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Abstract

Nowadays, systems based on machine learning (ML) are
widely used in different domains. Given their popularity, ML
models have become targets for various attacks. As a result,
research at the intersection of security/privacy and ML has
flourished. Typically such work has focused on individual
types of security/privacy concerns and mitigations thereof.
However, in real-life deployments, an ML model will need to
be protected against several concerns simultaneously. A pro-
tection mechanism optimal for a specific security or privacy
concern may interact negatively with mechanisms intended
to address other concerns. Despite its practical relevance, the
potential for such conflicts has not been studied adequately.
In this work, we first provide a framework for analyzing such
conflicting interactions. We then focus on systematically ana-
lyzing pairwise interactions between protection mechanisms
for one concern, model and data ownership verification, with
two other classes of ML protection mechanisms: differentially
private training, and robustness against model evasion. We
find that several pairwise interactions result in conflicts.
We also explore potential approaches for avoiding such con-
flicts. First, we study the effect of hyperparameter relax-
ations, finding that there is no sweet spot balancing the per-
formance of both protection mechanisms. Second, we explore
whether modifying one type of protection mechanism (own-
ership verification) so as to decouple it from factors that may
be impacted by a conflicting mechanism (differentially pri-
vate training or robustness to model evasion) can avoid con-
flict. We show that this approach can indeed avoid the conflict
between ownership verification mechanisms when combined
with differentially private training, but has no effect on ro-
bustness to model evasion. We conclude by identifying the
gaps in the landscape of studying interactions between other
types of ML protection mechanisms.

1 Introduction
Machine learning (ML) models constitute valuable intellec-
tual property. They are also increasingly deployed in risk-
sensitive domains. As a result, various security and privacy
requirements for ML model deployment have become ap-
parent. This, in turn, has led to substantial recent research
at the intersection of machine learning and security/privacy.
The research community largely focuses on individual types
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of security/privacy threats and ways to defend against them.
This facilitates iterative improvements, and allows practi-
tioners to evaluate the benefit of any new approaches.

In this work, we argue that in realistic deployment setting,
multiple security/privacy concerns need to be considered si-
multaneously. Therefore, any protection mechanism for a
particular concern, needs to be tested together with defences
against other common concerns. We show that when de-
ployed together, ML protection mechanisms may not work
as intended due to conflicting interactions among them.

We claim the following contributions:
1) We highlight the importance of understanding conflict-

ing interactions among ML protection mechanisms, and
provide a framework for studying it (Section 3).

2) We use our framework to analyse the interaction between
model ownership verification mechanisms with two other
types of protection mechanisms: differentially private
training and adversarial training. We provide a theoret-
ical justification (Section 4) for each potential pairwise
conflict, and evaluate it empirically (Sections 5 and 6).

3) We explore whether conflicts can be avoided by changing
(a) the hyperparameters of each protection mechanism,
or (b) the design of the mechanism itself (Section 7).

2 Background
2.1 Machine Learning
The goal of a ML classification model FV trained on some
dataset DTR is to perform well on the given classification
task according to some metric ϕ measured on a test set DTE.
The whole dataset is denoted as D = {DTR,DTE}. An indi-
vidual record consists of an input x and the corresponding
label y. Throughout this work, we use the accuracy metric
ϕACC(FV ,DTE) to assess a model FV using DTE:

ϕACC(FV ,DTE) =
1

|DTE|
∑

x∈DTE

1(F̂V(x) = y). (1)

where FV(x) is the full probability vector and F̂V(x) is
the most likely class.

2.2 Ownership Verification
In a white-box model stealing attack an adversary A ob-
tains an identical copy of FV belonging to a victim V ,
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e.g., by breaking into a device, or bribing an employee.
Watermarking can be used to deter white-box model steal-
ing (Zhang et al. 2018; Adi et al. 2018; Uchida et al. 2017;
Darvish Rouhani, Chen, and Koushanfar 2019).

On the other hand, in black-box model extraction at-
tacks (Papernot et al. 2017; Juuti et al. 2019; Orekondy,
Schiele, and Fritz 2019; Tramèr et al. 2016; Correia-Silva
et al. 2018; Jagielski et al. 2020; Carlini, Jagielski, and
Mironov 2020; Pal et al. 2019; ?), A “steals” FV by send-
ing queries, recording responses, and using them to train a
surrogate model FA.

