
DPAUC: Differentially Private AUC Computation in Federated Learning

Jiankai Sun1, Xin Yang1, Yuanshun Yao1, Junyuan Xie2, Di Wu2, Chong Wang 3*

1ByteDance Inc.
2ByteDance Ltd

3Apple
{jiankai.sun, yangxin.yx, kevin.yao, junyuan.xie, di.wu }@bytedance.com, mr.chongwang@apple.com

Abstract

Federated learning (FL) has gained significant attention re-
cently as a privacy-enhancing tool to jointly train a machine
learning model by multiple participants. The prior work on
FL has mostly studied how to protect label privacy during
model training. However, model evaluation in FL might also
lead to potential leakage of private label information. In this
work, we propose an evaluation algorithm that can accurately
compute the widely used AUC (area under the curve) metric
when using the label differential privacy (DP) in FL. Through
extensive experiments, we show our algorithms can compute
accurate AUCs compared to the ground truth. The code is avail-
able at https://github.com/bytedance/fedlearner/tree/master/
example/privacy/DPAUC.

Introduction
With increasing concerns over data privacy in machine learn-
ing, regulations like CCPA1, HIPAA2, and GDPR3 have been
introduced to regulate how data can be transmitted and used.
To address privacy concerns, federated learning (McMa-
han et al. 2017; Hanzely et al. 2020; Yuan and Ma 2020;
Ghosh et al. 2020) has become an increasingly popular tool
to enhance privacy by allowing training models without di-
rectly sharing their data. Depending on how data is split
across parties, FL can be mainly classified into two cat-
egories (Yang et al. 2019a): Horizontal Federated Learn-
ing (Geiping et al. 2020; Hamer, Mohri, and Suresh 2020;
Karimireddy et al. 2020; Li et al. 2020) and Vertical Feder-
ated Learning (Vepakomma et al. 2018a; Gupta and Raskar
2018; Abuadbba et al. 2020; Ceballos et al. 2020). In Hori-
zontal FL (hFL), data is split by entity (e.g. a person), and
data entities owned by each party are disjointed from other
parties. In Vertical FL (vFL), a data entity is split into differ-
ent attributes (e.g. features and labels of the same person),
and each party might own the same data entities but their dif-
ferent attributes. In this paper, we focus on the setting of hFL
which enables devices (i.e. mobile phones) to collaboratively

*Work was done when the author was working at ByteDance
Inc.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1California Consumer Privacy Act
2Health Insurance Portability and Accountability Act
3General Data Protection Regulation, European Union

learn a machine learning model (i.e. binary classifier) while
keeping all the training and testing data on the device.

Although raw data is not shared in federated learning, sen-
sitive information may still be leaked when gradients and/or
model parameters are communicated between parties. In hFL,
(Zhu, Liu, and Han 2019) showed that an honest-but-curious
server can uncover the raw features and labels of a device by
knowing the model architecture, parameters, and communi-
cated gradient of the loss on the device’s data. Based on their
techniques, (Zhao, Mopuri, and Bilen 2020) showed that the
ground truth label of an example can be extracted by exploit-
ing the directions of the gradients of the weights connected
to the logits of different classes. Researchers have shown that
vFL can still leak data information indirectly. For example,
(Li et al. 2022) demonstrated that the gradient norms and
directions can leak label information in the two-party vFL
setting. However, the prior work on FL privacy mostly fo-
cuses on model training and there can also be privacy leaks
from model evaluation. Specifically, the private label infor-
mation owned by clients/devices can be leaked to the server
when computing evaluation metrics in FL.

Previous work (Matthews and Harel 2013a) has shown
that releasing the actual ROC curves on a private test dataset
can allow an attacker with some prior knowledge of the
test dataset to recover some sensitive information about the
dataset. Some recent works(Chen et al. 2016; Stoddard, Chen,
and Machanavajjhala 2014) proposed to provide differen-
tial privacy (DP) for plotting and releasing ROC curves.
However, they have several challenges such as how to pri-
vately compute the true positive rate (TPR) and false posi-
tive rate (FPR) values and how many and what thresholds
to pick(Stoddard, Chen, and Machanavajjhala 2014). And
they are not designed and applicable for evaluating FL mod-
els. As the ground-truth labels often contain highly sensitive
information (e.g., whether a user has purchased (in online
advertising) or whether a user has a disease or not (in disease
prediction) (Vepakomma et al. 2018b; Li et al. 2022), it can-
not be directly shared between clients and servers, and clients
and clients. Hence preventing the label leakage from the AUC
computation in the general setting of FL is challenging.

To address the challenge, we consider the area under the
Receiver operating characteristic (ROC) curve as the target
AUC to evaluate the accuracy of a binary classifier. Since the
class label is often the most sensitive information in a predic-

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

15170

tion task, our goal in this paper is to achieve label differential
privacy (Ghazi et al. 2021) while plotting the ROC curve.
To this end, we propose to adopt the Laplace mechanism 4 to
add noise to the shared intermediate information between the
server and clients to plot the Receiver operating characteristic
(ROC) curve and calculate the area under the ROC curve as
the AUC. We conduct extensive experiments to demonstrate
the effectiveness of our proposed approach.

Preliminaries
We focus on the setting of hFL which contains one server
and multi-clients (devices). The labels are distributed in multi
clients and our proposed approach can compute the evalua-
tion metric AUC with label differential privacy. We start by
introducing some background knowledge of our work.

