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Abstract

Adversarial training (AT) methods are effective against adver-
sarial attacks, yet they introduce severe disparity of accuracy
and robustness between different classes, known as the ro-
bust fairness problem. Previously proposed Fair Robust Learn-
ing (FRL) adaptively reweights different classes to improve
fairness. However, the performance of the better-performed
classes decreases, leading to a strong performance drop. In this
paper, we observed two unfair phenomena during adversarial
training: different difficulties in generating adversarial exam-
ples from each class (source-class fairness) and disparate target
class tendencies when generating adversarial examples (target-
class fairness). From the observations, we propose Balance Ad-
versarial Training (BAT) to address the robust fairness problem.
Regarding source-class fairness, we adjust the attack strength
and difficulties of each class to generate samples near the de-
cision boundary for easier and fairer model learning; consider-
ing target-class fairness, by introducing a uniform distribution
constraint, we encourage the adversarial example generation
process for each class with a fair tendency. Extensive experi-
ments conducted on multiple datasets (CIFAR-10, CIFAR-100,
and ImageNette) demonstrate that our BAT can significantly
outperform other baselines in mitigating the robust fairness
problem (+5-10% on the worst class accuracy)(Our codes can
be found at https://github.com/silvercherry/Improving-Robust-
Fairness-via-Balance-Adversarial-Training).

Introduction
Deep neural networks (DNNs) are vulnerable to adversar-
ial attacks (Szegedy et al. 2014; Goodfellow, Shlens, and
Szegedy 2015a) which fool model predictions by adding
imperceptible perturbations to natural examples. To defend
against adversarial attacks, many defense techniques are de-
signed (Xie et al. 2019; Cohen, Rosenfeld, and Kolter 2019;
Jeong and Shin 2020). In particular, adversarial training
(Madry et al. 2018; Zhang et al. 2019) that injects adver-
sarial examples during training has been proved to be the
most effective methods against adversarial attacks.

However, adversarial training suffers from the robust fair-
ness problem, where the adversarially trained models make a
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(a) Clean accuracy (b) Robust accuracy

Figure 1: AT suffers from robust fairness problem where
adversarially trained models make a severe disparity in accu-
racy and robustness among different classes compared to the
standard training. FRL improves the previously poor perfor-
mance classes, but other classes are decreased.

severe disparity in accuracy and robustness among different
classes (Xu et al. 2021). For example, an adversarially trained
ResNet-18 model on CIFAR-10 has significantly lower clean
and robust accuracy on class cat than other classes; in con-
trast, each class has a similar accuracy during the standard
training (see Figure 1). This phenomenon is firstly defined by
(Xu et al. 2021) and further theoretically justified by studying
a binary classification task under a Gaussian mixture distribu-
tion. To mitigate the robust fairness problem, they proposed
Fair-Robust-Learning (FRL), which adaptively re-weights
each class during training to balance the performance of each
class. However, at a closer inspection, we found that this ro-
bust fairness is achieved by reducing the performance of other
previously better performed classes, leading to a reduction in
both clean and robust accuracy (Figure 1).

In this paper, we conjecture that the mechanisms of the
adversarial example generation process during adversarial
training are related to the robust fairness problem, which can-
not be mitigated by a class re-weighting scheme. More specif-
ically, we found two key observations that are fundamental
to the robust fairness during AT as (1) source-class fairness:
samples from different classes have different difficulties and
require different perturbation budgets for adversarial exam-
ple generation; (2) target-class fairness: the targets of the
generated adversarial examples are biased and yield a clear
tendency towards specified classes. Motivated by the above
observation, we propose the Balance Adversarial Training
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(BAT) framework to mitigate the robust fairness problem
by simultaneously addressing source-class and target-class
fairness issues. To mitigate source-class fairness, we balance
the strength of adversarial attacks on each class with adap-
tive perturbations so that we could bring samples to decision
boundaries which would be easier and fairer for models to
learn; to balance target-class fairness, we force the generated
adversarial examples to follow a uniform distribution towards
target classes, so that we could yield a fairer classifier not
influenced by the tendency of adversarial targets. Extensive
experiments have been conducted on CIFAR-10, CIFAR-100,
and ImageNette, demonstrating that BAT improves robust
fairness while preserving both accuracy and robustness. In
particular, our method outperforms other baselines by large
margins and improves the worst class error rate of 6.31% on
average. Our contributions can be summarized as:

• We discover the source-class and target-class fairness phe-
nomena as the related cause of the robust fairness problem
for AT.

