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Abstract
Cooperative multi-agent reinforcement learning (c-MARL) is
widely applied in safety-critical scenarios, thus the analysis
of robustness for c-MARL models is profoundly important.
However, robustness certification for c-MARLs has not yet
been explored in the community. In this paper, we propose a
novel certification method, which is the first work to leverage
a scalable approach for c-MARLs to determine actions with
guaranteed certified bounds. c-MARL certification poses two
key challenges compared to single-agent systems: (i) the ac-
cumulated uncertainty as the number of agents increases; (ii)
the potential lack of impact when changing the action of a
single agent into a global team reward. These challenges pre-
vent us from directly using existing algorithms. Hence, we
employ the false discovery rate (FDR) controlling procedure
considering the importance of each agent to certify per-state
robustness. We further propose a tree-search-based algorithm
to find a lower bound of the global reward under the mini-
mal certified perturbation. As our method is general, it can
also be applied in a single-agent environment. We empirically
show that our certification bounds are much tighter than those
of state-of-the-art RL certification solutions. We also evalu-
ate our method on two popular c-MARL algorithms: QMIX
and VDN, under two different environments, with two and
four agents. The experimental results show that our method
can certify the robustness of all c-MARL models in vari-
ous environments. Our tool CertifyCMARL is available at
https://github.com/TrustAI/CertifyCMARL.

1 Introduction
Recently, cooperative multi-agent reinforcement learning
(c-MARL) has attracted increasing attention from re-
searchers and is beneficial for a wide range of applica-
tions in the real world, such as autonomous cars (Shalev-
Shwartz, Shammah, and Shashua 2016), traffic lights con-
trol (Van der Pol and Oliehoek 2016) and wireless commu-
nication (de Vrieze et al. 2018). As it is widely involved in
safety-critical scenarios, there is an urgent need to analyze
the robustness of c-MARLs.

Reinforcement learning (RL) aims to find the best actions
for agents that can optimise the long-term reward by in-
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teracting with the surrounding environments (Rashid et al.
2018). When there is a team of agents, the system needs to
jointly optimise each agent’s actions to maximise the reward
of the team. In c-MARL, as the number of agents increases,
the joint action space of the agents grows exponentially,
requiring the learning of policies in a decentralised man-
ner (Oliehoek, Spaan, and Vlassis 2008). Thus, each agent
learns its own policy based on its local action-observation
history, and then forms a centralised action-value that is con-
ditioned to the global state and joint actions.

Deep neural networks (DNNs) are known to be vulner-
able to tiny, non-random, ideally human-invisible perturba-
tions of the input, which can lead to incorrect predictions
(Szegedy et al. 2013; Xu, Ruan, and Huang 2022; Jin et al.
2022; Wang et al. 2022; Mu et al. 2022; Yin, Ruan, and
Fieldsend 2022; Ruan et al. 2019; Zhang et al. 2020b). RL
has also been shown to be susceptible to perturbation in the
observations of an RL agent (Huang et al. 2017; Behzadan
and Munir 2017) or in environments (Gleave et al. 2019).
Some adversarial defence works for RL are proposed (Donti
et al. 2020; Eysenbach and Levine 2021; Shen et al. 2020;
Sun et al. 2022) and then towards these defences, stronger at-
tacks are proposed (Salman et al. 2019; Russo and Proutiere
2019). To end this repeated game, Wu et al. (2021) and Ku-
mar, Levine, and Feizi (2021) proposed to use probabilistic
approaches to provide robustness certification for RLs. Con-
cerning c-MARL, Lin et al. (2020) addressed the challenges
of attacking such systems and proposed adding perturbations
to the state space. To date, the robustness certification on c-
MARL has not been touched upon by the community.

Compared to the RL system with a single agent, certifying
c-MARL is a more challenging task. Challenge 1: the ac-
tion space grows exponentially with the number of agents;
moreover, for each time step, the agents need to be certi-
fied simultaneously, accumulating uncertainty. Challenge 2:
changing the action of one agent may not alter the team re-
ward, thus, instead of following existing certification works
on a single agent, new criteria should be raised to evaluate
the robustness for the multi-agent system. Therefore, to cope
with such challenges, we propose two novel methods to cer-
tify the robustness of each state and of the whole trajectory.