Label Differential Privacy
Differential privacy (DP) (Dwork et al. 2006; Dwork and
Roth 2014a) is a quantifiable and rigorous privacy framework.
We adopt the following definition of DP. We define Differ-
ential privacy (DP) (Dwork et al. 2006; Dwork and Roth
2014a) as the following:
Definition 0.1 (Differential Privacy). Let ϵ, δ ∈ R≥0, a ran-
domized mechanism M is (ϵ, δ)-differentially private (i.e.
(ϵ, δ)-DP), if for any of two neighboring training datasets
D,D′, and for any subset S of the possible output of M, we
have

Pr[M(D) ∈ S] ≤ eϵ · Pr[M(D′) ∈ S] + δ.

If δ = 0, then M is ϵ-differentially private (i.e. ϵ-DP).
In our work, we focus on protecting the privacy of label

information. Following (Ghazi et al. 2021), we define label
differential privacy as the following:
Definition 0.2 (Label Differential Privacy). Let ϵ, δ ∈ R≥0,
a randomized mechanism M is (ϵ, δ)-label differentially pri-
vate (i.e. (ϵ, δ)-LabelDP), if for any of two neighboring train-
ing datasets D,D′ that differ in the label of a single example,
and for any subset S of the possible output of M, we have

Pr[M(D) ∈ S] ≤ eϵ · Pr[M(D′) ∈ S] + δ.

If δ = 0, then M is ϵ-label differentially private (i.e. ϵ-
LabelDP).

Our proposed approach also shares the same setting with
local DP (Duchi, Jordan, and Wainwright 2013; Erlings-
son, Pihur, and Korolova 2014; Kasiviswanathan et al. 2008;
Bebensee 2019) which assumes that the data collector (server
in our paper) is untrusted. Following the same setting with
local DP, in our proposed approach, each client locally per-
turbs their sensitive information with a DP mechanism and
transfers the perturbed version to the server. After receiving
all clients’ perturbed data, the server calculates the statistics
and publishes the result of AUC. We define local DP as the
following:

4Other mechanisms such as the Gaussian mechanism are appli-
cable too)

Definition 0.3 (Local Differential Privacy). Let ϵ > 0 and
1 > δ ≥ 0, a randomized mechanism M is (ϵ, δ)-local
differentially private (i.e. (ϵ, δ)-LocalDP), if and only if for
any pair of input values v and v′ in domain D, and for any
subset S of possible output of M, we have

Pr[M(v) ∈ S] ≤ eϵ · Pr[M(v′) ∈ S] + δ.

If δ = 0, then M is ϵ-local differentially private (i.e. ϵ-
LocalDP).

Definition 0.4 (Sensitivity). Let d be a positive integer, D be
a collection of datasets, and f : D → Rd be a function. The
sensitivity of a function, denoted ∆f , is defined by ∆f =
max||f(D)− f(D′)||p where the maximum is over all pairs
of datasets D and D′ in D differing in at most one element
and || · ||p denotes the lp norm.

Definition 0.5 (Laplace Mechanism). Laplace mechanism
defined by (Dwork and Roth 2014b) preserves (ϵ, 0)-
differential privacy if the random noise is drawn from the
Laplace distribution with parameter ∆/ϵ, where ∆ is the l1
sensitivity and ϵ, is the corresponding privacy budget.

In this paper, we leverage two DP properties (Dwork and
Roth 2014b; McSherry and Talwar 2007) to help us build a
complex workflow that still has the DP guarantee: sequen-
tial composition and postprocessing. Let M1(·) and M2(·)
be ϵ1− and ϵ2− differentially private algorithms, sequential
composition guarantees that releasing the outputs of M1(D)
and M2(D) satisfies (ϵ1+ϵ2)− DP. Postprocessing an output
of a DP algorithm does not incur any additional loss of pri-
vacy. For example, releasing M1(D) and M2(M1(D)) still
satisfies ϵ1− DP.

ROC Curve and AUC
In a binary classification problem, given a threshold θ, a
predicted score si is predicted to be 1 if si ≥ θ. Given
the ground-truth label and the predicted label (at a given
threshold θ), we can quantify the accuracy of the classifier
on the dataset with True positives (TP(θ)), False positives
(FP(θ)), False negatives (FN(θ)), and True negatives (TN(θ)).

• True positives, TP(θ), are the data points in the test whose
true label and predicted label equal 1. i.e. yi = 1 and
si ≥ θ

• False positives, FP(θ), are the data points in test whose
true label is 0 but the predicted label is 1. i.e. yi = 0 and
si ≥ θ.

• False negatives, FN(θ), are data points whose true label is
1 but the predicted label is 0. i.e. yi = 1 and si < θ.

• True negatives, TN(θ), are data points whose true label is
0 and the predicted label is 0. i.e. yi = 0 and si < θ.

The area under the receiver operating characteristic (ROC)
curves plots TPR (x-axis) vs. FPR (y-axis) over all pos-
sible thresholds θ, and AUC is the area under the ROC
curve. True Positive Rate (TPR) (i.e. recall) is defined as
TPR(θ) = TP (θ)

TP (θ)+FN(θ) and False Positive Rate (FPR) is

defined as FPR(θ) = FP (θ)
FP (θ)+TN(θ) . If the classifier is good,

15171

the ROC curve will be close to the left and upper boundary
and AUC will be close to 1.0 (a perfect classifier). On the
other hand, if the classifier is poor, the ROC curve will be
close to the line from (0, 0) to (1, 1) with AUC around 0.5
(random prediction).