• Based on our observation, we propose a novel AT frame-
work named BAT to mitigate the fairness problem, where
we balance the source-class and target-class fairness.

• Extensive experiments on several datasets have been con-
ducted, which demonstrate the superiority of our approach
compared to other baselines.

Related Work
Adversarial Attacks
Adversarial attacks are inputs intentionally designed to mis-
lead deep learning models but are imperceptible to humans
(Szegedy et al. 2014; Goodfellow, Shlens, and Szegedy
2015b). A long line of work has been proposed to attack
deep learning models (Goodfellow, Shlens, and Szegedy
2015b; Kurakin, Goodfellow, and Bengio 2016a; Liu et al.
2019, 2020b,a). In general, it can be roughly divided into
white-box attacks and black-box attacks. In the white-box
scenario, attackers have complete knowledge of the target
model and often generate attacks using the model gradient
(Goodfellow, Shlens, and Szegedy 2015b; Madry et al. 2018;
Carlini and Wagner 2017); as for the black-box scenario, at-
tackers have limited model knowledge and could often only
obtain the model output (Ilyas et al. 2018; Narodytska and
Kasiviswanathan 2017; Andriushchenko et al. 2019). In this
paper, we follow the commonly-studied setting (Zhang et al.
2019, 2020, 2021b) and mainly focus on defending the more
challenging white-box adversarial attacks.

Adversarial Training
Among the adversarial defenses (Xie et al. 2019; Cohen,
Rosenfeld, and Kolter 2019; Jeong and Shin 2020; Qin et al.
2019; Zhang et al. 2021a), adversarial training (Kurakin,
Goodfellow, and Bengio 2016b) that injects adversarial ex-
amples during training has been proved to be one of the most
effective methods against adversarial attacks. Madry et al. for-
mulated the adversarial training as a min-max optimization
issue and utilize PGD attack (Madry et al. 2018) to solve the
inner maximization for generating adversarial examples. This

method makes a notable advance, and many variants of ad-
versarial training are based on a similar min-max framework
(Zhang et al. 2019; Wang et al. 2020; Wu, Xia, and Wang
2020). Though promising, Xu et al. found that AT introduces
severe disparity of clean and robust accuracy between differ-
ent classes, which is formulated as the robustness fairness
problem. As a preliminary study, they were motivated by
(Buolamwini and Gebru 2018; Zafar et al. 2017; Agarwal
et al. 2018) and used a re-weight and re-margin framework
to finetune a robust model to improve the previously poor
classes. However, they decrease the performance of other
classes and make the overall accuracy (both clean and ro-
bustness) drop. In this paper, we primarily focus on better
understanding and mitigating the robust fairness problem.
Specifically, we discover the source-class and target-class
fairness phenomena and further propose the BAT framework.

Methodology
In this section, we introduce the BAT framework to mitigate
the robust fairness problem. We first clarify definitions and
symbols in Section ; we then show the source-class and tar-
get class fairness phenomena during AT in Section ; finally,
in Section , we propose novel and effective BAT methods
against the robust fairness problem in AT.

Preliminaries and Notations
In this paper, we consider the image classification task. Let
fθ : x → RK represents a deep neural network classifier
parameterized by θ, where K denotes the number of the
output classes, θ denotes the model parameters.

Input Space. Let D ⊂ Rd be the input space. Consider
an input feature xi ∈ D and a label yi is the input space
D = {(xi,yi)}ni=1.

Adversarial Example. We use xadv = x + δ to denote
adversarial examples, where ||δ||p ≤ ϵ. The added perturba-
tion δ could make DNNs misclassify the input into wrong
labels, i.e., fθ(x+ δ) ̸= fθ(x).