We first propose a smoothed policy where each agent
chooses the most frequent action when its observation is
perturbed, and then we derive the certified bound of per-

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

15046



turbation for each agent per step, within which the chosen
action of the agent will not be altered. When evaluating the
robustness of all agents per time step, to tackle Challenge
1, we identify the multiple test problem and propose to cor-
rect the p-value by multiplying the importance factor of each
agent. We then employ the Benjamini-Hochberg (BH) pro-
cedure with corrected p-value to control the selective false
discovery rate (FDR). For the certification of robustness of
the global reward, to deal with Challenge 2, we propose a
tree-search-based algorithm to find the certified lower bound
of the perturbation and the lower bound of the global reward
of the team under this perturbation. In this paper, we focus
on certifying the robustness of value-based c-MARLs under
a l2 norm bounded attack. Our work can be easily extended
to evaluate lp norm based robustness by using different sam-
pling distributions, such as the generalised Gaussian distri-
bution as indicated in Hayes (2020).

Our main contributions can be summarised as: i) for the
first time, we propose a solution to certify the robustness of
c-MARLs, which is a general framework that can also be
employed in a single-agent system; ii) we propose a new
criterion to enable the scalable robustness certification per
state for c-MARLs by considering the importance of each
agent to reduce the error of selective multiple tests; and iii)
we propose a tree-search-based method to obtain the certi-
fied lower bound of the global team reward, which enables a
tighter certification bound than the state-of-the-art certifica-
tion methods.

2 Background
Cooperative Multi-Agent Reinforcement Learning
Most c-MARL methods use the centralised training scheme
to guide decentralised execution, such as value decompo-
sition networks (VDN) (Sunehag et al. 2017) and QMIX
(Rashid et al. 2018). In this paper, we focus on certifying
the robustness of these value-based c-MARLs.

We consider a fully cooperative multi-agent game G as
a Dec-POMDP (Kraemer and Banerjee 2016), which is de-
fined by the tuple G = ⟨S,A, P, r, Z,O, N, γ⟩, in which
each agent n ∈ {1, 2, ..., N} chooses an action an ∈
A in each state s ∈ S to form the joint action a =
{a1, a2, ..., aN}. The same reward function is shared by all
agents r(s, a). γ is a discount factor. We suppose that each
agent draws an observation zn ∈ Z given the observation
function O(s, a).

Each agent has a stochastic policy πn(an|hn) where
hn is the action-observation history hn ∈ H. The
joint policy π has a joint discount return Rt =∑∞

i=0(γ
irt+i) and an action-value function: Qπ(st,at) =

Est+1:∞,at+1:∞[Rt|st,at]. Given an action-value func-
tion Qπ , we define a greedy policy as π(st) :
argmaxat∈A Qπ(st,at) that returns the optimal action.

Randomized Smoothing for Classification
Randomised smoothing (Cohen, Rosenfeld, and Kolter
2019) was developed to evaluate probabilistic certified ro-
bustness for classification tasks. It aims to construct a

smoothed model g(x), which can produce the most proba-
ble prediction of the base classifier f(x) over perturbed in-
puts from Gaussian noise in a test instance. The smoothed
classifier g(x) is supposed to be provably robust to l2-norm
bounded perturbations within a certain radius:
Theorem 1. (Cohen, Rosenfeld, and Kolter 2019) For a
classifier f : R→ Y , suppose c ∈ Y , let δ ∼ N (0, σ2I), the
smoothed classifier be g(x) := argmax

c
P(f(x + δ) = c),

suppose pA, pB ∈ [0, 1], if

P(f(x+ δ) = cA) ≥ pA ≥ pB ≥ max
c̸=cA

P(f(x+ δ) = c),

(1)
then g(x+ ϵ) = cA for all ||ϵ||2 ≤ R, where

R =
σ

2
(Φ−1(pA)− Φ−1(pB)). (2)

Here Φ−1 is the inverse cumulative distribution function
(CDF) of the normal distribution.

