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Abstract

This work presents Z-Mask, an effective and deterministic
strategy to improve the adversarial robustness of convolu-
tional networks against physically-realizable adversarial at-
tacks. The presented defense relies on specific Z-score anal-
ysis performed on the internal network features to detect
and mask the pixels corresponding to adversarial objects in
the input image. To this end, spatially contiguous activations
are examined in shallow and deep layers to suggest poten-
tial adversarial regions. Such proposals are then aggregated
through a multi-thresholding mechanism. The effectiveness
of Z-Mask is evaluated with an extensive set of experiments
carried out on models for semantic segmentation and ob-
ject detection. The evaluation is performed with both digital
patches added to the input images and printed patches in the
real world. The results confirm that Z-Mask outperforms the
state-of-the-art methods in terms of detection accuracy and
overall performance of the networks under attack. Further-
more, Z-Mask preserves its robustness against defense-aware
attacks, making it suitable for safe and secure AI applications.

Introduction
Nowadays, deep neural networks (DNNs) yield impressive
performance in computer vision tasks such as semantic seg-
mentation (SS) and object detection (OD). These remark-
able results have encouraged the use of deep learning models
also in cyber-physical systems (CPS) as autonomous cars.
However, the trustworthiness of neural networks is often
questioned by the existence of adversarial attacks (Huang
et al. 2020), especially those performed in the physical world
(Athalye et al. 2018; Wu et al. 2020; Rossolini et al. 2022;
Braunegg et al. 2020; Kong et al. 2020), which are most rele-
vant to CPS. Such attacks are usually crafted by means of ad-
versarial objects, most often in the form of patches (Brown
et al. 2018), which are capable of corrupting the model out-
come when processed as a part of the input image and can
also be printed to perform physically-realizable attacks.

To defend DNNs from these adversarial objects, several
techniques were proposed in the literature based on special-
ized learning modules or robust training. However, such ap-
proaches are often expensive, do not transfer well in realistic
scenarios, and are still susceptible to specific attacks.
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Figure 1: Illustration of the proposed approach.

Differently from those strategies, the defense method pro-
posed in this paper leverages the evidence that physical ad-
versarial attacks yield anomalous activation patterns in the
internal network layers. Such anomalous activations caused
by adversarial patches have been observed in several works
(Yu et al. 2021; Co et al. 2021; Rossolini et al. 2022), but to
the best of our records, no studies deepen this phenomenon
from a spatial perspective. To this end, recalling the spa-
tial propagation effect of CNNs (Krizhevsky, Sutskever, and
Hinton 2012), we noticed that a set of shallow layers con-
tains high/medium over-activations in the spatial image ar-
eas corresponding to adversarial objects, while in deeper
layers such over-activations grow in magnitude while refer-
ring to lower spatial resolutions (further illustrations in the
supplementary material). Based on such evidences, this pa-
per proposes Z-Mask, a novel defense mechanism that com-
bines the analysis of multiple layers to precisely detect and
mask potential adversarial objects.

Figure 1 illustrates the proposed defense approach for the
case of SS. To extract preliminary adversarial region pro-
posals, Z-Mask runs an over-activation analysis on a set of
selected layers. This analysis exploits a Spatial Pooling Re-
finement (SPR) to filter out high-frequency noise in over-
activated regions. For each of these layers, the analysis pro-
duces an adversarial region proposal expressed through a
heatmap. Then, all the heatmaps are aggregated into a shal-
low heatmap HS and a deep heatmap HD, which summarize
the over-activation behavior at two different depth levels. Fi-
nally, these two heatmaps are processed by a Fusion and De-
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tection Block that flags the presence of an adversarial object
and generates the corresponding defense mask.

