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Abstract

The aim of Inverse Reinforcement Learning (IRL) is to in-
fer a reward function R from a policy π. To do this, we need
a model of how π relates to R. In the current literature, the
most common models are optimality, Boltzmann rationality,
and causal entropy maximisation. One of the primary moti-
vations behind IRL is to infer human preferences from hu-
man behaviour. However, the true relationship between hu-
man preferences and human behaviour is much more complex
than any of the models currently used in IRL. This means that
they are misspecified, which raises the worry that they might
lead to unsound inferences if applied to real-world data. In
this paper, we provide a mathematical analysis of how ro-
bust different IRL models are to misspecification, and answer
precisely how the demonstrator policy may differ from each
of the standard models before that model leads to faulty in-
ferences about the reward function R. We also introduce a
framework for reasoning about misspecification in IRL, to-
gether with formal tools that can be used to easily derive the
misspecification robustness of new IRL models.

Introduction
Inverse Reinforcement Learning (IRL) is an area of ma-
chine learning concerned with inferring what objective an
agent is pursuing based on the actions taken by that agent
(Ng and Russell 2000). IRL roughly corresponds to the no-
tion of revealed preferences in psychology and economics,
since it aims to infer preferences from behaviour (Rothkopf
and Dimitrakakis 2011). IRL has many possible applica-
tions. For example, it has been used in scientific contexts,
as a tool for understanding animal behaviour (Yamaguchi
et al. 2018). It can also be used in engineering contexts;
many important tasks can be represented as sequential de-
cision problems, where the goal is to maximise a reward
function over several steps (Sutton and Barto 2018). How-
ever, for many complex tasks, it can be very challenging to
manually specify a reward function that incentivises the in-
tended behaviour. IRL can then be used to learn a good re-
ward function, based on demonstrations of correct behaviour
(e.g. Abbeel, Coates, and Ng 2010; Singh et al. 2019). Over-
all, IRL relates to many fundamental questions about goal-
directed behaviour and agent-based modelling.
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There are two primary motivations for IRL. The first mo-
tivation is to use IRL as a tool for imitation learning (e.g.
Hussein et al. 2017). For these applications, it is not funda-
mentally important whether the learnt reward function actu-
ally corresponds to the true intentions of the demonstrator,
as long as it helps the imitation learning process. The second
motivation is to use IRL to understand an agent’s preferences
and motives (e.g. Hadfield-Menell et al. 2016). From this
perspective, the goal is to learn a reward that captures the
demonstrator’s true intentions. This paper was written with
mainly the second motivation in mind.

An IRL algorithm must make assumptions about how the
preferences of an agent relate to its behaviour. Most IRL al-
gorithms are based on one of three models; optimality, Boltz-
mann rationality, or causal entropy maximisation. These be-
havioural models are very simple, whereas the true rela-
tionship between a person’s preferences and their actions of
course is incredibly complex. In fact, there are observable
differences between human data and data synthesised using
these standard assumptions (Orsini et al. 2021). This means
that the behavioural models are misspecified, which raises
the concern that they might systematically lead to flawed in-
ferences if applied to real-world data.

In this paper, we study how robust the behavioural models
in IRL are to misspecification. To do this, we first introduce
a theoretical framework for analysing misspecification ro-
bustness in IRL. We then derive a number of formal tools
for inferring the misspecification robustness of IRL models,
and apply these tools to exactly characterise what forms of
misspecification the standard IRL models are (or are not) ro-
bust to. Our analysis is general, as it is carried out in terms
of behavioural models, rather than algorithms, which means
that our results will apply to any algorithm based on these
models. Moreover, the tools we introduce can also be used
to easily derive the misspecification robustness of new be-
havioural models, beyond those we consider in this work.

The motivation behind this work is to provide a theoret-
ically principled understanding of whether and when IRL
methods are (or are not) applicable to the problem of in-
ferring a person’s (true) preferences and intentions. Human
behaviour is very complex, and while a behavioural model
can be more or less accurate, it will never be realistically
possible to create a behavioural model that is completely
free from misspecification (except possibly for in narrow do-
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mains). Therefore, if we wish to use IRL as a tool for pref-
erence elicitation, then it is crucial to have an understanding
of how robust the IRL problem is to misspecification. In this
paper, we contribute towards building this understanding.

Related Work
It is well-known that the standard behavioural models of
IRL are misspecified in most applications. However, there
has nonetheless so far not been much research on this topic.
Freedman, Shah, and Dragan (2020) study the effects of
choice set misspecification in IRL (and reward inference
more broadly), following the formalism of Jeon, Milli, and
Dragan (2020). Our work is wider in scope, and aims to pro-
vide necessary and sufficient conditions which fully describe
the kinds of misspecification to which each behavioural
model is robust. In the field of statistics more broadly, mis-
specification is a widely studied issue (White 1994).