3 Policy Smoothing for c-MARLs
In this section, we first outline an intuitive approach to cer-
tifying RL based on current classifier certification. Then, we
sketch the challenges preventing the direct use of the intu-
itive approach and present how to address these challenges.

Problem Formulation
We aim to design a robust policy for multi-agent rein-
forcement learning algorithms. Following the standard set-
ting of existing adversarial attacks on c-MARLs, e.g. (Lin
et al. 2020), where the adversarial perturbation is added to
each step’s observation of each agent, our proposed pol-
icy is expected to be provably robust against the perturba-
tion bounded by the l2-norm around the observation of each
agent.
Definition 1. (Smoothed policy) Given a trained multi-agent
reinforcement learning network Qπ with policy π, suppose
that there are N agents, at the time step t, let ∀st ∈ S, given
that the noise vector ∆t = (δ1t , ..., δ

N
t ) is i.i.d N (0, σ2I),

the joint smoothed policy can be represented as

π̃ (st) = argmax
at∈A

Q̃π (st +∆t,at) (3)

To certify the robustness of the smoothed policy, we de-
fine the certification robustness for a per-step action as

π̃t(st) = π̃t(st + ϵt) s.t.∀ϵt, ||ϵt||2 ≤ D (4)

where ϵt ∈ RN represents the maximum perturbation ap-
plied to the observations of each agent at the t-th time step.
In other words, for each agent, in the presence of the l2-norm
bounded perturbation in each state, the smoothed policy is
expected to return the same action that is most likely to be
selected in the unperturbed state st.

Intuitive Approach
Intuitively, the randomised smoothing can be adapted to cer-
tify the robustness of the per-state action in RLs by replacing
the classifier f(x) with policy π(st). For the certification of
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Algorithm 1: Intuitive Policy Smoothing for Certifying
Per-state Action
Input: Trained Qπ with N agents
Parameter: sampling times M ; Gaussian distribution pa-
rameter σ; confidence parameter α

1: function SMOOTHING(M,Q,α, σ)
2: for m← 1,M do ▷ Get smoothed policy π̃
3: generate ∆m = (δ1m, ..., δNm) i.i.d N (0, σ2I)
4: s′ ← s+∆m

5: a← π(s′)
6: Add a→ Actlist
7: return Actlist
8: Actlist← SMOOTHING(M,Qπ, α, σ)
9: am,ar, ct1, ct2 ← Top two action sets with their counts

10: if BioPV ALUE(ct1, ct1 + ct2, 0.5) ≤ α then
11: Cert← True ▷ Get certified radius for π̃
12: pam , par ←MultiConBnd(Counts(Actlist), α)

13: D ← σ
2

(
Φ−1

(
pam

)
− Φ−1 (par )

)
14: else
15: Cert← False, D ← 0
16: return a, d, Cert

each step, Monte Carlo randomised sampling is used to es-
timate the smoothed policy π̃. As shown in Algorithm 1, we
record the action vector a, which is a combination of actions
taken by all agents at each sampling step. The most likely
selected action set is chosen as the action in π̃. A larger num-
ber of samples can be used to estimate the lower bound on
the probability (pam ) of the most frequently selected action
set, am, and the upper bound on the probability (par ) of the
second most frequently selected (“runner-up”) action, ar.
The function MULTICONBND in Algorithm 1 is based on
a Chi-Square approximation (Goodman 1965), which takes
the number of observations for each category as input and
returns the (1− α) confidence levels.
Proposition 1. If the certification in Algorithm 1 returns the
action set am : (am,1, am,2, ..., am,N ) in the time step t with
a certified radius D = σ

2

(
Φ−1

(
pam

)
− Φ−1 (par )

)
then

with probability at least (1−α), the smoothed policy π̃(st+
ϵt) chooses the action am, ∀||ϵt||2 ≤ D.