Privacy Leakage in AUC
Researchers have shown AUC computation can cause privacy
leakage. Matthews and Harel (Matthews and Harel 2013b)
demonstrate that by using a subset of the ground-truth data
and the computed ROC curve, the data underlying the ROC
curve can be reproduced accurately. Stoddard el al. (Stoddard,
Chen, and Machanavajjhala 2014) show that an attacker can
determine the unknown label by simply enumerating over all
labels, guessing the labels, and then checking which guesses
lead to the given ROC curve. They propose a differentially
private ROC curve computation algorithm. They first pri-
vately choose a set of thresholds (with privacy budget ϵ1).
By modeling TP and FP values as one-sided range queries,
they can compute noisy TPRs and FPRs values (using pri-
vacy budget ϵ2). They also leveraged a postprocessing step to
enforce the monotonicity of TPRs and FPRs. However, the
above method is not designed for FL settings. In this paper,
we aim to provide a differentially private way to compute
AUC in the FL setting.

Threat Model
In our hFL setting, there are multiple label parties (i.e.
clients/devices) that own private labels (i.e. Y) and there
is a central non-label party (i.e. server) that is responsible for
computing global AUC from all clients. The model is trained
using the normal hFL protocol.

Our work focuses on the evaluation time and the goal of
the server is to compute global AUC without letting clients
directly share their private test data. In other words, clients
cannot directly send the test data (i.e. private labels and pre-
diction scores) to the server for it to compute AUC. Specifi-
cally, we are interested in protecting label information and
therefore it is required that the exchanged information be-
tween client and server excludes the ground-truth test labels
(Y) and corresponding prediction scores.

Methods
In this section, we introduce how to compute the AUC with la-
bel differential privacy by leveraging the Laplace mechanism.
Here we use the Laplace mechanism as an example. Settings
for other DP mechanisms such as the Gaussian mechanism
will be the same.

Overall Workflow
The workflow of this method is shown in Figure 1. The
algorithm has six steps:

1. Clients Execute. Each client Ck computes the prediction
scores sk = f(Xk) for all its owning data points.

2. Clients Execute. For each decision threshold θ ∈ Θ,
client Ck computes four local statistics TPθ

k,TNθ
k,FPθ

k,
and FNθ

k given the prediction scores sk.

3. Clients Executes. The client Ck adds perturbation with
DP guarantee to each local statistics TPθ

k,TNθ
k,FPθ

k,
and FNθ

k and get corresponding noisy statistics
TPθ′

k ,TNθ′

k ,FPθ′

k , and FNθ′

k for each θ ∈ Θ. Client Ck

sends all noisy statistics to the server.
4. Server Executes. For each θ ∈ Θ, the server aggre-

gates the noisy statistics from all the clients: TPθ =∑K
k=1 TPθ′

k ,TNθ =
∑K

k=1 TNθ′

k ,FPθ =
∑K

k=1 FPθ′

k , and
FNθ =

∑K
k=1 FNθ′

k

5. Server Executes. For each θ ∈ Θ, the server computes the
corresponding TPRθ = TPθ

TPθ+FNθ and FPRθ = FPθ

FPθ+TNθ .
6. Server Executes. The server plots TPR (x-axis) vs. FPR

(y-axis) over all possible thresholds θ and computes the
area under the corresponding curve as AUC.

Adding DP Noise to Local Statistics
In this section, we explain in detail on how to perturb TP,
TN,FP, and FN for each θ ∈ Θ in each client. It’s worth
mentioning that both Gaussian and Laplace mechanisms can
be leveraged to generate the corresponding DP noise. Without
loss of generality, we use Laplace as an example. Laplace
mechanism preserves (ϵ, 0)-differential privacy if the random
noise is drawn from the Laplace distribution Lap(∆ϵ) with
parameter ∆/ϵ where ∆ is the l1 sensitivity (Dwork and
Roth 2014b) and ϵ is the corresponding privacy budget. We
name this method as DPAUCLap. The noise is added as the
following:
1. Adding noise to TP: Each client Ck sets the correspond-

ing sensitivity ∆TPθ
k
= 1 for each θ ∈ Θ. Given a pri-

vacy budget ϵTP, client Ck draws the random noise from
Lap(1/ϵTP) and add it to TPθ

k and get TPθ′

k .
2. Adding noise to FP: Each client Ck sets the correspond-

ing sensitivity ∆FPθ
k
= 1 for each θ ∈ Θ. Given a pri-

vacy budget ϵFP, client Ck draws the random noise from
Lap(1/ϵFP) and add it to FPθ

k and get FPθ′

k .
3. Adding noise to TN: Each client Ck sets the correspond-

ing sensitivity ∆TNθ
k
= 1 for each θ ∈ Θ. Given a pri-

vacy budget ϵTN, client Ck draws the random noise from
Lap(1/ϵTN) and add it to TNθ

k and get TNθ′

k .
4. Adding noise to FN: Each client Ck sets the correspond-

ing sensitivity ∆FNθ
k
= 1 for each θ ∈ Θ. Given a pri-

vacy budget ϵFN, client Ck draws the random noise from
Lap(1/ϵFN) and add it to FNθ

k and get FNθ′

k .
Privacy Analysis. Based on the Composition Theorem of
DP (Dwork and Roth 2014b), the privacy budget for each
decision boundary (θ) is (ϵTP + ϵTN + ϵFP + ϵFN). Since
we have |Θ| decision thresholds (θ), the total DP privacy
budget is ϵ = |Θ| ∗ (ϵTP + ϵTN + ϵFP + ϵFN). Without loss
of generality, we set ϵTP = ϵTN = ϵFP = ϵFN = ϵ′ in our
paper and the total DP budget is 4|Θ|ϵ′.