A set of experimental results highlights the effective-
ness and the robustness of the proposed defense approach
on digital and real-world scenarios, which outperforms the
state-of-the-art methods both in adversarial objects detec-
tion and masking. Furthermore, the experiments show the
robustness of Z-Mask against defense-aware attacks, which
is a property inherited from the clear relation between over-
activations and adversarial patches. In summary, this paper
provides the following contributions:

• It proposes Z-Mask, a novel robust adversarial defense
method designed to detect and mask the regions belong-
ing to adversarial objects;

• It shows the effectiveness of a Z-score-based defense
by improving a naive neuron-wise approach with a Spa-
tial Pooling Refinement, which removes high-frequency
noise and helps extract proper contiguous masks;

• It provides an activation-aware patch optimization to
strengthen the relation between over-activations and ad-
versarial effects induced from physical attacks.

The remainder of the paper is organized as follows: first,
it introduces the related work, then it presents the Z-Mask
pipeline, it reports the experimental results, and finally states
the conclusions.

Related Work
Physical adversarial attacks. Adversarial attacks are
widely studied methods capable of easily fooling neural
models by adding imperceptible input perturbations (Nakka
and Salzmann 2020; Metzen et al. 2017; Xie et al. 2017;
Szegedy et al. 2014; Rony et al. 2019; Brau et al. 2022).
However, in recent years, particular interest has been de-
voted to adversarial attacks aimed at controlling the output
of DNNs through physical adversarial objects or patches.

In this context, Athalye et al. (2018) presented the Expec-
tation Over Transformations (EOT) paradigm, which allows
crafting adversarial objects robust against real-world trans-
formations, as scaling, translation, orientation, and illumi-
nation changes. Later, Brown et al. (2018) proposed an at-
tack method based on adversarial patches, which achieved
great success as a means to study the real-world robust-
ness of DNNs and generate new effective physical attacks
(Braunegg et al. 2020; Wu et al. 2020; Nesti et al. 2022; Lee
and Kolter 2019; Hu et al. 2021).

Defense methods. To tackle the problem of physical at-
tacks and digital adversarial patches, several defense meth-
ods have been proposed in the literature. For the sake of
clarity, we divide defense methods in two main categories:
adversarial training and external tools. The former aims at
making a model more robust by re-training the network in-
cluding attacked images and regularization terms (Saha et al.
2020; Metzen, Finnie, and Hutmacher 2021; Rao, Stutz, and
Schiele 2020; Wu, Tong, and Vorobeychik 2020). These ap-
proaches significantly increase the training and testing ef-
forts (especially when dealing with adversarial patches).

Conversely, the methods based on external tools preserve
the original model parameters and complement the model
output with additional information that typically consists in
an attack detection flag (Co et al. 2021; Rossolini et al. 2022;
Xiang and Mittal 2021; Xu, Yu, and Chen 2020) and/or de-
fense masks (Chiang, Chan, and Wu 2021; Naseer, Khan,
and Porikli 2019; Chou, Tramer, and Pellegrino 2020; Liu
et al. 2022; Xiang et al. 2021; Zhou et al. 2020) that remove
the adversarial parts of the image. Although all such meth-
ods do not alter the model parameters, only a few of them
are task-agnostic (e.g., capable of working for both OD and
SS models) or address comprehensive evaluations on large
datasets and realistic scenarios.

The role of internal activations. Among the large
plethora of methods that study the internal behav-
ior of DNNs under adversarial perturbations, some
works (Rossolini, Biondi, and Buttazzo 2022; Yu et al.
2021) noticed that adversarial patches cause large activa-
tions in the internal network layers. In particular, (Co et al.
2021; Rossolini et al. 2022) exploited this fact to detect ad-
versarial patches by computing the cumulative sum of the
neurons activation in a certain layer. Such a score is deemed
as safe or unsafe by comparing it to a threshold. Although
this approach achieves good performance in detecting ad-
versarial patches, it is applied to a single layer only using a
neuron-wise over-activation analysis, which may leave room
for effective defense-aware attacks. Furthermore, it is lim-
ited to detection purposes only, without addressing the fact
through a spatial analysis.