Adversarial Training. Given an input image (xi, yi) ,
a model fθ and a loss function ℓ, we aim to build robust
DNNs through the adversarial training scheme by solving the
min-max optimization problem as

min
θ

n∑
i=1

max
δ

ℓ(fθ(xi + δ,yi). (1)

Source-Class Fairness and Target-Class Fairness
In this section, we first illustrate the source-class and target-
class fairness phenomena for adversarial training and then
draw the relation between source&target-class fairness and
robust fairness. For the adversarially-trained model, we select
ResNet-18 (He et al. 2016a) on CIFAR-10 using PGD ad-
versarial training (Madry et al. 2018); we use the untargeted
PGD-ℓ∞ attack with 10 steps under ϵ = 8/255 budgets and
the step size as 2/255 for confusion matrices and 1000 steps
under ϵ = 8/255 budgets and the step size as 0.4/255 for
calculating the average of attack steps. More details are in
the supplementary materials.
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Figure 2: Source-class fairness and Target-class fairness are
both related to the robust fairness. (a): robust fairness of AT;
(b): the average number of attack steps of source-class and
the distribution probability of target-class.

Source-Class Fairness Source-class fairness is defined as
the different difficulties of adversarial example generation
from each class. There are two ways to measure it quantita-
tively. The first is to calculate the class-wise average number
of attack steps required to cause misclassification. This is a
natural way of measuring, and it reflects the distance of the
decision boundary from the clean example. The second way
is to fix the attack strength and count robust samples of each
class, and we can use the diagonal of the confusion matrix to
present the quantity. We can calculate the matrix after each
attack step during the attack, and the matrix from the final
attack step represents the very notion of robust fairness. We
can see that the first measure integrates the second measure
over the attack steps dimension. In Figure 2, we empirically
observe the correlation between the average number of attack
steps and class-wise robust accuracy.

Target-Class Fairness Target-class Fairness is defined as
the target class tendencies when generating adversarial exam-
ples. This quantity is calculated by the distance from the class
distribution of generated adversarial examples to uniform dis-
tribution (as shown in Figure 2), and the class distribution
can be calculated from the sum of the row columns in the
confusion matrix. In Figure 2, we see the inverse correlation
between the distribution probability density and the relative
class robust performance. We conjecture that this quantity
is closely tied to robust fairness, which should be addressed
during adversarial training.

Here we establish the correlation between source/target
class fairness and robust fairness. We conjecture that ad-
dressing the source/target fairness problems in adversarial
training is important to robust fairness. Therefore, we pro-
pose a new adversarial training paradigm BAT that considers
source-class and target-class fairness simultaneously.

Balance Adversarial Training
In this section, we introduce our proposed Balance Adversar-
ial Training (BAT) framework as shown in Figure 3, where
we balance both source-class and target-class fairness.

Balance Source-Class Fairness We attempt to balance
the number of attack steps required to break the model by
adjusting the attacking strength of each class with differ-
ent perturbations. Studies (Rade and Moosavi-Dezfooli 2021;
Zhang et al. 2021b) have revealed that excessive perturbations

are difficult for models to fit and cause a performance drop.
Therefore, we bring these samples to the decision bound-
aries, which would be easier and fairer for models to learn.
Intuitively, for some classes that are difficult to generate ad-
versarial examples, we should add stronger perturbations;
conversely, classes that are easy to attack require fewer per-
turbations so that they would not be so far and “hard” to
learn.

Based on the above analysis, we translate the difficulty of
adversarial generation (i.e., perturbation) to the distance to
decision boundaries and define two types of boundary exam-
ples. Given sample x, let Φ(x) denotes the maximum steps
to the decision boundary, thus we have xΦ

clean as the last
clean example and xΦ

adv as the first adversarial example.
Specifically, xΦ

clean denotes the “last” instance that can be
rightly classified by models after adding perturbations, and
xΦ
adv denotes the “first” instance that is misclassified by mod-

els after perturbing. Therefore, these two types of perturbed
examples are located close to the decision boundaries, which
can be referred to as boundary examples. For each class, we
adversarially perturb their samples with different strengths
(perturbations) to generate the two types of boundary exam-
ples so that we could ensure that each class contains both
misclassified and correctly classified samples with similar
learning hardness for models. Therefore, based on the stan-
dard AT framework of TRADES (Zhang et al. 2019), we can
improve the source-class fairness using Lsource−class as