Experiments
In this section, we show the experimental results of evaluating
our proposed approaches. We introduce the experimental

15172

1. computes prediction scores

 for its local data

2. For each decision threshold ,

 computes four local statistics

, , , and for

4. For each , Server aggregates

 , , and to

generate , , and

5. For each , Server computes

the and

,

Current model

Server

, ,

 and for

Message from to the server

Message from the server to

3. adds DP noise to each local
statistic and get , ,

 and for

6. Server computes the area under the
ROC curve as the final AUC

Figure 1: Illustration of our proposed DPAUC with Laplace mechanism as an example.

setups first.

Experimental Setup
Dataset. We evaluate the proposed approaches on Criteo 5,
which is a large-scale industrial binary classification dataset
(with approximately 45 million user click records) for conver-
sion prediction tasks. Every record of Criteo has 27 categori-
cal input features and 14 real-valued input features. We first
replace all the NA values in categorical features with a single
new category (which we represent using the empty string)
and replace all the NA values in real-valued features with 0.
For each categorical feature, we convert each of its possible
value uniquely to an integer between 0 (inclusive) and the
total number of unique categories (exclusive). For each real-
valued feature, we linearly normalize it into [0, 1]. We then
randomly sample 90% of the entire Criteo set as our training
data and the remaining 10% as our test data. We computed
the AUC on the test set which contains M = 458, 407 where
P = 117, 317 and N = 341, 090 for 3 epochs.

Model. We modified a popular deep learning model ar-
chitecture WDL (Cheng et al. 2016) for online advertising.
Note that our goal is not to train the model that can beat the
state-of-the-art, but to test the effectiveness of our proposed
federated AUC computation approach.

Ground-truth AUC. We compare our proposed DPAUC
with two AUC computation libraries (their computed results
work as ground-truth and have no privacy guarantee): 1)
scikit-learn6; 2) Tensorflow 7. Both approximate the AUC
(Area under the curve) of the ROC. In our experiments, we set
num thresholds = 1, 000 for Tensorflow. We use the default
values for other parameters.

Evaluation Metric. For each method, we run the same
setting for 100 times (change the random seed every time)

5https://www.kaggle.com/c/criteo-display-ad-challenge/data
6https://scikit-learn.org/stable/modules/generated/sklearn.

metrics.auc.html
7https://www.tensorflow.org/api docs/python/tf/keras/metrics/

AUC

and use the corresponding mean and standard deviation of the
computed AUC as our evaluation metric. A good computation
method should achieve a small std of the computed AUC and
the corresponding mean value of the computed AUC should
be close to the ground-truth AUC.

One Randomized Responses based Competitor:
DPAUCRR
We introduce another algorithm to compute AUC for evalu-
ating FL models as one competitor. The algorithm is based
on randomized response (Warner 1965) and we name it as
DPAUCRR. We include the workflow in Figure 2. We now
explain the algorithm step by step.

Step 1: Clients Flip Their Local Labels Randomized re-
sponse (RR) is ϵ-LabelDP (Ma and Wang 2021; Xiong et al.
2020) and works as follows: let ϵ be a parameter and let
y ∈ {0, 1} be the true label. Given a query of y, RR will
respond with a random draw ỹ from the following probability
distribution:

Pr[ỹ = ŷ] =

{
eϵ

1+eϵ for y = ŷ,
1

1+eϵ otherwise.
(1)

Clients leverage randomized responses to flip their owning
labels as a preprocessing step before computing the AUC.
It’s worth mentioning that all labels are only flipped once
and the generated noisy labels can then be used for further
evaluations multi-times.

Step 2: Server Computes AUC from Flipped Labels
Since the corresponding AUC is computed with flipped la-
bels, we denote this AUC as noisy AUC: AUCnoisy. It has the
same six steps as DPAUC except that each client computes lo-
cal statistics with flipped labels and sends the corresponding
results (without adding additional noises) to the server.

Step 3: Server Debiases AUC We leveraged (Menon et al.
2015) to debiase the noisy AUC and get the final clean AUC
AUCclean that we are interested in.

15173

RR

epoch Tensorflow scikit-learn ϵ=8.0 ϵ=4.0 ϵ=2.0 ϵ=1.0

0 0.749357 0.749383 0.74938 ± 0.00004 0.749398 ± 0.0004 0.749108 ± 0.000932 0.750239 ± 0.001766
1 0.766434 0.766477 0.766447 ± 0.000054 0.766338 ± 0.000338 0.7665588 ± 0.001109 0.766392 ± 0.002098
2 0.770189 0.770219 0.770204 ± 0.000049 0.770112 ± 0.000375 0.7702048 ± 0.000795 0.771098 ± 0.001891

Table 1: DPAUCRR with |Θ| = 200 and no noise added to the prediction scores

1. computes prediction scores

 for its local data

2. For each decision threshold ,

 computes four local statistics

 , , , and for

with the flipped labels

 4. For each , Server aggregates

 , , and to

generate , , and

5. For each , Server computes

the and

,

Current model

Server

, ,

 and for

Message from to the server

Message from the server to

6. Server computes the area under the
ROC curve as the final AUC

Preprocessing: leverages

 randomized responses to flip its own labels

Figure 2: Illustration of DPAUCRR with Randomized Responses mechanism.

Utility and Privacy Analysis The corresponding results
of DPAUCRR can be seen in Table 1. However, DPAUCRR
has potential privacy issues since the prediction scores can be
inferred from the change of adjacent local statistics. For ex-
ample, we can conclude that there are some prediction scores

that fall in θi+1 if there are some differences between (TP
θ′
i+1

k ,

TP
θ′
i+1

k , TP
θ′
i+1

k , TP
θ′
i+1

k) and (TPθ′
i

k , TPθ′
i

k , TPθ′
i

k , TPθ′
i

k) from
client k.