There has been a lot of work on reducing misspecification
in IRL. One approach to this is to manually add more de-
tail to the models (Evans, Stuhlmueller, and Goodman 2015;
Chan, Critch, and Dragan 2021), and another approach is to
try to learn the behavioural model from data (Armstrong and
Mindermann 2019; Shah et al. 2019). In contrast, our work
aims to understand how sensitive IRL is to misspecification
(and thus to answer the question of how much misspecifica-
tion has to be removed).

Skalse et al. (2022a) study the partial identifiability of
various reward learning models. Our work uses similar tech-
niques, and can be viewed as an extension of their work. The
issue of partial identifiability in IRL has also been studied
by Ng and Russell (2000); Dvijotham and Todorov (2010);
Cao, Cohen, and Szpruch (2021); Kim et al. (2021).

We will discuss the question of what happens if a reward
function is changed or misspecified. This question is also
investigated by many previous works, including e.g. Gleave
et al. (2021); Skalse et al. (2022b); Jenner, van Hoof, and
Gleave (2022); Pan, Bhatia, and Steinhardt (2022).

Preliminaries
A Markov Decision Processes (MDP) is a tuple
(S,A, τ, µ0, R, γ) where S is a set of states, A is a set of
actions, τ : S×A ⇝ S is a transition function, µ0 ∈ ∆(S)
is an initial state distribution, R : S×A×S → R is a
reward function, and γ ∈ (0, 1] is a discount rate. Here
f : X ⇝ Y denotes a probabilistic mapping from X to Y .
In this paper, we assume that S and A are finite. A policy is
a function π : S ⇝ A. A trajectory ξ = ⟨s0, a0, s1, a1 . . . ⟩
is a possible path in an MDP. The return function G
gives the cumulative discounted reward of a trajectory,
G(ξ) =

∑∞
t=0 γ

tR(st, at, st+1), and the evaluation
function J gives the expected trajectory return given a
policy, J (π) = Eξ∼π [G(ξ)]. A policy maximising J is
an optimal policy. The value function V π : S → R of a
policy encodes the expected future discounted reward from
each state when following that policy. The Q-function is
Qπ(s, a) = E [R(s, a, S′) + γV π(S′)], and the advantage
function is Aπ(s, a) = Qπ(s, a) − V π(s). Q⋆, V ⋆, and
A⋆ denote the Q-, value, and advantage functions of the

optimal policies. In this paper, we assume that all states in
S are reachable under τ and µ0.

In IRL, it is typically assumed that the preferences of the
observed agent are described by a reward functionR, that its
environment is described by an MDP, and that its behaviour
is described by a (stationary) policy π. An IRL algorithm
also needs a behavioural model of how π relates to R. In the
current IRL literature, the most common models are:

1. Optimality: We assume that π is optimal under R (e.g.
Ng and Russell (2000)).

2. Boltzmann Rationality: We assume that P(π(s) = a) ∝
eβQ

⋆(s,a), where β is a temperature parameter (e.g. Ra-
machandran and Amir (2007)).

3. Maximal Causal Entropy: We assume that π max-
imises the causal entropy objective, which is given by
E[
∑∞
t=0 γ

t(R(st, at, st+1) + αH(π(st+1)))], where α
is a weight and H is the Shannon entropy function (e.g.
Ziebart (2010)).

In this paper, we will often talk about pairs or sets of reward
functions. In these cases, we will give each reward function
a subscript Ri, and use Ji, V ⋆i , and V πi , and so on, to de-
note Ri’s evaluation function, optimal value function, and π
value function, and so on.

Theoretical Framework
We here introduce the theoretical framework that we will
use to analyse how robust various behavioural models are to
misspecification. This framework is rather abstract, but it is
quite powerful, and makes our analysis easy to carry out.

Definitions and Framework
For a given set of states S and set of actions A, let R be the
set of all reward functionsR : S×A×S → R definable with
S and A. Moreover, if P and Q are partitions of a set X , we
write P ⪯ Q if x1 ≡P x2 ⇒ x1 ≡Q x2 for x1, x2 ∈ X . We
will use the following definitions:

1. A reward object is a function f : R → X , where X is
any set.

2. The ambiguity Am(f) of f is the partition of R given by
R1 ≡f R2 ⇐⇒ f(R1) = f(R2).

3. Given a partition P of R, we say that f is P -admissible
if Am(f) ⪯ P , i.e. f(R1) = f(R2) ⇒ R1 ≡P R2.

4. Given a partition P of R, we say that f is P -robust to
misspecification with g if f is P -admissible, f ̸= g,
Im(g) ⊆ Im(f), and f(R1) = g(R2) =⇒ R1 ≡P R2.

5. A reward transformation is a function t : R → R.
6. If F andG are sets of reward transformations, then F ◦G

is the set of all transformations that can be obtained by
composing transformations in F andG arbitrarily, in any
order. Note that F ◦G = G ◦ F .