This work faces the over-activation phenomenon also
from a spatial perspective to derive an effective and straight-
forward defense that performs a multi-layer and a multi-
neuron analysis. First, a spatial pooling refinement based
on the Z-Score values is introduced in the analysis, which
helps better identify the image regions that cause the over-
activations. Second, shallow and deep analysis are combined
to generate an aggregated defense mask. These steps make
Z-Mask a fully task-agnostic defense that outputs both a pre-
cise pixel mask and an attack detection flag. It works on
top of any pretrained convolutional model in the context
of a large-scale evaluation that also targets realistic attacks
(i.e., physically-printed patches) and preserves its robustness
against defense-aware attacks.

Proposed Defense
This section presents the Z-Mask defense strategy, which
is formulated to be task agnostic, i.e., applicable on any
convolutional model. In this work, we consider the case
of SS and OD models. In both cases, the input consists of
an image with H × W pixels and C channels, denoted by
x ∈ [0, 1]C×H×W , while the form of the output f(x) de-
pends on the task. For a semantic segmentation model with
N classes, the output f(x) ∈ [0, 1]N×H×W is an image
that encodes the semantic context of each pixel. For an OD
model, the output f(x) is a tensor encoding the class and
the bounding box of each detected object. Without loss of
generality, a task-specific loss function L(f(x), y) is used to
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quantify the quality of a prediction f(x) against the ground-
truth output y.

A real-world adversarial attack can be simulated by ap-
plying an adversarial patch in a specific region of the input
image x. A patch δ is a H̃ × W̃ image within C channels,
where H̃ ≤ H and W̃ ≤ W . Crafting an adversarial patch
requires solving an optimization problem that aims at min-
imizing a specific attack loss function while making patch
features more robust against real-world transformations in
the input image (Athalye et al. 2018).

In detail, given an input image x and a patch δ, an addi-
tional function γ is randomly sampled from a set Γ of com-
positions of appearance-changing and placement transfor-
mations. The appearance-changing transformations include
brightness, contrast change and noise addition; the patch
placement transformations include random translation and
scaling for defining the position of the patch in the image.
Then, a patch δ is applied to x, according to γ, through a
patch application function gγ(x, δ). Formally, an adversarial
patch δ̂ can be crafted by solving the following optimization:

δ̂ = argmin
δ

Ex∼X,γ∼Γ LAdv(f(gγ(x, δ)), yAdv), (1)

where X is a set of known inputs, yAdv is the adversarial
target, and LAdv is the adversarial loss that specifies the
objective of the attacker. In the case of untargeted attacks,
the adversarial target is the regular ground truth y and the
adversarial loss function is −L(f(x̃), y), to maximize the
task-specific loss. To enhance the physical realizability of
the patches, the adversarial loss includes additional terms
that are described in the supplementary material.

A defense masking strategy obscures a portion of the
input image (supposedly containing the adversarial patch)
through a pixel-wise product ⊙ with a binary mask having
the same size of the image. Formally, for each perturbed im-
age x̃ = gγ(x, δ̂), a binary mask M(x̃) is computed with the
intent of satisfying the following property:

L(f(x̃ ⊙M(x̃)), y) ≈ L(f(x), y). (2)

Equation (2) states that the objective of a masking defense
is to mitigate the effectiveness of a physical adversarial per-
turbation while preserving a correct behavior outside the re-
gion of the mask. In this work, Mask M(x̃) is generated by
leveraging multiple over-activation analysis, which are then
aggregated through a Fusion Block mechanism.

Layer-Wise Over-Activation Analysis

Let h(l) ∈ RC(l)×H(l)×W (l)

be the output features of layer l,
obtained during the forward pass of f(x), where H(l) and
W (l) are its spatial dimensions. The heatmap H(l) is ob-
tained by applying the following operations to h(l) (illus-
trated in Figure 2). First, for a layer l, the channel-wise Z-
score z(l) = h(l)−µ(l)

σ(l) of h(l) is computed, where µ(l) and
σ(l) are the channel-wise mean and standard deviation of
the output features, respectively, obtained from a dataset X
that does not include attacked images. The Z-score is then

Figure 2: Over-activation pipeline performed by Z-Mask on
a given layer with m = 3 Average-Pooling stages. The scale
blocks refer to the ∞-norm used in Equation 3. Resizing
operations are omitted in the figure.

