New Haven, CT, USA, October 19-22, 2021, 193–203. IEEE.
Ball, T.; Majumdar, R.; Millstein, T. D.; and Rajamani, S. K.
2001. Automatic Predicate Abstraction of C Programs. In
Burke, M.; and Soffa, M. L., eds., Proceedings of the 2001
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), Snowbird, Utah, USA,
June 20-22, 2001, 203–213. ACM.
Barrett, C. W.; and Tinelli, C. 2018. Satisfiability Modulo
Theories. In Clarke, E. M.; Henzinger, T. A.; Veith, H.; and
Bloem, R., eds., Handbook of Model Checking, 305–343.
Springer.
Biere, A.; Cimatti, A.; Clarke, E. M.; and Zhu, Y. 1999.
Symbolic Model Checking without BDDs. In Cleaveland,
R., ed., Tools and Algorithms for Construction and Anal-
ysis of Systems, 5th International Conference, TACAS ’99,
Held as Part of the European Joint Conferences on the The-
ory and Practice of Software, ETAPS’99 Amsterdam, The
Netherlands, March 22-28, 1999, Proceedings, volume 1579
of LNCS, 193–207. Springer.
Biere, A.; Heljanko, K.; Junttila, T. A.; Latvala, T.; and
Schuppan, V. 2006. Linear Encodings of Bounded LTL
Model Checking. Log. Methods Comput. Sci., 2(5).
Cavada, R.; Cimatti, A.; Dorigatti, M.; Griggio, A.; Mari-
otti, A.; Micheli, A.; Mover, S.; Roveri, M.; and Tonetta,
S. 2014. The nuXmv Symbolic Model Checker. In Biere,
A.; and Bloem, R., eds., Computer Aided Verification - 26th
International Conference, CAV 2014, Held as Part of the
Vienna Summer of Logic, VSL 2014, Vienna, Austria, July
18-22, 2014. Proceedings, volume 8559 of LNCS, 334–342.
Springer.

Cimatti, A.; and Griggio, A. 2012. Software Model Check-
ing via IC3. In Madhusudan, P.; and Seshia, S. A., eds.,
Computer Aided Verification - 24th International Confer-
ence, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Pro-
ceedings, volume 7358 of LNCS, 277–293. Springer.
Clarke, E.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H. 2003.
Counterexample-guided abstraction refinement for symbolic
model checking. JACM, 50(5): 752–794.
Clarke, E. M.; Grumberg, O.; and Peled, D. A. 2001. Model
checking, 1st Edition. MIT Press.
de Moura, L.; and Bjørner, N. 2008. Z3: An Efficient SMT
Solver. In Ramakrishnan, C. R.; and Rehof, J., eds., Tools
and Algorithms for the Construction and Analysis of Sys-
tems, 14th International Conference, TACAS 2008, Held as
Part of the Joint European Conferences on Theory and Prac-
tice of Software, ETAPS 2008 Budapest, Hungary, March
29-April 6, 2008. Proceedings, volume 4963 of LNCS, 337–
340. Springer.
Dutta, S.; Chen, X.; and Sankaranarayanan, S. 2019. Reach-
ability analysis for neural feedback systems using regressive
polynomial rule inference. In Ozay, N.; and Prabhakar, P.,
eds., Proceedings of the 22nd ACM International Confer-
ence on Hybrid Systems: Computation and Control, HSCC
2019, Montreal, QC, Canada, April 16-18, 2019, 157–168.
ACM.
Garg, S.; Bajpai, A.; and Mausam. 2019. Size Independent
Neural Transfer for RDDL Planning. In Benton, J.; Lipovet-
zky, N.; Onaindia, E.; Smith, D. E.; and Srivastava, S.,
eds., Proceedings of the Twenty-Ninth International Confer-
ence on Automated Planning and Scheduling, ICAPS 2018,
Berkeley, CA, USA, July 11-15 2019, 631–636. AAAI Press.
Graf, S.; and Saı̈di, H. 1997. Construction of Abstract
State Graphs with PVS. In Grumberg, O., ed., Computer
Aided Verification, 9th International Conference, CAV ’97,
Haifa, Israel, June 22-25, 1997, Proceedings, volume 1254
of LNCS, 72–83. Springer.
Groshev, E.; Goldstein, M.; Tamar, A.; Srivastava, S.; and
Abbeel, P. 2018. Learning Generalized Reactive Policies
Using Deep Neural Networks. In de Weerdt, M.; Koenig,
S.; Röger, G.; and Spaan, M. T. J., eds., Proceedings of
the Twenty-Eighth International Conference on Automated
Planning and Scheduling, ICAPS 2018, Delft, The Nether-
lands, June 24-29, 2018, 408–416. AAAI Press.
Gupta, A.; and Strichman, O. 2005. Abstraction Refinement
for Bounded Model Checking. In Etessami, K.; and Raja-
mani, S. K., eds., Computer Aided Verification, 17th Inter-
national Conference, CAV 2005, Edinburgh, Scotland, UK,
July 6-10, 2005, Proceedings, volume 3576 of LNCS, 112–
124. Springer.
Henzinger, T. A.; Jhala, R.; Majumdar, R.; and McMillan,
K. L. 2004. Abstractions from proofs. In Jones, N. D.; and
Leroy, X., eds., Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2004, Venice, Italy, January 14-16, 2004,
232–244. ACM.
Henzinger, T. A.; Jhala, R.; Majumdar, R.; and Sutre, G.
2002. Lazy abstraction. In Launchbury, J.; and Mitchell,