We will now explain and justify each of these definitions.
First of all, anything that can be computed from a reward
function can be seen as a reward object. For example, we
could consider a function b that, given a reward R, returns
the Boltzmann-rational policy with temperature β in the
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MDP ⟨S,A, τ, µ0, R, γ⟩, or a function r that, from R, gives
the return function G in the MDP ⟨S,A, τ, µ0, R, γ⟩. This
makes reward objects a versatile abstract building block for
more complex constructions. We will mainly, but not exclu-
sively, consider reward objects with the type R → Π, i.e.
functions that compute policies from rewards.

We can use reward objects to create an abstract model of
a reward learning algorithm L as follows; first, we assume,
as reasonable, that there is a true underlying reward function
R⋆, and that the observed training data is generated by a re-
ward object g, so that L observes g(R⋆). Here g(R⋆) could
be a distribution, which models the case where L observes a
sequence of random samples from some source, but it could
also be a single, finite object. Next, we suppose that L has a
model f of how the observed data relates to R⋆, where f is
also a reward object, and that L learns (or converges to) a re-
ward function RH such that f(RH) = g(R⋆). If f ̸= g then
f is misspecified, otherwise f is correctly specified. Note
that this primarily is a model of the asymptotic behaviour of
learning algorithms, in the limit of infinite data.

There are two ways to interpret Am(f). First, we can see
it as a bound on the amount of information we can get about
R⋆ by observing (samples from) f(R⋆). For example, mul-
tiple reward functions might result in the same Boltzmann-
rational policy. Thus, observing trajectories from that policy
could never let us distinguish between them: this ambigu-
ity is described by Am(b). We can also see Am(f) as the
amount of information we need to have about R⋆ to con-
struct f(R⋆). Next, if Am(f) ⪯ Am(g) and f ̸= g, this
means that we get less information about R⋆ by observing
g(R⋆) than f(R⋆), and that we would need more informa-
tion to construct f(R⋆) than g(R⋆). For an extensive discus-
sion about these notions, see Skalse et al. (2022a).

Intuitively, we want to say that a behavioural model is ro-
bust to some type of misspecification if an algorithm based
on that model will learn a reward function that is “close
enough” to the true reward function when subject to that
misspecification. To formalise this intuitive statement, we
first need a definition of what it should mean for two re-
ward functions to be “close enough”. In this work, we have
chosen to define this in terms of equivalence classes. Specif-
ically, we assume that we have a partition P of R (which, of
course, corresponds to an equivalence relation), and that the
learnt reward function RH is “close enough” to the true re-
ward R⋆ if they are in the same class, RH ≡P R⋆. We will
for now leave open the question of which partition P of R
to pick, and later revisit this question in Section .

Given this, we can now see that our definition of P -
admissibility is equivalent to stating that a learning algo-
rithm L based on f is guaranteed to learn a reward function
that is P -equivalent to the true reward function when there
is no misspecification. Furthermore, our definition of P -
robustness says that f is P -robust to misspecification with
g if any learning algorithm L based on f is guaranteed to
learn a reward function that is P -equivalent to the true re-
ward function when trained on data generated from g. The
requirement that Im(g) ⊆ Im(f) ensures that the learning
algorithm L is never given data that is impossible accord-
ing to its model. Depending on how L reacts to such data,

it may be possible to drop this requirement. We include it,
since we want our analysis to apply to all algorithms. The
requirement that f is P -admissible is included to rule out
some uninteresting edge cases.

Reward transformations can be used to characterise the
ambiguity of reward objects, or define other partitions of R.
Specifically, we say that a partition P corresponds to a set of
reward transformations TP if TP contains all reward trans-
formations t that satisfy t(R) ≡P R. If P is the ambiguity
of f then TP would be the set of all reward transformations
that satisfy f(R) = f(t(R)).

Fundamental Lemmas
We here give two fundamental lemmas that we will later use
to prove our core results. These lemmas can also be used to
easily derive the misspecification robustness of new models,
beyond those considered in this work. All of our proofs are
provided in the supplementary material, which also contains
several additional results about our framework.

Lemma 1. If f is not P -robust to misspecification with g,
and Im(g) ⊆ Im(f), then for any h, h ◦ f is not P -robust to
misspecification with h ◦ g.

This lemma states that if we have an object h ◦ f that
can be computed from some intermediary object f , and f is
not P -robust to some form of misspecification, then h ◦ f
is likewise not robust to the corresponding misspecification.
In other words, any misspecification that f is sensitive to, is
“inherited” by all objects that can be computed from f .

Lemma 2. If f is P -admissible, and T is the set of all re-
ward transformations that preserve P , then f is P -robust to
misspecification with g if and only if g = f ◦ t for some
t ∈ T where f ◦ t ̸= f .

This lemma gives us a very powerful tool for charac-
terising the misspecification robustness of reward objects.
Specifically, we can derive the set of objects to which f is
P -robust by first deriving the set T of all transformations
that preserve P , and then composing f with each t ∈ T .