Lsource−class = min
θ

n∑
i=1

{CE(fθ(x
Φ
clean,i),yi)+

βmaxKL(fθ(xi)fθ(x
Φ
adv,i))},

(2)

where CE is the cross-entropy loss, KL is the Kull-
back–Leibler (KL) divergence, and β is a balancing parame-
ter. Lsource−class could balance the difficulties of adversarial
example generation from source classes by avoiding generat-
ing an excess of adversarial samples for easy-to-attack classes
or too few adversarial samples for hard-to-attack classes.

Balance Target-Class Fairness After balancing the source
class fairness, our next goal is to eliminate the biased tenden-
cies of target classes for adversarial example generation. In
other words, we need to generate adversarial examples with
similar confidences or probabilities towards different classes.
That is, we aim to learn a fair classifier not influenced by
the tendency of adversarial targets. Formally, the generated
adversarial examples should follow a uniform distribution

min
θ

n∑
i=1

{KL(Ufθ(xi)) +KL(Ufθ(xadv,i))} , (3)

where U is a uniform distribution of samples. Inspired by fair
adversarial training (Zafar et al. 2017), we have the following
Lemma describing that the fairness of the AT process will be
influenced by different adversarial perturbations.
Lemma 1. (Du and Wu 2021) The fair classifier f that mini-
mizes the cross entropy loss CE(fθ(xi + δ),yi) subject to
RD(D) ≤ τ , where RD(D) is the risk difference over a
biased distribution D of X ×∆× Y .
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Figure 3: Framework overview. To mitigate source-class fairness, we generate adaptive perturbations where we balance the
strength of adversarial attack on each class, so that we could bring these samples to the decision boundaries which would be
easier and fairer for models to learn. To balance target-class fairness, we force the generated adversarial examples follow a
uniform distribution, so that we could yield a fairer classifier not influenced by the tendency of adversarial targets.

In Lemma 1, X denotes the input features, ∆ denotes the
set of different adversarial perturbations, and Y denotes the
label set. To make Lemma 1 reach the optimal solution (i.e.,
training a fair classifier f ), we can approximate the fairness
constraints RD by using the boundary fairness as follows:

CD(θ) =
1

n

n∑
i=1

(δi − δ̂i)dθ(xi), (4)

where δi is the adversarial perturbation of xi, δ̂i denotes the
mean value of the different adversarial perturbations (differ-
ent steps of attacks) added on xi, and dθ(xi) indicates the
distance of xi to the classifier boundary of f .

According Lemma 1 and the boundary fairness, the overall
function can be written as

Ltotal = Lsource−class + α(
1

n

n∑
i=1

(δi − δ̂i)dθ(xi)− τ)2,

(5)
where α is the trade off parameter. Since the distance between
xΦ
clean and xΦ

adv to δ̂ is closer than the distance between the
clean example x and the maximum adversarial example xadv

(generated by the fixed and largest perturbations), the value
of the fairness loss is less.

In this way, we notice the target-class fairness is related to
the boundary samples and Eq.(3) can be rewritten as

Ltarget−class = min
θ

n∑
i=1

{KL(Ufθ(xΦ
clean,i)+

KL(Ufθ(xΦ
adv,i)}.

(6)

To sum up, by uniforming the distribution of boundary exam-
ples, we could improve the target-class fairness, so that the
target tendency of poor-performing classes could be reduced
and the well-performing classes could be improved.

Overall Training Based on the above analysis, we then
illustrate the overall training of our BAT framework (c.f. Algo-
rithm 1). In particular, we dynamically adjust the perturbation
size to the boundary samples to balance Source-class fair-
ness; we adopt the standard min-max framework and uniform
distribution constraint to the boundary samples to further
balance Target-class fairness. The overall training objective
is shown as

Ltotal = Lsource−class + αLtarget−class, (7)
where α is the balancing parameter. In Algorithm 1, N (0, I)
generates a random unit vector of d dimension, ξ is a small
constant. For each min-batch of data B = {(xi,yi)}mi=1, we
use white-box untargeted PGD attacks to generate adversarial
examples. Under the maximum PGD step K, we stop it when
the samples are attacked successfully (argmaxi f(x̃i) ̸= yi)
and get xΦ

clean and xΦ
adv .