Attackers can then infer the label information based on
the exposed prediction scores. We propose a simple attack
method to infer the label information based on the prediction
scores. The strategy of the attack is to select the samples with
top-K prediction scores as positive labels. We measure the
corresponding guessing performance by precision and recall.
As shown in Figure 3 and Table 2, positive instances can
have relatively higher prediction scores than negative ones
at some density areas. For example, we can achieve a 79%
precision if we select the instances with top-100 prediction
scores. Hence, exposing prediction scores among all partici-
pants can increase the risk of label leakage. However, since
the prediction scores sk are shuffled before sending to the
server, the server has no idea which prediction score belongs
to which data sample 8.

To prevent label leakage from the prediction scores, we
may leverage DP to add noise to the prediction scores. Since
the prediction score is the output of a softmax/sigmoid func-

8|sk| ≥ 2

Top K # Positives in Top K Precision Recall

1 1 1 8.52e-6

5 4 0.8 3.41e-5

10 8 0.8 6.82e-5

50 43 0.86 3.67e-4

100 79 0.79 6.73e-4

500 384 0.768 3.27e-3

1,000 774 0.774 6.60e-3

5,000 3,914 0.7828 0.0334

10,000 7,519 0.7519 0.0641

50,000 30,793 0.6159 0.2625

100,000 52,268 0.5227 0.4455

Table 2: Top-k analysis on Criteo data

15174

0.0 0.2 0.4 0.6 0.8
prediction score

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
de

ns
ity

positive
negative

Figure 3: Density of positive and negative instances’ predic-
tion scores in Criteo data.

tion, the corresponding sensitivity ∆ = 1. We can then lever-
age the Laplace mechanism 9 to add corresponding noise to
the prediction scores. The corresponding results can be seen
in Table 3. We can observe that the utility of the computed
AUC is highly sensitive to the privacy budget of the predic-
tion scores. We cannot even achieve a reasonable AUC utility
with a small ϵ (i.e. ϵ ≤ 10) of prediction scores. The results
show that DPAUCRR is not a suitable procedure to achieve
a good tradeoff between utility and privacy for computing
AUC in FL.

Epoch 0 1 2

Tensorflow 0.7494 0.7665 0.7702

scikit-learn 0.7494 0.7665 0.7702

ϵ

1 0.5374 0.5416 0.5420
2 0.5725 0.5795 0.5830
3 0.5976 0.6105 0.6130
4 0.6239 0.6367 0.6387
5 0.6413 0.6569 0.6607
6 0.6571 0.6732 0.6786
7 0.6698 0.6870 0.6903
8 0.6797 0.6976 0.7022
9 0.6885 0.7060 0.7115

10 0.6952 0.7124 0.7191
50 0.7454 0.7625 0.7663
100 0.7484 0.7654 0.7692

1000 0.7494 0.7665 0.7702

Table 3: AUC calculated with ϵ-DP for prediction scores with
Laplace mechanism on Criteo dataset

Experimental Results of DPAUCLap
We now introduce the experimental results of DPAUCLap and
demonstrate the effectiveness of DPAUCLap.

9The Gaussian mechanism can be applied here too

IID vs. Non-IID Based on the setting of how to assign data
samples to clients, we provide two simulations to conduct
the corresponding experiments.

1. IID: all data points are uniformly assigned to the clients.
2. Non-IID: all data points are assigned to the clients based

on their corresponding prediction scores. Data samples
with similar prediction scores will be assigned to the same
client.

We divide M data samples into K clients based on the IID
and Non-IID settings and each client has M

K data samples on
average. We set |Θ| = 100 and compare the difference be-
tween IID and Non-IID settings for K = 10 and K = 1, 000
in Table 4. We can observe that our method can achieve sim-
ilar performance (mean and standard deviation of computed
AUC) under both IID and Non-IID settings. It indicates that
our proposed method is robust to Non-IID settings.

Effects of Number of Samples per Client Given the fixed
total number of data points (M), DPAUCLap is sensitive to
the number of clients or the number of samples per client
has. We vary the number of data samples per client owing
and conduct experiments with K = 10 (around 45, 840 data
points per client) and 1, 000 (around 458 data points per
client). The corresponding results are shown in Table 4. We
can conclude that with an increasing avg. # data samples per
client, DPAUCLap can achieve a smaller standard deviation
of AUC estimation since it adds relatively small amounts of
noise to the local statistics and hence has fewer effects on the
computational results.

Effects of Number of Decision Boundaries We also con-
ducted experiments to test the effects of the number of
decision boundaries (|Θ|). The corresponding experiments
are performed with IID setting with K = 10. We tested
|Θ| = 10, 25, 50, 100, 200 as shown in Table 5. Given the
same privacy budget ϵ, with increasing |Θ|, each local statis-
tic has to be assigned a smaller privacy budget ϵ′ (adding
more DP noise). As a result, the standard deviation of the
computed AUC will be smaller for smaller |Θ|. However,
smaller |Θ| can have a worse effect on the computed pre-
cision of the resulted AUC. In our experiments, we found
|Θ| = 100 can achieve a good performance on both precision
and standard deviation of the AUC.

Related Work
Federated Learning. FL (McMahan et al. 2017; Yang et al.
2019b) can be mainly classified into three categories: hori-
zontal FL, vFL, and federated transfer learning (Yang et al.
2019b).