processed in cascade by a sequence of m Average-Pooling
operations (A1, . . . , Ai, . . . Am) as follows:a

(l)
i = R(Ai(R(z(l))))⊙ a

(l)
i−1

∥a(l)
i−1∥∞

, i = 1, . . . ,m

a
(l)
0 ≡ 1,

(3)
where each Ai has kernel size ki and R is an operator that
resizes (by interpolation) the spatial dimensions of a given
tensor to a configurable size HR × WR. Note that the ith

kernel is larger than the (i+1)th one. Also, the resize oper-
ation is performed before and after each Ai to enable the use
of the pixel-wise product and the same sequence of Average-
Pooling operations on different network layers.

The rationale for using such Average-Pooling operations
is the following. Observe that the Z-score itself provides a
pixel-wise metric capable of highlighting the over-activated
pixels (i.e., pixels with internal activation values that are sig-
nificantly far from µ(l) in terms of σ(l)). However, since
we aim at masking adversarial patches, we are interested in
highlighting contiguous over-activated portions of the im-
age rather than spurious over-activated pixels (i.e., pixels
whose neighbors have activation values close to µ(l)). To do
that, the SPR implements a cascade filtering (Satti, Sharma,
and Garg 2020) that reduces the effects of spurious over-
activated pixels. The process is iteratively refined: first larger
kernels identify macro-regions that include over-activated
contiguous pixels and then smaller kernels refine the analy-
sis within such macro-regions. Finally, to obtain the desired
heatmap H(l) (of size 1 ×HR ×WR), the absolute values
of a

(l)
m are averaged across the channels. As shown in the

experimental section, this process yields a heatmap of the
over-activated region with sharper areas (Figure 5).

Fusion and Detection Mechanism
This section explains how the mask M(x) is generated by
merging the information of two sets of heatmaps, S and D.
The set S contains NS heatmaps belonging to the selected
shallow layers only, while D contains ND heatmaps belong-
ing to deeper layers and possibly to shallow layers. Lever-
aging these sets of heatmaps, we reduce the analysis to two
aggregated heatmaps HS = F(S) and HD = F(D), where
F(·) is an operator that merges multiple heatmaps belong-
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Figure 3: Fusion and Detection Block.

ing to a given set. In practice, a pixel-wise max function is
used for F(·). HS and HD summarize the over-activation
behavior at different depths in the model: HS represents the
over-activated regions in the shallow layers, while HD takes
into consideration also deep layers. The reason for using
these two heatmaps emerged after a series of experimental
observations. From a practical perspective, HS allows high-
lighting the over-activated portions of the image (i.e., the
regions that may contain adversarial objects): it provides a
high spatial accuracy, but a limited capability of discrimi-
nating adversarial and non-adversarial regions. Conversely,
HD provides a high accuracy in identifying adversarial over-
activations, but with a much lower spatial accuracy. In fact,
experiments showed that over-activations coming from non-
adversarial regions do not propagate their effect to deeper
layers (a more detailed analysis of this effect is provided in
the supplementary material). Hence, HD can be used to filter
out the regions highlighted by HS that are not adversarial,
yielding a more accurate heatmap.

Figure 3 illustrates the operations performed by the Fu-
sion and Detection Block. The merging process leverages
two soft-thresholding blocks. The first block extracts a re-
gion of interest from HD, which is then multiplied by HS to
pose attention only to over-activated areas in the deeper lay-
ers. The second block extracts M̃ , a soft version of the final
mask with real pixel values in [0, 1]. Each soft-thresholding
block consists of two sequential linear layers (both with 1-
dimensional weight and bias), activated by a tanh and a sig-
moid function, respectively.