Model extraction defences try to either detect (Juuti et al.
2019; Atli et al. 2020; Quiring, Arp, and Rieck 2018) or slow
down (Orekondy, Schiele, and Fritz 2020; Dziedzic et al.
2022; Lee et al. 2018) the attack but cannot prevent it. Ad-
versarial watermarking (Szyller et al. 2021) can deter extrac-
tion attacks by forcing a watermark into FA, or by ensuring
that a watermark transfers from FV to FA (Jia et al. 2021).
Backdoor watermarking (Zhang et al. 2017; Adi et al.
2018; Szyller et al. 2021) (WM) allows V to embed an out-
of-distribution watermark (“trigger set”) DT during training.
DT is chosen so that it does not interfere with the primary
learning task, and is difficult to discover. Effectiveness of
watermarks can be assessed via the accuracy of FV on DT:

ϕWM(FV ,DT) =
1

|DT|
∑
x∈DT

1(F̂V(x) = y). (2)

For FV with m classes, the verification confidence
is (Szyller et al. 2021):

V =

⌊e×|DT|⌋∑
i=0

(
|DT|
i

)
×
(
m− 1

m

)i

×
(

1

m

)|DT|−i

(3)

where e = 1 − ϕWM(FV ,DT) is the tolerated error rate for
V . If V suspects a model FA to be a copy of FV , it can query
FA with DT to verify ownership.
Radioactive data (Sablayrolles et al. 2020) (RADDATA)
is a dataset watermarking technique allowing V to identify
models trained using their datasets. RADDATA embeds im-
perceptible perturbations in a subset of the training images
xϕ = x + ϕ which constitute a watermark DRAD. The per-
turbations are crafted iteratively using an optimization pro-
cedure similar to adversarial example search. Its goal is to
align the images with a particular part of the manifold. In-
tuitively, DRAD is more difficult to train on than the (clean)
counterpart, and subsequently, more difficult to classify cor-
rectly with high confidence. Hence, any model trained on
DRAD would perform better on it.

The effectiveness of RADDATA can be measured us-
ing a white-box approach based on hypothesis testing or
a black-box based on the loss difference. In this work, we
use the black-box approach as it performs better in the orig-
inal work (Tekgul and Asokan 2022). For a loss function
L(FV(x), y) the black-box verification metric is defined as:

ϕRAD(FV ,DRAD) =
1

|DRAD|
×

×
∑

{x,xϕ}∈DRAD

1(L(FV(x), y)− L(FV(xϕ), y)) (4)

ϕRAD > 0 indicates that that FV was trained on DRAD.
The higher the value, the more confident the verification.
Dataset inference (Maini, Yaghini, and Papernot 2021) (DI)
is a model fingerprinting technique. It assumes that FV was
trained on a private training dataset. It exploits the fact that
an FA extracted from FV would learn similar features as FV .

To create the fingerprint, V extracts the feature embed-
dings from FV that characterise their prediction margin us-
ing several distance metrics. The embeddings for DTR and
DTE are used to train a distinguisher. During verification,
V queries FA with a subset of DTR, Dver ⊂ DTR. FA is
deemed stolen if the distances are similar to FV with suffi-
cient confidence, under a hypothesis test. The verification is
successful if the p-value (ϕDI) is below a certain threshold.

The embeddings can be obtained using a white-box tech-
nique (MinGD) or a black-box one (Blind Walk). In this
work, we use Blind Walk approach as it performs better in
the original work. The success of DI (ϕDI) is measured by
comparing the embeddings using a hypothesis test. Distin-
guishable embeddings indicate that the model is stolen.

2.3 Model Evasion
In a model evasion attack (Biggio et al. 2013; Szegedy
et al. 2014), an adversary A aims to craft an adversarial
example xγ = x + γ such that it is misclassified by FV ,
F̂V(x) ̸= F̂V(xγ). Typically, the attack is restricted to pro-
duce inputs that are within γ distance (according to some
distance measure, typically L2 or L∞) from the originals.

Adversarial training (ADVTR) is designed to provide ro-
bustness against adversarial examples. During training, each
clean sample x is replaced with an adversarial example xγ .
Robustness can be measured by calculating the accuracy of
the model on the adversarial test set:

ϕADV(FV ,DTE) =
1

|DTE|
∑

x∈DTE

1(F̂V(x+ γ) = y). (5)

ADVTR is successful if ϕADV is high (ideally the same as
ϕACC), and ϕACC does not deteriorate.

There exist many techniques for crafting adversarial ex-
amples that in turn can be used in ADVTR. We use projected
gradient descent (Madry et al. 2017) (PGD) a popular opti-
mization technique for crafting adversarial examples.

2.4 Differential Privacy
Differential privacy (Dwork 2006) (DP) bounds A’s capa-
bility to infer information about any individual record in
DTR. The learning algorithm A satisfies (ϵ, δ)-differential
privacy if for any two datasets D, D′ that differ in one
record, and any set of models Q:

Pr[A(D) ∈ Q] ≤ eϵPr[A(D′) ∈ Q] + δ (6)

ϵ corresponds to the privacy budget, and δ is the probabil-
ity mass for events where the privacy loss is larger than eϵ.
Together, these two can be considered as ϕDP.