Experiments
In this section, we first illustrate our experimental setups; we
then compare our method with other baselines; finally, we
conduct ablation studies to better understand our framework.

Experimental Setups
Datasets and architectures. We choose the commonly-used
datasets including CIFAR-10/100 and ImageNette. We use
ResNet-18 (He et al. 2016b) and WRN-28-10 (Zagoruyko
and Komodakis 2016) architectures in our experiments.

Compared Baselines. We compare the previously pro-
posed method FRL (Xu et al. 2021) which is the only method
that address robust fairness problem to the best of our knowl-
edge. We also consider the standard adversarial training meth-
ods, including PGD adversarial training (PGD-AT) (Madry
et al. 2018) and TRADES (Zhang et al. 2019).
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Algorithm 1: Balance Adversarial Training
Input: training data (x,y) ∼ D, batch of samples B =
{(xn,yn)}mn=1, model fθ, loss function ℓKL, maximum
PGD step K, perturbation ϵ, step size α, number of epochs
T , learning rate η
Output: robustness network fθ

1: for epoch = 1, . . . , T do
2: Sample a mini-batch {(xi,yi)}mi=1 from B
3: xΦ

clean,i ← xi,x
Φ
adv,i ← xi

4: x̃i ← xi + ξN (0, I)
5: while K > 0 do
6: if argmaxi f(x̃i) ̸= yi then
7: break
8: else
9: xΦ

clean,i ← x̃i

10: x̃i ← ΠB[xi,ϵ]

(
α(∇x̃i

ℓKL(f(x̃i), f(xi)) + x̃i

)
11: xΦ

adv,i ← x̃i

12: K ← K − 1
13: end if
14: end while
15: θ ← θ−η 1

m

∑m
i−1∇θ

[
ℓsource−class(x

Φ
clean,i,x

Φ
adv,i)+

αℓtarget−class(x
Φ
clean,i,x

Φ
adv,i)

]
16: end for

Implementation Details. We use the published codes for
TRADES (Zhang et al. 2019)1, FRL (Xu et al. 2021)2. For
FRL, we use the Reweight+Remargin under the τ = 0.05
and τ = 0.07 which perform best on its all settings; for the
other adversarial training methods, we align our setting to the
robustness benchmarks (Croce et al. 2020; Tang et al. 2021),
and set the ϵ = 8/255, step size 2/255, and the maximum
number of steps as 10. We keep the architecture and main
hyper-parameters the same for BAT and other baselines.

Adversarial Attacks. In this paper, we follow (Xu et al.
2021) and use PGD attacks regarding cross entropy loss
with 20 steps and step size of 2/255 to evaluate the robust
fairness in our main experiment. In addition, we also adopt
AutoAttack (Croce and Hein 2020) to better evaluate the
robustness of our method (c.f. supplementary material).

Evaluation Metrics. For fair comparisons, we follow (Xu
et al. 2021) and use the average and worst-class error rate of
standard (Avg. Std. & Worst Std.), boundary and robustness
(Avg. Bndy. & Worst Bndy. and Avg. Rob. & Worst Rob.) to
evaluate the robust fairness. These metrics comprehensively
measure whether the model provides equal prediction quality
among each class. For all these metrics, the lower the better.

The more details show on the supplementary materials.

Comparison with Baseline Methods
In this section, we evaluate the robust fairness performance
on ours and other baselines. Due to the space limitation, we
only report the results of ResNet18 on CIFAR-10/100 and
ImageNette in the main body of our paper. More results of
different model architectures can be found in the supplemen-

1https://github.com/yaodongyu/TRADES
2https://github.com/hannxu123/fair robust

tary materials. Based on the results shown in Table 1, we can
draw the following observations and conclusions.