Information Leakage in FL. Recently, studies show that
in FL, even though the raw data (feature and label) is not
shared, sensitive information can still be leaked from the gra-
dients and intermediate embeddings communicated between
parties. For example, (Vepakomma et al. 2019) and (Sun et al.
2021) showed that server’s raw features can be leaked from
the forward cut layer embedding. In addition, (Li et al. 2022)
studied the label leakage problem but the leakage source
was the backward gradients rather than forward embeddings.

15175

epoch ϵ′=0.02, ϵ=8 ϵ′=0.01, ϵ=4 ϵ′=0.005, ϵ=2 ϵ′=0.0025,ϵ=1

0

a 0.749347 ± 0.000216 0.749178 ± 0.000484 0.748937 ± 0.000755 0.748206 ± 0.001649
b 0.749319 ± 0.000242 0.749260 ± 0.000474 0.749192 ± 0.00072 0.748962 ± 0.00178
c 0.74811 ± 0.002335 0.745557 ± 0.004498 0.738944 ± 0.008008 0.726187 ± 0.014704
d 0.748062 ± 0.001981 0.746105 ± 0.004465 0.741711 ± 0.009246 0.726885 ± 0.016539

1

a 0.766373 ± 0.000239 0.766309 ± 0.000402 0.76611 ± 0.000894 0.765684 ± 0.001677
b 0.766378 ± 0.000231 0.766197 ± 0.000471 0.76612 ± 0.000755 0.765447 ± 0.001805
c 0.764887 ± 0.002241 0.763012 ± 0.004378 0.756938 ± 0.008096 0.740619 ± 0.017457
d 0.764923 ± 0.002036 0.763246 ± 0.004022 0.756715 ± 0.009105 0.744978 ± 0.018234

2

a 0.770091 ± 0.000258 0.769995 ± 0.000498 0.770028 ± 0.000788 0.769143 ± 0.00172
b 0.770095 ± 0.000213 0.770115 ± 0.000434 0.76981 ± 0.000903 0.769265 ± 0.001502
c 0.76918 ± 0.002519 0.766482 ± 0.004387 0.761074 ± 0.007947 0.745812 ± 0.014596
d 0.768894 ± 0.002104 0.766819 ± 0.003802 0.759916 ± 0.007251 0.746815 ± 0.016511

Table 4: IID vs. Non-IID and K = 10 vs. K = 1, 000 with |Θ| = 100. Setting a: IID, K=10; b: Non-IID, K=10; c: IID, K =
1,000; d: Non-IID, K=1,000.

epoch |Θ| ϵ = 8 ϵ = 4 ϵ = 2 ϵ = 1

0

10 0.7251052 ± 0.000074 0.725064 ± 0.000167 0.725008 ± 0.000323 0.724899 ± 0.000607
25 0.747879 ± 0.000147 0.747895 ± 0.000275 0.747669 ± 0.000625 0.747278 ± 0.000889
50 0.748914 ± 0.000161 0.748884 ± 0.000343 0.748988 ± 0.000657 0.748816 ± 0.001279
100 0.749347 ± 0.000216 0.749178 ± 0.000484 0.748937 ± 0.000755 0.748206 ± 0.001649
200 0.74929 ± 0.000289 0.74916 ± 0.000573 0.748491 ± 0.001204 0.747117 ± 0.002224

1

10 0.744348 ± 0.000084 0.744317 ± 0.000144 0.744215 ± 0.000328 0.744058 ± 0.000639
25 0.765178 ± 0.000159 0.765045 ± 0.000252 0.7649144 ± 0.000507 0.764968 ± 0.001282
50 0.766198 ± 0.000187 0.766181 ± 0.000329 0.765973 ± 0.000723 0.766009 ± 0.001216
100 0.766373 ± 0.000239 0.766309 ± 0.000402 0.76611 ± 0.000894 0.765684 ± 0.001677
200 0.76638 ± 0.000311 0.766235 ± 0.000677 0.765694 ± 0.001367 0.764399 ± 0.002264

2

10 0.748858 ± 0.000073 0.7487984 ± 0.000123 0.748821 ± 0.000331 0.748626 ± 0.000591
25 0.769006 ± 0.000162 0.768992 ± 0.000323 0.768705 ± 0.000508 0.768357 ± 0.001308
50 0.769806 ± 0.000220 0.769756 ± 0.000500 0.769549 ± 0.000805 0.76939 ± 0.001034
100 0.770091 ± 0.000258 0.769995 ± 0.000498 0.770028 ± 0.000788 0.769143 ± 0.00172
200 0.770137 ± 0.000319 0.769729 ± 0.000633 0.769066 ± 0.001085 0.767694 ± 0.002746

Table 5: Sensitivity of number of thresholds (|Θ|) with IID setting and K = 10.

(Zhu, Liu, and Han 2019) showed that an honest-but-curious
server can uncover the raw features and labels of a device
by knowing the model architecture, parameters, and commu-
nicated gradient of the loss on the device’s data. Based on
their techniques, (Zhao, Mopuri, and Bilen 2020) showed
that the ground truth label of an example can be extracted
by exploiting the directions of the gradients of the weights
connected to the logits of different classes.

Information Protection in FL. There are three main cate-
gories of information protection techniques in FL: 1) cryp-
tographic methods such as secure multi-party computation
(Bonawitz et al. 2017); 2) system-based methods including
trusted execution environments (Subramanyan et al. 2017);
and 3) perturbation methods that add noise to the commu-
nicated messages (Abadi et al. 2016; McMahan et al. 2018;

Erlingsson et al. 2019; Cheu et al. 2019; Zhu, Liu, and Han
2019). In this paper, we focus on adding DP noise to protect
the private label information during computing AUC in FL.