Finally, to apply the masking only when an adversarial
region is detected, we measure the over-activation as d =
∥HS⊙HD⊙M̃∥1

∥M̃∥1
and compute the mask M(x) as follows:

M(x) =
{
1− ℏ(M̃), d > λ0

1, otherwise,
(4)

where ℏ is the Heaviside function centered in 0.5 and λ0 is
a given threshold. The soft-thresholding parameters (eight
in total) are fitted by supervised learning, while the thresh-
old λ0 is configured through an ROC analysis. The main
motivation of using this module is its high deterministic be-
havior, since it mimics a soft-threshold operation in a differ-
entiable manner. This allows testing against gradient-based
defense-aware attacks and offers a transparent robustness by
constraining an attacker to reduce the over-activation values
to fool the defense (see experimental part).

Experimental Evaluation
This section presents a set of experiments carried out on sev-
eral convolutional models for OD and SS to evaluate the
effectiveness of the proposed defense. All the experiments
were implemented using PyTorch (Paszke et al. 2019) on a
server with 8 NVIDIA-A100 GPUs. For both SS and OD
tasks, the effectiveness of an adversarial attack was mea-
sured by evaluating the drop of the model performance with
a task-dependent metric. For SS models, the mIoU was used
on the subset of pixels not belonging to the applied patch, as
done by (Rossolini et al. 2022). For OD models, the perfor-
mance was measured by the COCO mAP.

Datasets and Models. Three state-of-the-art models were
selected for the SS task: ICNet (Zhao et al. 2018), DDRNet
(Hong et al. 2021), and BiseNet (Yu et al. 2018), using pre-
trained weights provided by their authors. For the OD task,
SSD (Liu et al. 2016), RetinaNet (Lin et al. 2017), and Faster
R-CNN (Ren et al. 2017) were selected from the PyTorch
model zoo. More details are in the supplementary material.

Several datasets were used for the experiments. The
Cityscapes dataset (Cordts et al. 2016) is a canonical dataset
of driving images for SS. It contains 2975 and 500 1024 ×
2048 images for training and validation, respectively. For
OD, we considered the COCO 2017 dataset (Lin et al. 2014),
containing 112k and 5k images for training and validation,
respectively. Being COCO a dataset of common images, pic-
tures have different sizes, hence a network-specific resizing
is required. To assess the proposed approach on real-world
scenarios, we considered APRICOT (Braunegg et al. 2020),
which is a COCO-like dataset including more than 1000 im-
ages, each containing a physical adversarial patch for one
between Faster R-CNN, RetinaNet, and SSD.

Attack and defense strategies. Different attack method-
ologies were used to craft adversarial patches. For SS mod-
els, we leveraged the untargeted attack pipeline used in
(Rossolini et al. 2022), while, for OD models, we performed
an untargeted attack on the classes, similarly to (Chen et al.
2019). The patches contained in the APRICOT dataset rely
on a false-detection attack (Braunegg et al. 2020). More de-
tails are provided in the supplementary material.

Concerning defense strategies, we compared Z-Mask
against different approaches for both adversarial pixel mask-
ing and detection. For the masking task, we re-implemented
the Local Gradient Smoothing method (LGS) (Naseer,
Khan, and Porikli 2019) and MaskNet (Chiang, Chan, and
Wu 2021), both with the original settings described by the
authors. For the adversarial detection, we considered for
comparisons FPDA (Rossolini et al. 2022) and HN (Co et al.
2021). Details are in the supplementary material.

Activation-aware patch optimization. We crafted adver-
sarial patches while controlling the over-activation to under-
stand its relation with the induced adversarial effect, as well
train the defense to properly scale into real-world scenarios.
To do that, we proposed the following optimization:

δ̂β = argmin
δ

Ex∼X,γ∼Γ

[
(1− β) · LOZ(f, gγ(x, δ))

+ β · LAdv(f(gγ(x, δ)), y)
]
,

(5)
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None = 0.2 = 0.4 = 0.6 = 1.0

Figure 4: Visualization of the predictions and SPR heatmaps
obtained from several β activation-aware patches. The rows
report x, f(x), HS and HD, respectively.

where β ∈ [0, 1] is a control parameter and LOZ is a loss
function that measures the magnitude of over-activation of
internal layers (details are available in the supplementary
material). The rationale behind this optimization problem is
that a low value of β reduces the importance assigned to
the adversarial effect, while forcing the attack to generate
less over-activation in the internal layers, hence simulating
real-world patches. Figure 4 illustrates the over-activation
of these patches (computed with the SPR) both in shallow
and deep layers, remarking the relation with the induced ad-
versarial effect. Furthermore, Figure 7 (discussed later) pro-
vides a measure of the adversarial effect as a function of β.