Reward Transformations
We here introduce several classes of reward transformations,
that we will later use to express our results. First recall po-
tential shaping (Ng, Harada, and Russell 1999):

Definition 3 (Potential Shaping). A potential function is a
function Φ : S → R. Given a discount γ, we say that R2 ∈
R is produced by potential shaping of R1 ∈ R if for some
potential Φ,

R2(s, a, s
′) = R1(s, a, s

′) + γ · Φ(s′)− Φ(s).

Potential shaping is widely used for reward shaping. We
next define two classes of transformations that were used by
Skalse et al. (2022a), starting with S′-redistribution.

Definition 4 (S′-Redistribution). Given a transition function
τ , we say that R2 ∈ R is produced by S′-redistribution of
R1 ∈ R if

ES′∼τ(s,a) [R1(s, a, S
′)] = ES′∼τ(s,a) [R2(s, a, S

′)] .
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If s1, s2 ∈ Supp(τ(s, a)) then S′-redistribution can in-
crease R(s, a, s1) if it decreases R(s, a, s2) proportionally.
S′-redistribution can also changeR arbitrarily for transitions
that occur with probability 0. We next consider optimality-
preserving transformations:
Definition 5. Given a transition function τ and a discount γ,
we say thatR2 ∈ R is produced by an optimality-preserving
transformation ofR1 ∈ R if there exists a function ψ : S →
R such that

ES′∼τ(s,a)[R2(s, a, S
′) + γ · ψ(S′)] ≤ ψ(s),

with equality if and only if a ∈ argmaxa∈AA
⋆
1(s, a).

An optimality preserving transformation of R1 lets us
pick an arbitrary new value function ψ, and then adjustR2 in
any way that respects the new value function and the argmax
of A⋆1 — the latter condition ensures that the same actions
(and hence the same policies) stay optimal.

Based on these definitions, we can now specify several
sets of reward transformations:
1. Let PSγ be the set of all reward transformations t such

that t(R) is given by potential shaping of R relative to
the discount γ.

2. Let S′Rτ be the set of all reward transformations t such
that t(R) is given by S′-redistribution ofR relative to the
transition function τ .

3. Let LS be the set of all reward transformations t that scale
each reward function by some positive constant, i.e. for
each R there is a c ∈ R+ such that t(R)(s, a, s′) = c ·
R(s, a, s′).

4. Let CS be the set of all reward transformations t that shift
each reward function by some constant, i.e. for each R
there is a c ∈ R such that t(R)(s, a, s′) = R(s, a, s′)+c.

5. Let OPτ,γ be the set of all reward transformations t such
that t(R) is given by an optimality-preserving transfor-
mation of R relative to τ and γ.

Note that these sets are defined in a way that allows their
transformations to be “sensitive” to the reward function it
takes as input. For example, a transformation t ∈ PSγ might
apply one potential function Φ1 toR1, and a different poten-
tial function Φ2 to R2. Similarly, a transformation t ∈ LS
might scale R1 by a positive constant c1, and R2 by a differ-
ent constant c2, etc. Note also that CS ⊆ PSγ (for all γ), and
that all sets are subsets of OPτ,γ (see Skalse et al. 2022a).

Two Equivalence Classes for Reward Functions
Our definition of misspecification robustness is given rela-
tive to an equivalence relation on R. In this section, we de-
fine two important equivalence classes, and characterise the
transformations that preserve them. Our later results will be
given relative to these two equivalence classes.

Given an environment M = ⟨S,A, τ, µ0, , γ⟩ and two
reward functions R1, R2, we say that R1 ≡OPTM R2 if
⟨S,A, τ, µ0, R1, γ⟩ and ⟨S,A, τ, µ0, R2, γ⟩ have the same
optimal policies, and that R1 ≡ORDM R2 if they have the
same ordering of policies. 1 Note that if R1 ≡ORDM R2

1By this, we mean that J1(π) > J1(π
′) if and only if J2(π) >

J2(π
′), for all pairs of policies π, π′.

then R1 ≡OPTM R2. Skalse et al. (2022a) showed that
R ≡OPTM t(R) for all R if and only if t ∈ OPτ,γ (their
Theorem 3.2). We characterise the transformations that pre-
serve ORDM, which is a novel contribution.

Theorem 6. R1 ≡ORDM R2 if and only if R2 = t(R1) for
some t ∈ S′Rτ ◦ PSγ ◦ LS.

Stated differently, Theorem 6 is saying that the MDPs
(S,A, τ, µ0, R1, γ) and (S,A, τ, µ0, R2, γ) have the same
ordering of policies if and only if R1 and R2 differ by
potential shaping (with γ), positive linear scaling, and S′-
redistribution (with τ ), applied in any order.

OPTM and ORDM are two equivalence relations that
should be relevant and informative in almost any context,
which is why we have chosen to carry out our analysis in
terms of these two relations. However, other partitions could
be selected instead. For example, if we know that the learnt
reward RH will be used to compute a reward object f , then
Am(f) would be a natural choice.