Conclusion
In this paper, we focus on providing label differential pri-
vacy for computing AUC during the model evaluation in the
setting of hFL. We proposed an approach with label DP to
compute AUC for evaluating models. We conducted exten-
sive experiments to verify the effectiveness of our proposed
methods. We use the Laplace mechanism as an example.
Other DP mechanisms such as the Gaussian mechanism can
be applied to our framework too. In our current design, the
privacy budget of DPAUCLapis linear with the query times
(model evaluation times on the same evaluation set).

15176

References
Abadi, M.; Chu, A.; Goodfellow, I.; McMahan, H. B.;
Mironov, I.; Talwar, K.; and Zhang, L. 2016. Deep learning
with differential privacy. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Se-
curity, 308–318.
Abuadbba, S.; Kim, K.; Kim, M.; Thapa, C.; Camtepe, S. A.;
Gao, Y.; Kim, H.; and Nepal, S. 2020. Can We Use Split
Learning on 1D CNN Models for Privacy Preserving Train-
ing? In Proceedings of the 15th ACM Asia Conference on
Computer and Communications Security, 305–318.
Bebensee, B. 2019. Local Differential Privacy: a tutorial.
CoRR, abs/1907.11908.
Bonawitz, K.; Ivanov, V.; Kreuter, B.; Marcedone, A.; McMa-
han, H. B.; Patel, S.; Ramage, D.; Segal, A.; and Seth, K.
2017. Practical secure aggregation for privacy-preserving
machine learning. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
1175–1191.
Ceballos, I.; Sharma, V.; Mugica, E.; Singh, A.; Roman,
A.; Vepakomma, P.; and Raskar, R. 2020. SplitNN-driven
Vertical Partitioning. arXiv preprint arXiv:2008.04137.
Chen, Y.; Machanavajjhala, A.; Reiter, J. P.; and Barrientos,
A. F. 2016. Differentially Private Regression Diagnostics. In
2016 IEEE 16th International Conference on Data Mining
(ICDM), 81–90.
Cheng, H.-T.; Koc, L.; Harmsen, J.; Shaked, T.; Chandra, T.;
Aradhye, H.; Anderson, G.; Corrado, G.; Chai, W.; Ispir, M.;
et al. 2016. Wide & deep learning for recommender systems.
In Proceedings of the 1st workshop on deep learning for
recommender systems, 7–10.
Cheu, A.; Smith, A.; Ullman, J.; Zeber, D.; and Zhilyaev, M.
2019. Distributed differential privacy via shuffling. In Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, 375–403. Springer.
Duchi, J. C.; Jordan, M. I.; and Wainwright, M. J. 2013. Local
Privacy and Statistical Minimax Rates. In 2013 IEEE 54th
Annual Symposium on Foundations of Computer Science,
429–438.
Dwork, C.; McSherry, F.; Nissim, K.; and Smith, A. 2006.
Calibrating noise to sensitivity in private data analysis. In
Theory of cryptography conference, 265–284. Springer.
Dwork, C.; and Roth, A. 2014a. The algorithmic foundations
of differential privacy. Found. Trends Theor. Comput. Sci.,
9(3-4): 211–407.
Dwork, C.; and Roth, A. 2014b. The Algorithmic Founda-
tions of Differential Privacy. Found. Trends Theor. Comput.
Sci., 9(3–4): 211–407.
Erlingsson, Ú.; Feldman, V.; Mironov, I.; Raghunathan, A.;
Talwar, K.; and Thakurta, A. 2019. Amplification by shuf-
fling: From local to central differential privacy via anonymity.
In Proceedings of the Thirtieth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, 2468–2479. SIAM.
Erlingsson, Ú.; Pihur, V.; and Korolova, A. 2014. RAPPOR:
Randomized Aggregatable Privacy-Preserving Ordinal Re-
sponse. In Ahn, G.; Yung, M.; and Li, N., eds., Proceedings