15195

J. C., eds., Conference Record of POPL 2002: The 29th
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, Portland, OR, USA, January 16-18, 2002,
58–70. ACM.
Huang, S.; Fan, J.; Li, W.; Chen, X.; and Zhu, Q. 2019.
ReachNN: Reachability analysis of neural-network con-
trolled systems. ACM Trans. Embed. Comput. Syst., 18(5s):
106:1–106:22.
Issakkimuthu, M.; Fern, A.; and Tadepalli, P. 2018. Training
Deep Reactive Policies for Probabilistic Planning Problems.
In de Weerdt, M.; Koenig, S.; Röger, G.; and Spaan, M.
T. J., eds., Proceedings of the Twenty-Eighth International
Conference on Automated Planning and Scheduling, ICAPS
2018, Delft, The Netherlands, June 24-29, 2018, 422–430.
AAAI Press.
Ivanov, R.; Carpenter, T. J.; Weimer, J.; Alur, R.; Pappas,
G. J.; and Lee, I. 2021. Verifying the Safety of Autonomous
Systems with Neural Network Controllers. ACM Trans. Em-
bed. Comput. Syst., 20(1): 7:1–7:26.
Katz, G.; Huang, D. A.; Ibeling, D.; Julian, K.; Lazarus,
C.; Lim, R.; Shah, P.; Thakoor, S.; Wu, H.; Zeljic, A.;
Dill, D. L.; Kochenderfer, M.; and Barrett, C. 2019. The
Marabou Framework for Verification and Analysis of Deep
Neural Networks. In Dillig, I.; and Tasiran, S., eds., Com-
puter Aided Verification - 31st International Conference,
CAV 2019, New York City, NY, USA, July 15-18, 2019, Pro-
ceedings, Part I, volume 11561 of LNCS, 443–452. Springer.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M. A.; Fidje-
land, A.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nat., 518(7540): 529–533.
Podelski, A.; and Rybalchenko, A. 2007. ARMC: The Log-
ical Choice for Software Model Checking with Abstraction
Refinement. In Hanus, M., ed., Practical Aspects of Declar-
ative Languages, 9th International Symposium, PADL 2007,
Nice, France, January 14-15, 2007, volume 4354 of LNCS,
245–259. Springer.
Sheeran, M.; Singh, S.; and Stålmarck, G. 2000. Check-
ing Safety Properties Using Induction and a SAT-Solver. In
Jr., W. A. H.; and Johnson, S. D., eds., Formal Methods
in Computer-Aided Design, Third International Conference,
FMCAD 2000, Austin, Texas, USA, November 1-3, 2000,
Proceedings, volume 1954 of LNCS, 108–125. Springer.
Stahlberg, S.; Bonet, B.; and Geffner, H. 2022. Learning
General Optimal Policies with Graph Neural Networks: Ex-
pressive Power, Transparency, and Limits. In Kumar, A.;
Thiébaux, S.; Varakantham, P.; and Yeoh, W., eds., Proceed-
ings of the Thirty-Second International Conference on Au-
tomated Planning and Scheduling, ICAPS 2022, Singapore
(virtual), June 13-24 2022, 629–637. AAAI Press.
Sun, X.; Khedr, H.; and Shoukry, Y. 2019. Formal Verifi-
cation of Neural Network Controlled Autonomous Systems.
In Ozay, N.; and Prabhakar, P., eds., Proceedings of the 22nd
ACM International Conference on Hybrid Systems: Com-

putation and Control, HSCC 2019, Montreal, QC, Canada,
April 16-18, 2019, 147–156. ACM.
Tonetta, S. 2009. Abstract Model Checking without Com-
puting the Abstraction. In Cavalcanti, A.; and Dams, D.,
eds., FM 2009: Formal Methods, Second World Congress,
Eindhoven, The Netherlands, November 2-6, 2009. Proceed-
ings, volume 5850 of LNCS, 89–105. Springer.
Toyer, S.; Thiébaux, S.; Trevizan, F. W.; and Xie, L. 2020.
ASNets: Deep Learning for Generalised Planning. JAIR, 68:
1–68.
Tran, H.; Cai, F.; Lopez, D. M.; Musau, P.; Johnson, T. T.;
and Koutsoukos, X. D. 2019. Safety Verification of Cyber-
Physical Systems with Reinforcement Learning Control.
ACM Trans. Embed. Comput. Syst., 18(5s): 105:1–105:22.
Vinzent, M.; Steinmetz, M.; and Hoffmann, J. 2022. Neural
Network Action Policy Verification via Predicate Abstrac-
tion. In Kumar, A.; Thiébaux, S.; Varakantham, P.; and
Yeoh, W., eds., Proceedings of the Thirty-Second Interna-
tional Conference on Automated Planning and Scheduling,
ICAPS 2022, Singapore (virtual), June 13-24 2022. AAAI
Press.

15196