We now have results for reasoning about misspecification
robustness in IRL. In particular, Lemma 2 tells us that if we
want to find the functions that f is P -robust to misspecifi-
cation with, then all we need to do is find the reward trans-
formations that preserve P , and then compose them with f .
OPTM and ORDM are reasonable choices of P , and the
transformations that preserve them were just provided.

Misspecification Robustness of IRL Models
We here give our main results on the misspecification ro-
bustness of IRL, looking both at misspecification of the be-
havioural model, as well as of the MDP.

Misspecified Behavioural Models
Let Π+ be the set of all policies such that π(a | s) > 0 for
all s, a, let M = ⟨S,A, τ, µ0, , γ⟩, and let FM be the set of
all functions fM : R → Π+ that, given R, returns a policy
π which satisfies

argmaxa∈Aπ(a | s) = argmaxa∈AQ
⋆(s, a),

where Q⋆ is the optimal Q-function in ⟨S,A, τ, µ0, R, γ⟩.
In other words, FM is the set of functions that generate
policies which take each action with positive probability,
and that take the optimal actions with the highest probabil-
ity. This class is quite large, and includes e.g. Boltzmann-
rational policies (for any β), but it does not include opti-
mal policies (since they do not take all actions with positive
probability) or causal entropy maximising policies (since
they may take suboptimal actions with high probability).

Theorem 7. Let fM ∈ FM be surjective onto Π+. Then
fM is OPTM-robust to misspecification with g if and only
if g ∈ FM and g ̸= fM.

Boltzmann-rational policies are surjective onto Π+,2 so
Theorem 7 exactly characterises the misspecification to
which the Boltzmann-rational model is OPTM-robust.

2If a policy π takes each action with positive probability, then
its action probabilities are always the softmax of some Q-function,
and any Q-function corresponds to some reward function.
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Let us briefly comment on the requirement that π(a | s) >
0, which corresponds to the condition that Im(g) ⊆ Im(f)
in our definition of misspecification robustness. If a learn-
ing algorithm L is based on a model f : R → Π+ then it
assumes that the observed policy takes each action with pos-
itive probability in every state. What happens if such an al-
gorithm L is given data from a policy that takes some action
with probability 0? This depends on L, but for most sensible
algorithms the result should simply be that L assumes that
those actions are taken with a positive but low probability.
This means that it should be possible to drop the require-
ment that π(a | s) > 0 for most reasonable algorithms.

We next turn our attention to the misspecification to which
the Boltzmann-rational model is ORDM-robust. Let ψ :
R → R+ be any function from reward functions to pos-
itive real numbers, and let bMψ : R → Π+ be the func-
tion that, given R, returns the Boltzmann-rational policy
with temperature ψ(R) in ⟨S,A, τ, µ0, R, γ⟩. Moreover, let
BM = {bMψ : ψ ∈ R → R+} be the set of all such func-
tions bMψ . This set includes Boltzmann-rational policies; just
let ψ return a constant β for all R.

Theorem 8. If bMψ ∈ BM then bMψ is ORDM-robust to
misspecification with g if and only if g ∈ BM and g ̸= bMψ .

This means that the Boltzmann-rational model is ORDM-
robust to misspecification of the temperature parameter β,
but not to any other form of misspecification.

We next turn our attention to optimal policies. First of all,
a policy is optimal if and only if it only gives support to op-
timal actions, and if an optimal policy gives support to mul-
tiple actions in some state, then we would normally not ex-
pect the exact probability it assigns to each action to convey
any information about the reward function. We will there-
fore only look at the actions that the optimal policy takes,
and ignore the relative probability it assigns to those ac-
tions. Formally, we will treat optimal policies as functions
π⋆ : S → P(argmaxa∈AA

⋆) − {∅}; i.e. as functions that
for each state return a non-empty subset of the set of all ac-
tions that are optimal in that state. Let OM be the set of all
functions that return such policies, and let oMm ∈ OM be the
function that, given R, returns the function that maps each
state to the set of all actions which are optimal in that state.
Intuitively, oMm corresponds to optimal policies that take all
optimal actions with positive probability.

Theorem 9. No function in OM is ORDM-admissible. The
only function in OM that is OPTM-admissible is oMm , but
oMm is not OPTM-robust to any misspecification.

This essentially means that the optimality model is not
robust to any form of misspecification. We finally turn our
attention to causal entropy maximising policies. As before,
let ψ : R → R+ be any function from reward functions
to positive real numbers, and let cMψ : R → Π+ be the
function that, given R, returns the causal entropy maximis-
ing policy with weight ψ(R) in ⟨S,A, τ, µ0, R, γ⟩. Further-
more, let CM = {cMψ : ψ ∈ R → R+} be the set of all such
functions cMψ . This set includes causal entropy maximising
policies; just let ψ return a constant α for all R.