of the 2014 ACM SIGSAC Conference on Computer and Com-
munications Security, Scottsdale, AZ, USA, November 3-7,
2014, 1054–1067. ACM.
Geiping, J.; Bauermeister, H.; Dröge, H.; and Moeller, M.
2020. Inverting Gradients - How easy is it to break privacy in
federated learning? In Larochelle, H.; Ranzato, M.; Hadsell,
R.; Balcan, M. F.; and Lin, H., eds., Advances in Neural
Information Processing Systems, volume 33, 16937–16947.
Curran Associates, Inc.
Ghazi, B.; Golowich, N.; Kumar, R.; Manurangsi, P.; and
Zhang, C. 2021. On Deep Learning with Label Differential
Privacy. arXiv preprint arXiv:2102.06062.
Ghosh, A.; Chung, J.; Yin, D.; and Ramchandran, K. 2020.
An Efficient Framework for Clustered Federated Learning.
In Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan, M. F.;
and Lin, H., eds., Advances in Neural Information Processing
Systems, volume 33, 19586–19597. Curran Associates, Inc.
Gupta, O.; and Raskar, R. 2018. Distributed learning of deep
neural network over multiple agents. Journal of Network and
Computer Applications, 116: 1–8.
Hamer, J.; Mohri, M.; and Suresh, A. T. 2020. FedBoost: A
Communication-Efficient Algorithm for Federated Learning.
In III, H. D.; and Singh, A., eds., Proceedings of the 37th
International Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, 3973–3983.
PMLR.
Hanzely, F.; Hanzely, S.; Horváth, S.; and Richtarik, P. 2020.
Lower Bounds and Optimal Algorithms for Personalized Fed-
erated Learning. In Larochelle, H.; Ranzato, M.; Hadsell, R.;
Balcan, M. F.; and Lin, H., eds., Advances in Neural Infor-
mation Processing Systems, volume 33, 2304–2315. Curran
Associates, Inc.
Karimireddy, S. P.; Kale, S.; Mohri, M.; Reddi, S.; Stich, S.;
and Suresh, A. T. 2020. SCAFFOLD: Stochastic Controlled
Averaging for Federated Learning. In III, H. D.; and Singh,
A., eds., Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine
Learning Research, 5132–5143. PMLR.
Kasiviswanathan, S. P.; Lee, H. K.; Nissim, K.; Raskhod-
nikova, S.; and Smith, A. D. 2008. What Can We Learn
Privately? CoRR, abs/0803.0924.
Li, O.; Sun, J.; Yang, X.; Gao, W.; Zhang, H.; Xie, J.; Smith,
V.; and Wang, C. 2022. Label Leakage and Protection in Two-
party Split Learning. In The Tenth International Conference
on Learning Representations (ICLR).
Li, Z.; Kovalev, D.; Qian, X.; and Richtarik, P. 2020. Ac-
celeration for Compressed Gradient Descent in Distributed
and Federated Optimization. In III, H. D.; and Singh, A.,
eds., Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine
Learning Research, 5895–5904. PMLR.
Ma, F.; and Wang, P. 2021. Randomized Response Mech-
anisms for Differential Privacy Data Analysis: Bounds and
Applications. CoRR, abs/2112.07397.
Matthews, G.; and Harel, O. 2013a. An Examination of Data
Confidentiality and Disclosure Issues Related to Publication
of Empirical ROC Curves. Academic radiology, 20: 889–96.

15177

Matthews, G. J.; and Harel, O. 2013b. An examination of data
confidentiality and disclosure issues related to publication of
empirical ROC curves. Academic Radiology, 20(7): 889–896.
McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; and
y Arcas, B. A. 2017. Communication-efficient learning of
deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, 1273–1282. PMLR.
McMahan, H. B.; Ramage, D.; Talwar, K.; and Zhang, L.
2018. Learning Differentially Private Recurrent Language
Models. In International Conference on Learning Represen-
tations.
McSherry, F.; and Talwar, K. 2007. Mechanism Design via
Differential Privacy. In 48th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’07), 94–103.
Menon, A.; Rooyen, B. V.; Ong, C. S.; and Williamson, B.
2015. Learning from Corrupted Binary Labels via Class-
Probability Estimation. In Bach, F.; and Blei, D., eds., Pro-
ceedings of the 32nd International Conference on Machine
Learning, volume 37 of Proceedings of Machine Learning
Research, 125–134. Lille, France: PMLR.
Stoddard, B.; Chen, Y.; and Machanavajjhala, A. 2014. Differ-
entially Private Algorithms for Empirical Machine Learning.
CoRR, abs/1411.5428.
Subramanyan, P.; Sinha, R.; Lebedev, I.; Devadas, S.; and
Seshia, S. A. 2017. A formal foundation for secure remote
execution of enclaves. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Se-
curity, 2435–2450.
Sun, J.; Yao, Y.; Gao, W.; Xie, J.; and Wang, C. 2021. De-
fending against Reconstruction Attack in Vertical Federated
Learning. CoRR, abs/2107.09898.
Vepakomma, P.; Gupta, O.; Dubey, A.; and Raskar, R. 2019.
Reducing leakage in distributed deep learning for sensitive
health data. arXiv preprint arXiv:1812.00564.
Vepakomma, P.; Gupta, O.; Swedish, T.; and Raskar, R.
2018a. Split learning for health: Distributed deep learn-
ing without sharing raw patient data. arXiv preprint
arXiv:1812.00564.
Vepakomma, P.; Gupta, O.; Swedish, T.; and Raskar, R.
2018b. Split learning for health: Distributed deep learn-
ing without sharing raw patient data. arXiv preprint
arXiv:1812.00564.
Warner, S. L. 1965. Randomized Response: A Survey Tech-
nique for Eliminating Evasive Answer Bias. Journal of the
American Statistical Association, 60(309): 63–69.
Xiong, X.; Liu, S.; Li, D.; Cai, Z.; Niu, X.; and Del Rey,
A. M. 2020. A Comprehensive Survey on Local Differential
Privacy. Sec. and Commun. Netw., 2020.
Yang, Q.; Liu, Y.; Chen, T.; and Tong, Y. 2019a. Federated
machine learning: Concept and applications. ACM Transac-
tions on Intelligent Systems and Technology (TIST), 10(2):
1–19.
Yang, Q.; Liu, Y.; Chen, T.; and Tong, Y. 2019b. Federated
machine learning: Concept and applications. In ACM Trans-
actions on Intelligent Systems and Technology (TIST), 1–19.
ACM New York, NY, USA.

Yuan, H.; and Ma, T. 2020. Federated Accelerated Stochastic
Gradient Descent. In Larochelle, H.; Ranzato, M.; Hadsell,
R.; Balcan, M. F.; and Lin, H., eds., Advances in Neural Infor-
mation Processing Systems, volume 33, 5332–5344. Curran
Associates, Inc.
Zhao, B.; Mopuri, K. R.; and Bilen, H. 2020. iDLG:
Improved Deep Leakage from Gradients. arXiv preprint
arXiv:2001.02610.
Zhu, L.; Liu, Z.; and Han, S. 2019. Deep leakage from
gradients. In Advances in Neural Information Processing
Systems, 14774–14784.

15178