(1) For robust fairness (i.e., Worst Std., Worst Bndy., Worst
Rob.), our BAT consistently outperforms other baselines by
large margins on all three datasets. Compared to PGD-AT, it
has around 6%, 10% and 10% reduction to the worst class
standard error, boundary error, and robust error on CIFAR-10;
for FRL, we improve the standard error, boundary error, and
robust error on average 1.3%, 6.8%, 8.1%. More specifically,
we demonstrate the class-wise performance on clean and ad-
versarial examples in Figure 4. We can observe that BAT
could significantly improve the performance on bird, cat
and deer (previously poor classes) while achieving better or
similar performance on other classes. These results demon-
strate the superiority of our BAT in mitigating robustness
fairness problem during adversarial training.

(2) For accuracy and robustness (i.e., Avg Std., Avg. Bndy.,
Avg. Rob.), our BAT achieves the best performance in almost
all cases. The FRL framework improves the worst class errors
compared to standard AT (PGD-AT and TRADES), but it de-
creases the average clean and robust accuracy. For example,
considering FRL (Reweight+Remargin, 0.07), the worst stan-
dard, boundary, and robust errors both decline (i.e., -3.9%,
-6.2% and -5.0%), but the average standard and robust errors
are improved (i.e., +1.67% and +1.64%). Our BAT is able to
avoid this drawback and leads to an overall improvement.

(3) Due to the trade-off between adversarial robustness and
clean accuracy (Tsipras et al. 2019), our average clean accu-
racy (Avg. Std.) is slightly lower than TRADES(1/λ = 1),
which is designed to balance the clean/robust accuracy. How-
ever, our BAT maintains a comparatively high clean accuracy
with fairer robust performance. For instance, compared to
TRADES under 1/λ = 1 which is used to focus on better
clean accuracy, our method shows slightly lower clean accu-
racy (0.09%), but we achieve significantly higher robustness
(-8.42% on average robust errors) and fairer results on both
worst class standard error, boundary error and robust error
(i.e., -1.9%, -13.4% and -9.4%); compared to TRADES
under 1/λ = 6, our BAT outperforms it on all metrics.
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Figure 4: Errors (%) on each class of CIFAR-10 with towards
clean or adversarial examples with ResNet-18 trained under
PGD-AT, TRADES (1/λ = 6), and BAT.

Ablation Studies
In this section, we provide ablation studies on our BAT. We
keep the same settings with Section and use CIFAR-10.
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Dataset Method Avg. Std. Worst Std. Avg. Bndy. Worst Bndy. Avg. Rob. Worst Rob.

CIFAR-10

PGD-AT 13.43 31.40 39.47 54.90 52.90 81.20
TRADES(1/λ = 1) 12.82 27.80 38.91 57.80 51.73 79.70
TRADES(1/λ = 6) 15.79 36.30 31.60 45.60 47.39 73.80
FRL(Reweight+Remargin, 0.05) 14.79 26.90 38.76 53.70 53.55 80.60
FRL(Reweight+Remargin, 0.07) 15.10 27.50 36.16 48.70 51.26 76.20
Ours (BAT) 12.91 25.90 31.57 44.40 44.48 70.30

CIFAR-100

PGD-AT 40.40 80.00 36.95 57.00 77.35 98.00
TRADES(1/λ = 1) 40.14 79.00 38.01 58.00 78.15 99.00
TRADES(1/λ = 6) 44.14 81.00 28.75 53.00 72.89 97.00
FRL(Reweight+Remargin, 0.05) 43.20 82.00 29.00 49.00 73.68 97.00
FRL(Reweight+Remargin, 0.07) 46.50 83.00 28.88 51.00 75.38 97.00
Ours (BAT) 40.25 79.00 28.68 47.00 70.93 94.00

ImageNette

PGD-AT 34.26 46.10 32.92 41.60 67.18 84.20
TRADES(1/λ = 1) 27.22 39.60 36.55 50.20 63.77 83.40
TRADES(1/λ = 6) 29.99 41.10 27.42 38.30 57.41 81.90
FRL(Reweight+Remargin, 0.05) 28.05 40.90 32.00 42.30 60.05 81.30
FRL(Reweight+Remargin, 0.07) 28.28 39.60 31.82 42.60 60.10 81.00
Ours (BAT) 26.80 39.30 30.24 37.60 57.04 80.10

Table 1: Results on CIFAR-10/100 and Imagenette. Our BAT achieves the best robust fairness in almost all cases.