Z-Mask settings and training. For SS models, the
heatmaps in S were generated with a SPR composed of four
pooling operations, with kernel sizes k1 = (64, 128), k2 =
(32, 64), k3 = (16, 32), k4 = (8, 16). Instead, the
heatmaps in D were generated using two pooling opera-
tions with kernel sizes k1 = (64, 128), k2 = (32, 64). Af-
ter each pooling operation, the heatmaps were resized to
(HR × WR) = (150 × 300). Please note that all the re-
sulting heatmaps have a 1:2 aspect ratio, keeping the same
aspect ratio of the input images. For OD models, the SPR
used k1 = (40, 40), k2 = (25, 25), k3 = (10, 10) to build
S , and k1 = (80, 80), k2 = (40, 40) to build D. The re-
sizing dimension was set to (400 × 500). For all the tests,
pooling operations were applied with stride 1. These kernel
settings were motivated by extensive preliminary tests per-
formed to analyse the internal activations. To illustrate the
benefits of the SPR, Figure 5 provides the results of abla-
tion studies by comparing the performance of the Fusion and
Detection block with different pooling settings and patches
crafted with different β. The SPR block always achieves a
better IoU Patch Masking, which is computed as the IoU
between the predicted mask and its ground truth.

The description of the layers selected for extracting D and
S in each model is reported in the supplementary material.

The parameters of the soft-thresholding operations inside
the Fusion and Detection block were trained in a supervised
fashion by considering a set of patches crafted with Equation
5 and minimizing the pixel-wise binary cross-entropy loss
LBCE(M̃, M̄), where M̄ is the ground-truth binary mask. To
this end, we collected a set of adversarial patches ∆ = {δ̂β :
β ∈ [β0, 1]}, where we set β0 = 0.5 to avoid generating
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Figure 5: Ablation studies on the masking accuracy with dif-
ferent pooling strategies on 100 images of the Cityscapes
validation set and BiseNet (a). Bottom figures are the pre-
dicted masks of a same input, using a patch with β = 0.5.

patches with scarce adversarial effect. These patches were
used to craft the set X̃ , which was obtained by adding the
patches in ∆ to each image of X . Set X̃ was used to train
the Fusion and Detection Block and make it robust to a wide
spectrum of over-activations.

In our tests, X contained 500 images randomly sam-
pled from the original training dataset. The ADAM opti-
mizer (Kingma and Ba 2015) was used for this purpose,
with a learning-rate of 0.01 and training for 15 epochs. The
channel-wise std and mean of each selected layer was com-
puted on a different subset of the training set containing 500
clean (i.e., non-patched) images. The detection threshold λ0

was deduced after the soft-thresholding training as the cut-
off threshold of the ROC curve. The ROC was generated
by computing the measure d on each input of a dataset, in-
cluding the clean set X and the patched set X̃ , labeled as
negative and positive samples, respectively.

Evaluation for Digital Attacks
Masking performance. The benefits of the proposed de-
fense mechanism were evaluated by attacking the validation
sets with different adversarial patch sizes. For Cityscapes,
we used patches with size 600x300 (L), 400x200 (M) and
300x150 (S) pixels, whereas for COCO, due to the different
image aspect ratio, we used 200x200 (L), 150x150 (M), and
100x100 (S). Also, an L-size random patch was evaluated
to test the case in which a portion of the image is occluded
without the intent of generating an adversarial attack.

As shown in Table 1, Z-Mask outperformed the other de-
fense strategies, achieving scores similar to the random case,
when tested against adversarial attacks, and close to the orig-
inal model without applying patches, meaning that does not
affect the nominal model performance. Figure 6 illustrates
the benefits of Z-Mask: attacked areas are identified and cov-
ered without affecting other portions.