Theorem 10. If cMψ ∈ CM then cMψ is ORDM-robust to
misspecification with g if and only if g ∈ CM and g ̸= cMψ .

In other words, the maximal causal entropy model is
ORDM-robust to misspecification of the weight α, but not
to any other kind of misspecification.

Finally, let us briefly discuss the misspecification to
which the maximal causal entropy model is OPTM-robust.
Lemma 2 tells us that cMψ ∈ CM is OPTM-robust to mis-
specification with g if g = cMψ ◦ t for some t ∈ OPτ,γ .
In other words, if g(R1) = π then there must exist an R2

such that π maximises causal entropy with respect to R2,
and such that R1 and R2 have the same optimal policies. It
seems hard to express this as an intuitive property of g, so
we have refrained from stating this result as a theorem.

Misspecified MDPs
A reward object can be parameterised by a γ or τ , implic-
itly or explicitly. For example, the reward objects in Section
are parameterised by M = ⟨S,A, τ, µ0, , γ⟩. In this sec-
tion, we explore what happens if these parameters are mis-
specified. We show that nearly all behavioural models are
sensitive to this type of misspecification.

Theorems 7-10 already tell us that the standard be-
havioural models are not (ORDM or OPTM) robust to mis-
specified γ or τ , since the sets FM, BM, and CM, all are
parameterised by γ and τ . We will generalise this further. To
do this, we first derive two lemmas. We say that τ is trivial
if for each s ∈ S , τ(s, a) = τ(s, a′) for all a, a′ ∈ A.

Lemma 11. If fτ1 = fτ1 ◦ t for all t ∈ S′Rτ1 then fτ1 is
not OPTM-admissible for M = ⟨S,A, τ2, µ0, , γ⟩ unless
τ1 = τ2.

Lemma 12. If fγ1 = fγ1 ◦ t for all t ∈ PSγ1 then fγ1 is
not OPTM-admissible for M = ⟨S,A, τ, µ0, , γ2⟩ unless
γ1 = γ2 or τ is trivial.

Note that if f is not OPTM-admissible then f is also
not ORDM-admissible. From these lemmas, together with
Lemma 1, we get the following result:

Theorem 13. If fτ1 = fτ1 ◦ t for all t ∈ S′Rτ1 and fτ2 =

fτ2 ◦ t for all t ∈ S′Rτ2 , then fτ1 is not OPTM-robust
to misspecification with fτ2 for any M. Moreover, if fγ1 =
fγ1 ◦ t for all t ∈ PSγ1 and fγ2 = fγ2 ◦ t for all t ∈ PSγ2 ,
then fγ1 is not OPTM-robust to misspecification with fγ2
for any M whose transition function τ is non-trivial.

In other words, if a behavioural model is insensitive to
S′-redistribution, then that model is not OPTM-robust (and
therefore also not ORDM-robust) to misspecification of the
transition function τ . Similarly, if the behavioural model
is insensitive to potential shaping, then that model is not
OPTM-robust (and therefore also not ORDM-robust) to
misspecification of the discount parameter γ. Note that all
transformations in S′Rτ and PSγ preserve the ordering of
policies. This means that an IRL algorithm must specify τ
and γ correctly in order to guarantee that the learnt reward
RH has the same optimal policies as the true underlying
reward R∗, unless the algorithm is based on a behavioural
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model which says that the observed policy depends on fea-
tures of R which do not affect its policy ordering. This
should encompass most natural behavioural models.

That being said, we note that this result relies on the re-
quirement that the learnt reward function should have ex-
actly the same optimal policies, or ordering of policies, as
the true reward function. If γ1 ≈ γ2 and τ1 ≈ τ2, then the
learnt reward function’s optimal policies and policy ordering
will presumably be similar to that of the true reward func-
tion. Analysing this case is beyond the scope of this paper,
but we consider it to be an important topic for further work.

Generalising the Analysis
In this section, we discuss different ways to generalise our
results. We consider what happens ifR is restricted to a sub-
set of R, what might happen if R is drawn from a known
prior distribution and the learning algorithm has a known in-
ductive bias, and whether we can use stronger equivalence
classes to guarantee various forms of transfer learning.

Restricted Reward Functions
Here, we discuss what happens if the reward function is re-
stricted to belong to some subset of R, i.e. if we know that
R ∈ R̂ for some R̂ ⊆ R. For example, it is common
to consider reward functions that are linear in some state
features. It is also common to define the reward function
over a restricted domain, such as S×A; this would corre-
spond to restricting R to the set of reward functions such
that R(s, a, s′) = R(s, a, s′′) for all s, a, s′, s′′. As we will
see, our results are largely unaffected by such restrictions.