Source-class Loss Target-class Loss No. Avg. Std. Worst Std. Avg. Bndy. Worst Bndy. Avg. Rob. Worst Rob.

Lsource−class(x
Φ
clean,x

Φ
adv)

NA 1 15.01 28.80 31.89 47.20 47.90 73.90
LTarget−class(x

Φ
clean) 2 16.74 30.80 29.34 43.60 46.08 74.50

LTarget−class(x
Φ
adv) 3 17.46 36.20 26.23 41.30 43.69 70.30

LTarget−class(xadv) 4 17.51 37.20 26.59 42.80 44.10 72.80
LTarget−class(x

Φ
clean,x

Φ
adv) 5 12.91 25.90 31.57 44.40 44.48 70.30

Lsource−class(x,xadv) KL(U∥fθ(xΦ
clean)) +KL(U∥fθ(xΦ

adv)) 6 16.65 40.80 32.11 47.20 48.76 77.70

Table 2: Ablations on Source-class Loss and Target-class Loss. No. represent the number of experiment settings.

Source-Class Balance of BAT. Firstly, we study and ab-
late the Source-class Loss of our BAT framework. In our
framework, we use the last clean sample xΦ

clean and the first
adversarial sample xΦ

adv to conduct adversarial training for
better source-class fairness balancing. Here, we use x and
xadv instead of our source-class loss, where x is the clean
example and xadv is the adversarial example generated with
fixed stable steps (i.e., 10 step numbers). Thus, the optimiza-
tion objective of Lsource−class can be changed as follows:

min
θ

n∑
i=1

{
CE(fθ(xi),yi) + βmaxKL(fθ(xi)∥fθ(xadv,i))

}
.

(8)
The hyper-parameter β and other settings are kept the same as
our main experiment. From Table 2, we can observe that our
Source-class loss with decision boundary samples achieves
the best performance on all evaluation metrics (No.5 vs. No.6
in Table 2), which indicates that the decision boundary sam-
ples play a critical role in mitigating the robust fairness prob-
lem. In addition, we found that our Source-class loss has a
good behavior on both standard accuracy (on average +0.48%
of four settings) and the robust accuracy (on average +2.68%
of four settings). This shows that introducing fixed perturba-
tions for each class is harmful to the overall performance.

Target-Class Balance of BAT. Moreover, we ablate the
Target-class Loss. Specifically, we first remove the target loss
(No.1 in Table 2), we then remove the uniform distribution

regularization for the first adversarial samples xΦ
adv (No.2 in

Table 2) and last clean sample xΦ
clean (No.3 in Table 2), re-

spectively; finally, we use xadv instead of our target-class loss
(No.4 in Table 2). For the samples of Target-class loss, we
found that uses fixed stable steps would significantly increase
the robust fairness problem, which indicates the importance
of our Target-class loss. More precisely, uniformally regular-
izing xΦ

clean increases the clean accuracy while decreases the
robustness; while xΦ

adv shows the inverse phenomenon. This
phenomenon demonstrates that xΦ

clean and xΦ
adv are suffered

from the trade-off between clean and robust accuracy. Our
Target-class loss with both boundary samples has an over-
all improvement. Moreover, we found that only introducing
Source-class loss would improve the fairness on clean data,
while our Target-class loss could improve the fairness on
perturbed examples. This may demonstrate that Source-class
balance focuses on the performance of clean examples, and
Target-class balance is more concentrated on the fairness of
robustness. We further verify this in Section .

Analysis and Discussion

In this section, we present some analyses and discussions to
better understand our BAT and the robust fairness problem.
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Avg. Std. Worst Std. Avg. Bndy. Worst Bndy. Avg. Rob. Worst Rob.
FAT 12.54 27.80 38.98 57.70 51.52 83.20
GAIRAT 16.74 34.90 32.42 46.90 49.16 79.30

Table 3: Comparison with FAT and GAIRAT on CIFAR10. Our BAT shows better performance on all metrhics, indicating the
importance of addressing both source-class and target-class fairness.