In this work, we use the most popular algorithm for dif-
ferentially private training DPSGD (Abadi et al. 2016).
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3 Problem Statement
The efficacy of a ML protection mechanism M with hyper-
parameters θM is measured by an associated metric ϕM .
Many ML protection mechanisms tend to decrease ϕACC.
Therefore, the goal of a mechanism is to maximise both ϕM

and ϕACC. An individual instantiation m of M applied to the
model F , m(F, θM ), seeks to maximise both ϕM and ϕACC:

m∗ = argmax
m

{ϕM (m(F, θM ), ·), ϕACC(m(F, θM ), ·)}
(7)

Consequently, the instantiation is effective iff.:
1. the difference, ∆ϕM

= |ϕM (F ) − ϕM (m(F, θM ))|, for
a given metric is above a threshold tϕM

: ∆ϕM
> tϕM

.
2. the difference, ∆ϕACC = |ϕACC(F ) − ϕACC(m(F, θM ))|,

is below a threshold tϕACC : ∆ϕACC < tϕACC .
For instance, V may find that ADVTR with ∆ϕADV < 0.3 and
∆ϕACC > 0.2 is unacceptable. In reality, acceptable thresh-
olds are application- and deployment-specific.

We can extend this to a combination of mechanisms C =
{M1,M2, . . . ,Mn}. A combination c of multiple individ-
ual instantiations {m1,m2, . . . ,mn} applied to F , c(F, θ)
where θ = {θM1

, θM2
, . . . , θMn

} is effective iff. all metrics
ϕM1,M2,...,Mn

and ϕACC are sufficiently high:

c∗ = argmax
c={m1,m2,...,mn}

{ϕM1
(c(F, θ), ·),

ϕM2
(c(F, θ), ·),

. . .

ϕMn(c(F, θ), ·),
ϕACC(c(F, θ), ·)} (8)

In other words, the combination is effective iff. all ∆ϕM
∈

{∆ϕM1
,∆ϕM2

, . . . ,∆ϕMn
} are below their corresponding

thresholds, and ∆ϕACC < tϕACC . Unlike for a single mech-
anism, here, ∆M is calculated with c applied: ∆ϕ =
|ϕ(m(F, θM ), ·)− ϕ(c(F, θ), ·)|.

Given a pair of mechanisms CM1,M2
= {M1,M2}, our

goal is to determine if there exists an effective combination
of instantiations cm1,m2 such that ∆ϕM1

< tϕM1
, ∆ϕM2

<
tϕM2

and ∆ϕACC < tϕACC . Subsequently, a pair is in conflict
if any of these three inequalities does not hold. For a single
mechanism, its threshold denotes required gain; while for a
combination it corresponds to a maximum decrease.

Crucially, for a given pair CM1,M2
, both ϕM s have an up-

per bound: ϕM (c(F, θ), ·) ≤ ϕM (m(F, θM ), ·); and simi-
larly, ϕACC has an upper bound:

ϕACC(c(F, θ)) ≤ min(ϕACC(m1(F, θM1
), ·),

ϕACC(m2(F, θM2
), ·)) (9)

Choosing thresholds. In this work, we use the following
thresholds to decide if a combination of mechanisms is inef-
fective: ∆ϕACC > 10pp, or: 1) WM: ∆ϕWM > 30pp; 2) AD-
VTR: ∆ϕADV > 10pp; 3) DI: ϕDI > 10−3; 4) RADDATA:
ϕRAD < 10−2;

Note that DPSGD has a tight bound for the given
(ϵ, δ) (Nasr et al. 2021). However, we consider increasing
ϵ × 1.5 too permissive for the purpose of the changes dis-
cussed in Section 7.

4 Conflicting Interactions
We consider pair-wise interactions between protection
mechanisms that allow for ownership verification {WM, DI,
RADDATA } and techniques based on strong regularisers
{ADVTR, DPSGD }. We first explain why a given pair may
conflict. In Section 6 we verify our hypotheses empirically.

4.1 Pair-wise Conflicts
DPSGD with WM. WM relies on overfitting FV to the trig-
ger set DT (memorisation) while simultaneously trying to
learn the primary dataset DTR. In turn, the gradient norm of
DT is high which is necessary to provide sufficient signal.
On the other hand, DPSGD relies on two primary mecha-
nisms that limit the contribution of individual samples: 1)
clipping and 2) adding noise to the gradients. These induce
strong regularization on DTR. Hence, these two techniques
impose contradictory objectives for the training to optimize
for. Therefore, we conjecture that they conflict.
ADVTR with WM. ADVTR provides a strong regularising
property to the model that typically results in a decrease in
ϕACC for non-trivial values of γ. Similarly to the interaction
with DPSGD, we suspect that the regularization induced by
ADVTR will harm the embedding of DT. Furthermore, DT
introduces pockets of OOD data, and it was shown that DT
is indistinguishable from DTR in the final layer (Szyller et al.
2021). These may make finding adversarial examples easier.
DPSGD or ADVTR with DI. DI relies on the fact that
FA derived from FV has similar decision boundaries. Be-
cause DPSGD limits the contribution of individual samples
at the gradient level, the decision boundaries of FV trained
with and without it may differ. ADVTR changes the decision
boundary around training records, and may conflict with DI.
ADVTR with RADDATA. RADDATA relies on the opti-
mization procedure that is similar to finding adversarial ex-
amples. Hence, we expect ADVTR to prevent DRAD from
being embedded. It is unclear if the presence of DRAD is go-
ing to negatively impact ϕADV.
DPSGD with RADDATA. Like WM, RADDATA requires
embedding information that differs from DTR. We expect
DPSGD to limit the contribution of DRAD and decrease, or
invalidate ϕRAD.