Detection performance. All the adversarial patches eval-
uated in Table 1 were perfectly detected by both Z-Mask,
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Net Patch Defense Method (mAP Val)
Z-Mask MaskNet LGS None

FR
-C

N
N

None 0.357 0.353 0.350 0.357
Rand 0.301 0.295 0.320 0.308

S 0.335 0.333 0.354 0.337
M 0.302 0.289 0.246 0.140
L 0.300 0.289 0.244 0.164

SS
D

None 0.253 0.180 0.243 0.264
Rand 0.208 0.132 0.198 0.215

S 0.237 0.159 0.233 0.245
M 0.202 0.125 0.144 0.065
L 0.205 0.113 0.163 0.072

R
et

in
aN

et

None 0.355 0.269 0.337 0.359
Rand 0.305 0.227 0.312 0.308

S 0.339 0.245 0.339 0.335
M 0.326 0.222 0.306 0.304
L 0.305 0.212 0.297 0.283

(a)
Net Patch Defense Method (mIoU Val)

Z-Mask MaskNet LGS None

D
D

R
N

et

None 0.778 0.739 0.777 0.778
Rand 0.731 0.710 0.769 0.761

S 0.741 0.701 0.741 0.702
M 0.723 0.699 0.719 0.663
L 0.691 0.689 0.642 0.532

B
is

eN
et

None 0.684 0.622 0.685 0.687
Rand 0.650 0.569 0.668 0.653

S 0.663 0.560 0.522 0.475
M 0.653 0.550 0.413 0.323
L 0.621 0.535 0.320 0.220

IC
N

et

None 0.785 0.783 0.782 0.785
Rand 0.768 0.736 0.764 0.746

S 0.748 0.737 0.657 0.625
M 0.729 0.718 0.593 0.549
L 0.747 0.725 0.528 0.430

(b)

Table 1: Robustness performance evaluated for different
patch sizes for OD-COCO (a) and SS-Cityscapes (b).

HN, and FPDA. To better assess the performance of these
adversarial detection methods, we used the optimization de-
scribed in Equation (5) to generate a set of patches with a
wider range of over-activation values, selecting the values
of β ∈ {0.1, 0.2, ..., 0.9, 1.0}. Please note that β = 1.0 cor-
responds to a regular adversarial attack, while lower β val-
ues decrease the importance of adversarial effect to reduce
the magnitude of over-activation. An L-sized patch was gen-
erated for each β. Figure 7 shows the detection and mask-
ing accuracy against this set of patches as a function of
β for DDRNet. The top part of the figure shows the de-
tection accuracy, evaluated using the AUC of ROC on a
dataset, including both the clean and the attacked validation
set (as negative and positive samples, respectively). Note
that Z-Mask achieved better results than the other adversarial
patch detectors, providing good detection performance also
to patches that do not retain much adversarial effect.

The bottom part of the Figure 7 reports the performance
of Z-Mask, MaskNet, LGS, and the original model (without
defense). Again, our method achieved higher mIoU among

(a) Faster R-CNN - COCO dataset

(b) BiseNet - Cityscapes dataset

Figure 6: Z-Mask effects (comparison w/ and w/o defense)

almost all the β values. Similar results were obtained for
other models in the supplementary material.

Evaluation for Physical Attacks
The masking and detection performance of Z-mask was eval-
uated in real-world scenarios with images containing printed
adversarial patches. For this test, we adopted the same Z-
mask settings and parameters used for digital attacks on
COCO, which generalize well also for real-world patches.
The detection performance was assessed with the APRI-
COT dataset, as positive samples, and 1000 images of the
COCO validation set, as negative samples. Figure 8 (a) re-
ports the corresponding ROC, where Z-Mask obtained the
best AUC with respect to FPDA and HN on both RetinaNet
and Faster R-CNN. The analysis on SSD was omitted since
the large rescaling factor on the input image required by the
pretrained network restrained APRICOT patches to just a
few pixels, thus neutralizing their adversarial effect.