We first need to generalise the framework, which is
straightforward. Given partitions P , Q of R, reward ob-
jects f , g, and set R̂ ⊆ R, we say that P ⪯ Q on R̂ if
R1 ≡P R2 implies R1 ≡Q R2 for all R1, R2 ∈ R̂, that
f is P -admissible on R̂ if Am(f) ⪯ P on R̂, and that
f is P -robust to misspecification with g on R̂ if f is P -
admissible on R̂, f |R̂ ̸= g|R̂, Im(g|R̂) ⊆ Im(f |R̂), and
f(R1) = g(R2) =⇒ R1 ≡P R2 for all R1, R2 ∈ R̂.

All lemmas in Section apply with these more general def-
initions for any arbitrary subset R̂ ⊆ R. Moreover, the the-
orems in Section also carry over very directly:

Theorem 14. If f is P -robust to misspecification with g on
R̂ then f is P -robust to misspecification with g′ on R for
some g′ where g′|R̂ = g|R̂, unless f is not P -admissible on
R. If f is P -robust to misspecification with g on R then f is
P -robust to misspecification with g on R̂, unless f |R̂ = g|R̂.

The intuition for this theorem is that if f is P -robust to
misspecification with g if and only if g ∈ G, then f is P -
robust to misspecification with g′ on R̂ if and only if g′ be-
haves like some g ∈ G for all R ∈ R̂. Restricting R does
therefore not change the problem in any significant way.

If an equivalence relation P of R is characterised by a set
of reward transformations T , then the corresponding equiv-
alence relation on R̂ is characterised by the set of reward
transformations {t ∈ T : Im(t|R̂) ⊆ R̂}; this can be used

to generalise Theorem 6. However, here there is a minor
subtlety to be mindful of: (A ◦ B) − C is not necessarily
equal to (A − C) ◦ (B − C). This means that if we wish
to specify {t ∈ A ◦ B : Im(t|R̂) ⊆ R̂}, then we can-
not do this by simply removing the transformations where
Im(t|R̂) ̸⊆ R̂ from each of A and B. For example, con-
sider the transformations S′Rτ ◦PSγ restricted to the space
R̂ of reward functions where R(s, a, s′) = R(s, a, s′′), i.e.
to reward functions over the domain S×A. The only trans-
formation in S′Rτ on R̂ is the identity mapping, and the
only transformations in PSγ on R̂ are those where Φ is
constant over all states. However, S′Rτ ◦ PSγ on R̂ con-
tains all transformations where Φ is selected arbitrarily, and
t(R)(s, a, s′) is set to R(s, a, s′)+ γE [Φ(S′)]−Φ(s). This
means that there probably are no general shortcuts for deriv-
ing {t ∈ T : Im(t|R̂) ⊆ R̂} for arbitrary R̂.

It should be noted that our negative results (i.e., those in
Section ) might not hold if R is restricted. Recall that f is
not P -robust to misspecification with g if there exist R1, R2

such that g(R1) = f(R2), but R1 ̸≡P R2. If R is re-
stricted, it could be the case that all such counterexamples
are removed. For example, if we restrict R to e.g. the set
R̂ of reward functions that only reward a single transition,
then Lemma 12, and the corresponding part of Theorem 13,
no longer apply.3 This means that, if the reward function is
guaranteed to lie in this set R̂, then a behavioural model may
still be OPTM-robust to a misspecified discount parameter.
However, the reason for this is simply that the discount pa-
rameter no longer affects which policies are optimal if there
is only a single transition that has non-zero reward.

Known Prior and Inductive Bias
So far, we have assumed that we do not know which distri-
bution R is sampled from, or which inductive bias the learn-
ing algorithm L has. In this section, we discuss what might
happen if we lift these assumptions.

To some extent, our results in Section can be used to un-
derstand this setting as well. Suppose we have a set R̂ ⊆ R
of “likely” reward functions, such that P(R⋆ ∈ R̂) = 1− δ,
and such that the learning algorithm L returns a reward
function RH in R̂ if there exists an RH ∈ R̂ such that
f(RH) = g(R⋆). Then if f is P -robust to misspecifica-
tion with g on R̂, it follows that L returns an RH such that
RH ≡P R⋆ with probability at least 1− δ.

So, for example, suppose R̂ is the set of all reward func-
tions that are “sparse”, for some way of formalising that
property. Then this tells us, informally, that if the underly-
ing reward function is likely to be sparse, and if L will at-
tempt to fit a sparse reward function to its training data, then
it is sufficient that f is P -robust to misspecification with g
on the set of all sparse reward functions, to ensure that the
learnt reward functionRH is P -equivalent to the true reward
function with high probability. It seems likely that more spe-
cific claims could be made about this setting, but we leave

3The reason for this is that there are no R1, R2 ∈ R̂ where
R1 = t(R2) for some t ∈ PSγ .
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such analysis as a topic for future work.

Transfer to New Environments
The equivalence relations we have worked with (OPTM

and ORDM) only guarantee that the learnt reward func-
tion RH has the same optimal policies, or ordering of poli-
cies, as the true reward R⋆ in a given environment M =
⟨S,A, τ, µ0, , γ⟩. A natural question is what happens if we
strengthen this requirement, and demand that RH has the
same optimal policies, or ordering of policies, as R⋆, for
any choice of τ , µ0, or γ. We discuss this setting here.