4.2 Result Significance
For all experiments we measure the statistical significance
of the result. We test ϕACC, and then each ϕM separately.
We first conduct a t-test under the null hypothesis H0 of
equivalent population distributions with α = 0.05. Next, if
H0 is rejected, we conduct a two one-sided test to see if the
result falls within the equivalence bounds (for which we use
the abovementioned thresholds). Here, the null hypothesis
H∗

0 is reversed and we assume non-equivalence, α∗ = 0.05.
H∗

0 is rejected if the results fall within the bound. For both,
we use Welch’s t-test since sample variances are unequal.

5 Experimental Setup
Datasets. we use three benchmark datasets for our evalu-
ation. MNIST (LeCun, Cortes, and Burges 2010) contains
60, 000 train and 10, 000 test grayscale images of digits.
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Dataset |DTR| |DTE| Arch. LR. Epochs
MNIST 50k 10k 4L-CNN 0.001 25/100

FMNIST 60k 10k 4L-CNN 0.001 25/100
CIFAR10 50k 10k RN20 0.005 100/200
GTSRB ≈ 40k ≈ 13k - - -

Table 1: Datasets, model architecture (Arch.), and training
learning rate (LR.); number of epochs reported as: baseline
(unprotected)/protected.

The corresponding label is the digit presented in the image.
FashionMNIST (Xiao, Rasul, and Vollgraf 2017) (FMNIST)
contains 60, 000 train and 10, 000 test grayscale images of
articles of clothing, divided into 10 classes. The correspond-
ing label is the piece of clothing presented in the image. CI-
FAR10 (Krizhevsky and Hinton 2009) contains 50, 000 train
and 10, 000 test RGB images which depict miscellaneous
animals or vehicles, divided into 10 classes.

For MNIST and FMNIST, we use each as the out-of-
distribution dataset from which watermarks for the other are
drawn. For CIFAR10, we follow prior work (Szyller et al.
2021) in using GTSRB (Stallkamp et al. 2011) as the source
of out-of-distribution watermarks. GTSRB is a traffic sign
dataset that contain 39, 209 train and 12, 630 test RGB im-
ages, divided into 43 classes.
Models and training. for MNIST and FMNIST, we use a
simple 4-layer CNN. We train the models for 25 epochs
for the baselines, and 100 for experiments with protection
mechanisms deployed. For all experiments we use the initial
learning rate of 0.001 and maximum learning rate of 0.005
with a one-cycle scheduler (Smith and Topin 2019).

For CIFAR10, we use a ResNet20. We train the models
for 100 epochs for the baselines, and 200 for experiments
with protection mechanisms deployed. Similarly to MNIST
and FMNIST case, we use a one-cycle scheduler. However,
we use the initial learning rate of 0.005 and maximum start-
ing learning of 0.1. We summarise these details in Table 1.

For baselines models, and those with only one mecha-
nism, training was repeated five times; for pair-wise compar-
isons, training was repeated ten times. All training was done,
on a workstation with two NVIDIA RTX 3090, Threadripper
3960X, and 128 GB of RAM. We used the PyTorch library
to train the models. We use official repositories of techniques
that we evaluate: WM1, DI2, RADDATA3. The code for this
project is available on GitHub4.

6 Evaluation
We report on our experiments for studying how ownership
verification mechanisms interact with DP (Section 6.1) and
ADVTR (Section 6.2). We color-code all results to convey
potential conflicts (e.g., 0.3).

1https://github.com/ssg-research/dawn-dynamic-adversarial-
watermarking-of-neural-networks

2https://github.com/cleverhans-lab/dataset-inference
3https://github.com/facebookresearch/radioactive_data
4https://github.com/ssg-research/conflicts-in-ml-protection-

mechanisms

We used the following hyperparameters: 1) for DPSGD,
clipping norm c = 1.0, ϵ = 3, δ = 10−6 for MNIST
and FMNIST, and δ = 10−5 for CIFAR10; 2) for ADVTR,
γ = 0.25 for MNIST and FMNIST, and γ = 10/255 for
CIFAR10; 3) for WM, |DT| = 100; for RADDATA, water-
marked ratio of 10%. Table 2 gives the baseline results for
all three datasets; Table 3 summarizes the hyperparameters
of each protection mechanism.