Figure 8 (b) illustrates the effect of Z-Mask on a sample of
APRICOT. We also provide additional illustrations of real-
world attacked datasets in the supplementary material.

Defense-Aware Attacks
Since the Z-Mask pipeline is fully differentiable up to M̃ ,
an attacker might exploit that knowledge to craft defense-
aware attacks, i.e., optimize patches that are adversarial for
the model and the defense together. To this end, we propose
two different defense-aware attacks.

The first attack, denoted as Mask-Attack, is designed to
induce errors in the mask output to yield an incorrect input
masking operation. This would allow the adversarial patch
to pass without being masked or induce additional occlusion
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Figure 7: Comparison of the Detection accuracy (top plot)
and task mIoU performance (bottom plot) using DDRNet
on the validation set of Cityscapes.

in the image. This attack is obtained by solving the following
problem with α ∈ {0, 0.1, 0.2, . . . , 1.0}:

δ̂α = argmin
δ

Ex∼X,γ∼Γ

[
(1− α) · (−LBCE(M̃, M̄))

+ α · LAdv(f(gγ(x, δ)), y)
]
.

(6)

Recall that LBCE(M̃, M̄) is the pixel-wise binary cross-
entropy loss between the defense mask M̃ and the ground-
truth patch mask M̄ (which is known).

A second attack formulation, denoted as Flag-Attack,
targets the detection flag aiming at causing false nega-
tives in the detector. This attack is performed by replacing
LBCE(M̃, M̄) with LBCE(Sigmoid(d − λ0), 1). This is done
to force d < λ0 in the optimization, hence resulting in a
mask M(x) = 1. Figure 9 shows the results of Z-Mask
against these attacks on DDRNet (results on other networks
in the supplementary material). A mask defense-aware at-
tack was also tested on MaskNet to provide a comparison,
while the results of LGS are not reported, since other works
already addressed its weaknesses under defense-aware at-
tacks (Chiang, Chan, and Wu 2021).

Note that, even exploiting the knowledge of the defense,
the proposed attacks were not able to reduce the perfor-
mance of Z-Mask more than what obtained for the digital
evaluation, as reported in Table 1. Indeed, observe from Fig-
ure 9 that, when Z-Mask does not detect the attack (TPR=0),
the attack is not effective (maximum mIoU). Practically
speaking, the robustness of Z-Mask comes from the fact
that it directly exploits the over-activation values. In fact,
recalling that physical attacks are strictly related to over-
activations, the attacker is required to reduce their magnitude
to bypass the defense, thus inevitably yielding less effective
attacks. Conversely, for MaskNet, certain values of α induce
larger performance degradation.

Conclusions
This paper presented Z-Mask, a method for masking and
detecting physically-realizable adversarial examples. This
is accomplished by leveraging specific processing modules,
such as the Spatial Pooling Refinement and the Fusion and
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Figure 8: (a) ROC analysis performed on the dataset includ-
ing APRICOT images and 1000 COCO images. (b) The ef-
fect of Z-Mask on an APRICOT image.

Figure 9: Evaluation and comparison of defense benefits
(mIoU) and detection performance (TPR) against defense-
aware attacks as a function of α. The results refer to DDR-
Net evaluated on the validation set of Cityscapes.

Detection Block. Z-Mask is task-agnostic and was tested
with OD and SS models, obtaining state-of-the-art results for
both adversarial masking and detection on large datasets, as
COCO and Cityscapes, and in real-world scenarios. Further-
more, we strengthened the robustness of Z-Mask by under-
lining the relation between over-activation and adversarial
effect through an activation-aware patch optimization.

As a future work, we plan to address an automatic se-
lection of the shallow and deep layers involved in the over-
activation analysis. Although the relation between over-
activation and physical adversarial attacks is evident, it is
less clear why certain model layers are more affected than
others by this phenomenon. Addressing this task from a
more theoretical perspective is not straightforward and re-
quires further investigations.
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