In short, it is impossible to guarantee transfer to any τ
or γ within our framework, and trivial to guarantee trans-
fer to any µ0. First, the lemmas provided in Section tell us
that none of the standard behavioural models are OPTM-
admissible when τ or γ is different from that of the training
environment. This means that none of them can guarantee
that RH has the same optimal policies (or ordering of poli-
cies) as R⋆ if τ or γ is changed, with or without misspecifi-
cation. Second, if R1 ≡ORDM R2 or R1 ≡OPTM R2, then
this remains the case if µ0 is changed. We can thus trivially
guarantee transfer to arbitrary µ0.

We would also like to remark on a subtlety regarding The-
orem 6. One might expect that two reward functions R1 and
R2 must have the same policy ordering for all τ if and only
if they differ by potential shaping and linear scaling. How-
ever, this is not the case. To see this, consider the rewards
R1, R2 where R1(s1, a1, s1) = 1, R1(s1, a1, s2) = 0.5,
R2(s1, a1, s1) = 0.5, and R2(s1, a1, s2) = 1, and where
R1 and R2 are 0 for all other transitions. Now R1 and R2 do
not differ by potential shaping and linear scaling, yet they
have the same policy order for all τ .

Discussion
In this section, we discuss the implications of our results, as
well as their limitations.

Conclusions and Implications
We have shown that the misspecification robustness of the
behavioural models in IRL can be quantified and under-
stood. Our results show that the Boltzmann-rational model
is substantially more robust to misspecification than the op-
timality model; the optimality model is not robust to any
misspecification, whereas the Boltzmann-rationality model
is at least OPTM-robust to many kinds of misspecification.
This is not necessarily unexpected, but we now have formal
guarantees to back this intuition. We have also quantified the
misspecification robustness of the maximal causal entropy
model, and found that it lies somewhere between that of the
Boltzmann-rational model and the optimality model.

We have shown that none of the standard models are ro-
bust to a misspecified τ or γ. Moreover, we need to make
very minimal assumptions about how the demonstrator pol-
icy is computed to obtain this result, which means that it is
likely to generalise to new behavioural models as well. We
find this quite surprising; the discount γ is typically selected
in a somewhat arbitrary way, and it can often be difficult to
establish post-facto which γ was used to compute a given

policy. The fact that τ must be specified correctly is some-
what less surprising, yet important to have established.

In addition to these contributions, we have also provided
several formal tools for deriving the misspecification robust-
ness of new behavioural models, in the form of the lemmas
in Section . In particular, if we have a model f , and we
wish to use the learnt reward to compute an object g, then
we can obtain an expression of the set of all functions to
which f is robust in the following way; first, derive Am(g),
and then characterise this partition of R using a set of re-
ward transformations T . Then, as per Lemma 2, we can ob-
tain the functions that f is robust to misspecification with
by simply composing f with each t ∈ T . If we want to
know which functions f is robust to misspecification with
in a strong sense, then we can obtain an informative answer
to this question by composing f with the transformations
that preserve the ordering of all policies, which in turn is
provided by Theorem 6. Lemma 1 also makes it easier to
intuitively reason about the robustness properties of various
kinds of behavioural models.

Limitations and Further Work
Our analysis makes a few simplifying assumptions, that
could be ideally lifted in future work. First of all, we have
been working with equivalence relations on R, where two
reward functions are either equivalent or not. It might be
fruitful to instead consider distance metrics on R: this could
make it possible to obtain results such as e.g. bounds on the
distance between the true reward function and the learnt re-
ward function, given various forms of misspecification. We
believe it would be especially interesting to re-examine The-
orem 13 through this lens.

Another notable direction for extensions could be to fur-
ther develop the analysis in Section , and study the misspec-
ification robustness of different behavioural models in the
context where we have particular, known priors concerning
R. Our comments on this setting are fairly preliminary, and
it might be possible to draw additional, interesting conclu-
sions if this setting is explored more extensively.

Moreover, we have studied the behaviour of algorithms in
the limit of infinite data, under the assumption that this is
similar to their behaviour in the case of finite but sufficiently
large amounts of data. Therefore, another possible extension
could be to more rigorously examine the properties of these
models in the case of finite data.

Finally, our analysis has of course been limited to the
behavioural models that are currently most popular in IRL
(optimality, Boltzmann rationality, and causal entropy max-
imisation) and two particular equivalence relations (OPTM

and ORDM). Another direction for extensions would be to
broaden our analysis to larger classes of models, and perhaps
also to more equivalence relations. In particular, it would
be interesting to analyse more realistic behavioural mod-
els, which incorporate e.g. prospect theory (Kahneman and
Tversky 1979) or hyperbolic discounting.
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