Note that we chose the CIFAR10 architecture (ResNet20)
that is capable of supporting WM, RADDATA and DI. As
a result, ϕACC with DPSGD is relatively low. There exist
mechanisms that achieve higher ϕACC; however, they have
additional implications. We discuss this in Section 8.

6.1 Impact of Differential Privacy
Table 4 gives the results for combining DPSGD with WM,
RADDATA, and DI. In all cases, ϕACC remains close to the
single-mechanism baselines. For MNIST and CIFAR10, H0

cannot be rejected (not enough evidence to indicate that ac-
curacy differs between the baseline(s) and the jointly pro-
tected instances). For FMNIST H0 is rejected, but H∗

0 is re-
jected as well, leading us to conclude that the accuracy is the
same within the equivalence bounds.
WM. For all datasets, ϕWM drops significantly. H0 is re-
jected, and H∗

0 is close to 1.0 for the equivalence bound of
30pp. Samples in DT are outliers, and require memorization
for successful embedding. DPSGD, by design, bounds the
contribution of individual samples during training.
RADDATA. DPSGD lowers ϕRAD but it remains high
enough for successful verification. Both H0 and H∗

0 are
rejected indicating that while the results are different they
are within equivalence bounds. The regularizing effect of
DPSGD is insufficient to prevent FV from learning DRAD.
Unlike in WM, RADDATA modifies the samples such that
they align with a few selected carriers. Hence, multiple sam-
ples in DRAD nudge the model in the same direction allowing
it to learn the watermark.
DI. DI retains high verification confidence (H0 cannot be
rejected).

In summary, ϕACC remains high in all cases. WM perfor-
mance is destroyed, RADDATA has reduced effectiveness
but not enough to declare a conflict, and DI has no conflict.

6.2 Impact of Adversarial Training
Table 5 gives the results for combining ADVTR with WM,
RADDATA, and DI. In all cases, ϕACC on average remains
close to the single-mechanism baselines. For the equivalence
bound of 10pp, H0 can and H∗

0 cannot be rejected only for
MNIST. For FMNIST and CIFAR10, H∗

0 gives a p-value of
0.15 and 0.07 respectively. However, a slightly larger thresh-
old tϕACC = 11pp, we obtain a p-value of 0.005 and 0.002.
Therefore, we deem that the combination does not affect
ϕACC enough to declare a conflict based on ϕACC.
WM. ϕWM remains close to the baselines. However, ϕADV
drops at least 10pp for FMNIST and CIFAR10; H∗

0 is close
to 1.0. This is a surprising result because DTs are chosen to
be far from the distribution of DTR. We conjecture that DT
is in fact quite close to DTR in the weight manifold, and be-
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Dataset No Def. ADVTR DPSGD WM RADDATA DI
ϕACC ϕACC ϕADV ϕACC ϕACC ϕWM ϕACC ϕRAD ϕDI

MNIST 0.99±0.00 0.99±0.00 0.95±0.00 0.98±0.00 0.99±0.00 0.97±0.01 0.98±0.00 0.284±0.001 < 10−30

FMNIST 0.91±0.00 0.87±0.00 0.69±0.00 0.86±0.01 0.87±0.02 0.99±0.02 0.88±0.01 0.191±0.002 < 10−30

CIFAR10 0.92±0.00 0.88±0.00 0.82±0.00 0.38±0.00 0.82±0.00 0.97±0.02 0.85±0.00 0.202±0.001 < 10−30

Table 2: Baseline models without any protection mechanisms (No Def.), and with a single mechanism deployed. We provide
ϕACC and the corresponding metric for each mechanism. Results are averaged over 5 runs; we report the mean and standard
deviation rounded to two decimal places (three for RADDATA).

Dataset ADVTR DPSGD WM RADDATA
γ ϵ δ c |DT| DRAD %

MNIST 0.25 3 10−6 1.0 100 10%
FMNIST 0.25 3 10−6 1.0 100 10%
CIFAR10 10/255 3 10−5 1.0 100 10%

Table 3: Summary of the hyperparameters for each protec-
tion mechanism.

cause it has random labels, it is easier for the evasion attack
to find a perturbation that leads to a misclassification.
RADDATA. On the other hand, RADDATA is rendered in-
effective while ϕADV stays high. ϕRAD drops close to zero
which leads to a low confidence verification. H0 is rejected
but H∗

0 is not (the result is significantly below 10−2). RAD-
DATA relies on replacing some samples in DTR with sam-
ples similar to adversarial examples. It then exploits the
difference in the loss on clean and perturbed samples for
dataset ownership verification. ADVTR replaces all data in
DTR with an adversarial variant, and hence, invalidates the
mechanism used by RADDATA.
DI. Similarly to the pairing with DPSGD, confidence of DI
remains high.