Avg. Std. Worst Std. Avg. Bndy. Worst Bndy. Avg. Rob. Worst Rob.
Wo2,3,4,5 5.15 6.43 30.52 38.23 35.67 49.28
Wo1,6,8,9 17.83 32.64 40.09 52.59 57.92 80.52

Table 4: Training with all dataset, training without previously poor classes (i.e., 2, 3, 4, and 5), and training without previously
good classes (i.e., 1, 6, 8, and 9).

Is Instance-Reweighting AT Helpful?
We have shown the class-reweighting scheme by FRL is
not actually useful to robust fairness, but how instance-
reweighting in adversarial training affect robust fairness?

There exist several studies that exploit the instance-
reweighting technique to better balance the clean/robust-
ness trade-off of AT, and here we examine Friendly Adver-
sarial Training (FAT) (Zhang et al. 2020) and Geometry-
aware Instance-Reweighted Adversarial Training (GAIRAT)
(Zhang et al. 2021b). FAT uses friendly adversarial samples,
which are the least misclassified generated by attacks, while
GAIRAT up-weights the boundary instance during AT. From
Table 3, our BAT achieves better performance on robust fair-
ness than FAT and GAIRAT (1.9%, 13.3%, 12.9% and 9.0%,
2.5%, 9.0%) in terms of Worst Std., Worst Bndy., and Worst
Rob. Meanwhile, BAT also shows better clean and robustness
trade-off performance than these two methods.

We provide a closer inspection of these results. The key
observation is that FAT and GAIRAT re-weighting directions
are different: the former decreases the loss by boundary ex-
amples, while the latter increases it. From Table 3, we can
see the trade-off between worst clean and worst robustness.
If we refer to Table 1, we can see the performance of FAT
is close to TRADES 1/λ = 1, which has weak regulariza-
tion of AT, and that of GAIRAT is close to PGD-AT, which
adds more perturbation to adversarial examples. We can con-
clude that excessive perturbations would cause a performance
drop in clean accuracy. Thus, the source-class fairness term
in BAT may play a similar role to the instance reweighting
scheme of FAT, and we see the improvement in terms of
clean fairness (Section ). This also verifies our hypothesis on
source-class fairness, which is more closely related to clean
accuracy. Thus, FAT and GAIRAT could only improve robust
fairness to some extent due to the ignorance of target-class
fairness. Despite that target fairness cannot be used alone
to get robustness, combining the terms are important to the
robustness measure in fairness, which makes BAT better than
all baselines and other instance-reweighting methods.

Does the Devil Exist in the Dataset?
We notice that the robust fairness problem relates to the
inherent difficulty in robust learning. Since AT models often
show weak performance on specific classes within a dataset,

Bird

Dog

Cat

Deer

Train Test

Figure 5: Bad case study. Test images that are failed by PGD-
AT but correctly classified by our BAT are quite similar to
the training examples of wrongly classified classes.

we try to remove these classes from the dataset and then
re-train models. In particular, we adversarially train ResNet-
18 models using PGD-AT on CIFAR-10, where we erase
previously poor classes (i.e., 2, 3, 4, and 5) or previously
good classes (i.e., 1, 6, 8, and 9), respectively. As shown
in Table 4, models trained on datasets without previously
poor classes show an obvious decrease in worst class metrics,
which indicates that the robust fairness problem is somewhat
mitigated by removing the “hard” classes.

Some of the improvement in fairness comes from the miti-
gation of spurious correlation (Sagawa et al. 2020). We visu-
alize some bad cases of these hard classes (e.g., 2, 3, 4, and
5 in CIFAR-10) in Figure 5, where models trained by our
BAT could correctly recognize these images while PGD-AT
fails. We see PGD-AT suffers from the spurious correlation
with the background. For example, the test image Bird has a
similar blue background and two wings to the class Plane.

Conclusion
We find the correlation of robust fairness with source-class
and target-class fairness. Based on the observation, we further
propose Balance Adversarial Training to mitigate the robust
fairness in adversarial training, where we simultaneously
balance source-class and target-class fairness. Experiments
demonstrate that BAT significantly improves robust fairness.
In the future, we will study the generalization of robust fair-
ness under more attacks and design metrics considering clean,
robustness, and robust fairness.
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