In summary, ϕACC remains high in all cases. WM and
DI remain effective, while RADDATA performance is de-
stroyed. ϕADV stays high both for DI and RADDATA but is
decreased for WM. Only DI has no conflict with ADVTR.
However, we observed that DI can result in false positives
when FV and FA where trained using DTR from the same
distribution, even though, FA is benign. We discuss this fur-
ther in Section 8 and the extended technical report (Szyller
and Asokan 2022).

7 Addressing the Conflicts
Having established that there are multiple instances of con-
flicting interactions among ML protection mechanisms, we
now explore how we might avoid conflicts.

First, we investigated whether settling for a weaker pro-
tection guarantee of one mechanism meaningfully boosts the
performance of the other. However, the changes either do not
sufficiently improve any metric, or require significantly low-
ering the protection guarantee. See the extended technical
report for details (Szyller and Asokan 2022).

Second, we separated the training objective of WM and
from the regularization imposed by ADVTR and DPSGD,
and check if it allows the model to recover some of its orig-

inal effectiveness. So far, we used the mechanisms without
differentiating between DTR, and DT or DRAD. Instead, one
could apply these mechanisms only to the primary training
task with DTR, and use a separate parameter optimizer for
DT or RADDATA. We evaluate such modification for the
pairs in conflict: 1) WM with ADVTR; 2) RADDATA with
ADVTR; 3) WM with DPSGD.
WM with ADVTR. We observed a minor improvement in
ϕACC. However, it does not substantially improve ϕADV, al-
though, it does reduce the standard deviation across runs.
ϕWM remains high as in the previous experiments (Table 6).
RADDATA with ADVTR. We observed a minor improve-
ment in ϕACC and ϕADV. However, ϕRAD did not substantially
improve (Table 7). The pair remains in conflict.
WM with DPSGD. For MNIST and FMNIST, FV achieves
high ϕACC and ϕWM, comparable to the baseline (Table 8).
For CIFAR10, ϕWM improves significantly but remains low
enough to declare a conflict.

However, it begs the question if these models are still
(ϵ, δ)-private. The goal of DPSGD is to provide private
training by restricting the updates to model’s weights. On
one hand, using a regular SGD for WM, and DPSGD for
DTR breaks this assumption. On the other, pre-training on
public data (without privacy) and fine-tunning on a private
DTR has become the de facto way of training accurate pri-
vate models (Tramèr and Boneh 2021; Kurakin et al. 2022).

Additionally, DP is often further relaxed to consider
only computationally restricted adversaries (Mironov et al.
2009), which provides the guarantee only for realistic
datasets as opposed to any DTR. DT could be considered ir-
relevant from the privacy standpoint.

8 Discussion
Model Size & Convergence. Insufficient model capacity
and lack of convergence could be the source of the conflicts.
The conflict between RADDATA and ADVTR arises because
ADVTR prevents watermarks from being embedded, and is
thus independent of model size. In our experiments, all mod-
els reach low training loss, and expected accuracy. Hence,
larger models are unlikely to resolve the conflict between
ADVTR and WM. Finally, for DP, larger models deplete the
privacy budget faster leading to lower accuracy.
Other Mechanisms. DPSGD is the most popular mecha-
nism for DP training, but not the best performing one. A re-
cently proposed mechanism, ScatterDP (Tramèr and Boneh
2021), relies on training a classifier (logistic regression or
small CNN) with DPSGD on top of features in the fre-
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Dataset
DPSGD WM RADDATA DI
Baseline Baseline +DPSGD Baseline +DPSGD +DPSGD
ϕACC ϕWM ϕACC ϕWM ϕRAD ϕACC ϕRAD ϕDI

MNIST 0.98±0.00 0.97±0.01 0.97±0.00 0.36±0.06 0.284±0.001 0.97±0.00 0.091±0.01 < 10−30

FMNIST 0.86±0.01 0.99±0.02 0.86±0.00 0.30±0.05 0.191±0.002 0.84±0.01 0.11±0.01 < 10−30

CIFAR10 0.38±0.00 0.97±0.02 0.38±0.01 0.12±0.01 0.202±0.001 0.35±0.01 0.19±0.01 < 10−30

Table 4: Simultaneous deployment of DPSGD with WM, RADDATA and DI. WM drops over 30pp. The loss difference for
RADDATA is reduced but still allows for confident verification. DI is unaffected. ϕACC remains close to the baseline value in all
cases. Results are averaged over 10 runs; we report the mean and standard deviation rounded to two decimal places (three for
RADDATA). Underline indicates conflict - outside the equivalence bound.

Dataset
ADVTR WM RADDATA DI
Baseline +ADVTR Baseline +ADVTR +ADVTR
ϕADV ϕACC ϕWM ϕADV ϕRAD ϕACC ϕRAD ϕADV ϕDI

MNIST 0.95±0.00 0.97±0.02 0.99±0.01 0.88±0.09 0.284±0.001 0.94±0.01 0.001±0.001 0.95±0.01 < 10−30

FMNIST 0.69±0.00 0.80±0.06 0.99±0.00 0.51±0.11 0.191±0.002 0.87±0.02 0.000±0.001 0.69±0.02 < 10−30

CIFAR10 0.82±0.00 0.78±0.00 0.97±0.01 0.65±0.01 0.202±0.001 0.81±0.01 0.003±0.002 0.81±0.01 < 10−30

Table 5: Simultaneous deployment of ADVTR with WM, RADDATA and DI. ADVTR does not interfere with WM, ϕWM remains
high; however, ϕADV drops at least 10pp for FMNIST and CIFAR10. RADDATA is rendered ineffective as ϕADV drops almost
to zero. DI is unaffected. ϕACC remains close to the baseline value in all cases. Results are averaged over 10 runs; we report the
mean and standard deviation rounded to two decimal places (three for RADDATA). Underline indicates conflict - outside the
equivalence bound.

quency domain, obtained by transforming images with a
ScatterNet. A small classifier does not have enough capac-
ity to embed a watermark, and is more robust to perturbed
inputs. Using a bigger CNN removes the benefit of using
ScatterDP. Therefore, we deem that ScatterDP conflicts with
ownership verification mechanisms because it does not ad-
mit joint deployment.

We do not evaluate pre-training on public data or any
mechanisms that require it (e.g. PATE (Papernot et al.
2018)). Use of public data is not realistic in many industries,
and has been primarily used for general purpose image and
text models. For instance, healthcare data typically cannot
be disclosed due to the privacy regulation; financial institu-
tions have lengthy and restrictive compliance procedures.
Limitations of Protection Mechanisms. Most protection
mechanisms evaluated in this work were shown to fall short
when faced with a strong A. WM can be removed or pre-
vented from embedding (Lukas et al. 2022). ADVTR does
not generalise to higher γ values (Nie et al. 2022). Generally,
attacks and defences against model evasion are defeated by
novel approaches (Carlini and Wagner 2017; Radiya-Dixit
and Tramèr 2021). DP requires careful, a priori assumptions
which often are not realistic (Domingo-Ferrer, Sánchez, and
Blanco-Justicia 2021), and was recently shown to be vulner-
able to side-channel timing attacks (Jin et al. 2022).

We also observed that DI results in false positives for
models independently trained on a dataset with the same dis-
tribution as FV ’s DTR even if it does not overlap with FV ’s
DTR. Consequently, DI may result in innocent parties be-
ing falsely accused of stealing FV (see the technical report
for more information (Szyller and Asokan 2022)). While DI
avoids conflicts with other protection mechanisms we stud-

ied so far, we caution against using DI in domains where
uniqueness of FV ’s training data cannot be guaranteed.
Stakeholders in the Training Loop. In a simple setting, a
single party gathers the data, trains and deploys the model.
Hence, if V cares about data or model ownership they could
decide to forgo ADVTR or DP.

However, as ML services increasingly specialise, it is
likely that different parties will be responsible for gathering
data, providing the training platform, deploying the model,
and using it. Thus, even if the party deploying a model
may not care about traceability with RADDATA, another in-
volved party may. Similarly, the training platform provider
may want to embed a watermark to ensure that users con-
form to the terms of service, and not e.g. share it with others,
or offer their own service using a knock-off of FV .

We can consider a scenario where V concerned about
model evasion, buys data from a party that uses RADDATA,
and FV is trained by some service that embeds a watermark.
ADVTR conflicts both with RADDATA and WM. Hence,
data/platform provider needs to communicate up front that
their offering is not compatible with certain training strate-
gies, or resort to changes discussed in Section 8.
Combinatorial Explosion. This work could be further ex-
tended to include triples or quadruples of protection mech-
anisms simultaneously. Although, some of them could be
considered toy cases, there are many combinations that re-
flect actual deployment considerations, e.g. DP, ADVTR,
WM, while ensuring fairness.

However, increasing the size of the tuple leads to a com-
binatorial explosion of the number of ways we can combine
the protection mechanisms. This number is likely to grow
as new types of vulnerabilities are discovered, and does not

15184



Dataset
ADVTR WM
Baseline Baseline +ADVTR +ADVTR Relaxed
ϕADV ϕACC ϕWM ϕACC ϕWM ϕADV ϕACC ϕWM ϕADV

MNIST 0.95±0.00 0.99±0.00 0.97±0.01 0.97±0.02 0.99±0.01 0.88±0.09 0.97±0.01 0.99±0.01 0.89±0.01
FMNIST 0.69±0.00 0.87±0.02 0.99±0.02 0.80±0.06 0.99±0.00 0.51±0.11 0.84±0.01 0.99±0.00 0.51±0.05
CIFAR10 0.82±0.00 0.82±0.00 0.97±0.02 0.78±0.00 0.97±0.01 0.65±0.01 0.80±0.01 0.90±0.01 0.69±0.01

Table 6: Training on DTR with ADVTR and without on DT. The change does not result in any meaningful improvement.
Underline indicates conflict.

Dataset
ADVTR RADDATA
Baseline Baseline +ADVTR +ADVTR Relaxed
ϕADV ϕRAD ϕACC ϕRAD ϕADV ϕACC ϕRAD ϕADV

MNIST 0.95±0.00 0.284±0.001 0.94±0.01 0.001±0.001 0.95±0.01 0.94±0.02 0.002±0.001 0.94±0.03
FMNIST 0.69±0.00 0.191±0.002 0.87±0.02 0.000±0.001 0.69±0.02 0.87±0.01 0.002±0.002 0.69±0.02
CIFAR10 0.82±0.00 0.202±0.001 0.81±0.01 0.003±0.002 0.81±0.01 0.82±0.02 0.004±0.001 0.81±0.02

Table 7: Training on DTR with ADVTR and without on DRAD. The change does not result in any meaningful improvement.
Underline indicates conflict.

Dataset
WM

+DPSGD +DPSGD Relaxed
ϕACC ϕWM ϕACC ϕWM

MNIST 0.97±0.00 0.36±0.06 0.97±0.01 0.97±0.01
FMNIST 0.86±0.00 0.30±0.05 0.87±0.01 0.99±0.02
CIFAR10 0.38±0.01 0.12±0.01 0.39±0.02 0.67±0.04

Table 8: Training on DTR with DPSGD and without on DT.
We recover performance close to the baseline. Underline in-
dicates conflict.

account for multiple mechanisms within a single category.

9 Related Work
We summarise the prior work on the interactions between
properties in the context of ML security/privacy.

It was shown that DP can be used to certify robustness
to model evasion (Lecuyer et al. 2019) by limiting the con-
tribution of an individual pixel. Prior work has extensively
proved that using DP degrades fairness of the models and
can exacerbate bias present in the dataset as well as the per-
formance on the downstream tasks (Chang and Shokri 2021;
Cheng et al. 2021; Pearce 2022). Membership inference at-
tacks (MIAs) were used to evaluate the privacy guarantee
of DPSGD (Nasr et al. 2021), and it was argued that DP
should provide resistance to them (Humphries et al. 2020).

It was suggested that poisoning attacks can be used to
make models vulnerable to other threats. One can inject
samples into the training set to make MIAs easier (Tramèr
et al. 2022). Also, there is a connection between adversarial
robustness and susceptibility to poisoning (Pang et al. 2020).
Furthermore, adversarial robustness can make models more
vulnerable to MIAs (Song, Shokri, and Mittal 2019).

Nevertheless, it was shown that ADVTR can make
models more interpretable (Tsipras et al. 2019). Lastly,

LIME (Ribeiro, Singh, and Guestrin 2016), a popular ex-
plainability method, was used to compare the similarity of
models (Jia et al. 2022). However, post-hoc explainability
methods can be used to speed up model evasion, model ex-
traction, and membership inference (Quan et al. 2022).

10 Conclusion

In this work, we pose the problem of conflicting interac-
tions between different ML protection mechanisms. We pro-
vide a framework for evaluating simultaneous deployment
of multiple mechanisms. We use it explore the interaction
between three ownership verification mechanisms (WM, DI,
RADDATA) with the most popular methods for preventing
model evasion (ADVTR), and differentially private training
(DPSGD). We show there exists a theoretical and empirical
conflict that limits the effectiveness of multiple mechanisms.

Moving forward, researchers working on ML protection
mechanisms should extend their evaluation benchmarks to
include conflicts with other common concerns. In turn, it
allows practitioners to choose the most appropriate mech-
anisms for their deployment scenario and threat model. We
emphasize that this is not merely an “engineering problem”
that can be ignored during the research phase but a key con-
sideration for any technique and its deployability prospects.

Certain considerations are relevant only to particular ap-
plications, e.g. fairness is at odds with privacy but it might
not be important when used in a closed loop system. Simi-
larly, adversarial training may hurt data-based watermarking
and fingerprinting mechanisms but is outside of the threat
model of systems that do not have a user facing interface.

Many pairs still require explicit analysis that could un-
ravel surprising limitations. We encourage the community to
build upon this work, and extend it to more pairs and tuples.
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