Proof is provided in Appendix1 A. The intuition behind
the method shown in Algorithm 1 is similar to the cer-
tification procedure for classification through randomised
smoothing (Cohen, Rosenfeld, and Kolter 2019). The BIOP-
VALUE is applied to calculate the p-value of the two-sided
hypothesis test to choose the action am. However, rather
than abstaining from the action when the p-value does not
meet the confidence level, we set the certified radius of this
step as D = 0 to indicate that the certification failed, since
the RL relies on decisions of multiple steps. When n = 1,
the algorithm can be used to certify RLs with a single agent
as Wu et al. (2021), but instead of using the smoothed ac-
tion value function Qπ , we utilise the frequency of occur-
rence of each action to determine which action to be se-

1All appendixes of this paper can be found at https://github.
com/TrustAI/CertifyCMARL/blob/main/appendix.pdf

lected. Since c-MARLs are trained under the premise that
each agent would always select the best action, they do not
reliably anticipate the team reward when some agents be-
have badly.

In the c-MARLs, there are some additional challenges that
preclude us from using this intuitive certification criterion.

Challenge 1. The perturbation D added to the obser-
vation of each agent can be different. For c-MARLs, each
agent develops its own policy to choose its action. If the cer-
tified bound is calculated using Algorithm 1, all agents will
engage with the same perturbation bound, making the results
less accurate for each agent. As one agent can be more robust
than the other, the same perturbation added to the agents will
lead to different performances, which provides the need to
certify the robustness of each agent. Thus, we will first con-
sider certifying the robustness for every agent and then esti-
mating the robustness in each state for all agents. To reduce
the computation cost, we can sample from the joint policy
π(s′) instead of each agent’s policy separately. To this end,
we can change am,ar in Algorithm 1 (Line 9) to the two
most likely actions (am,n, ar,n) for each agent and then cal-
culate the corresponding lower bound pam,n on probability
P(π̃n(zn) := am,n) and upper bound par,n for choosing the
“runner up” action, ar,n. The certified bound for each agent
per state can be computed as:

Corollary 1. (Certification for the actions of each agent
in each state) In state s, given the joint smoothed policy
π̃(s) = {π̃1(z1), ..., π̃N (zN )}, we can obtain the certified
bound in state s for each agent to guarantee π̃n(zn + ϵ) :=
am,n, ∀||ϵ||2 ≤ dn:

dn =
σ

2
(Φ−1(pam,n)− Φ−1(par,n)) (5)

Proof is provided in Appendix A. Finally, the most likely
chosen action for each agent can be combined as the final
action set {am,1, am,2, ..., am,N} and the certified bound at
each step can be defined as:

Definition 2. Given the certified bound obtained for each
agent in state s, {d1, d2, ..., dN}, the certified bound in this
state for all agents is determined by the least robust agent:
D = min{d1, d2, ..., dN}.

Challenge 2. If we choose the bound of the least robust
agent as the bound for all agents per state, the confidence
level decays. As Proposition 1 indicates, on each call of cer-
tification, the certified robustness bound obtained only holds
with confidence level (1− α). As we sample noise from the
Gaussian distribution independently, the hypothesis tests are
independent. Based on Definition 2, to calculate the certi-
fied bound for each state, we have the following constraint
for the probability of making an error:

P(
∨

n∈N , n-th agent’s cert failed ) ≤
min (

∑
n P(n-th agent’s cert failed ), 1) = min(Nα, 1)

Therefore, for multiple tests, without any control on the er-
ror, the probability of making an error will increase with the
number of tests. Suppose that there are T steps in the entire
trajectory, we will have N ∗ T tests in total, which can be a
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great challenge. To address this problem, for certifying per-
state actions, the confidence level can be reduced to α/N .
Additionally, we can first perform agent selection to con-
trol the selective error by considering the importance of each
agent, since sometimes an agent changing its action will not
diminish the team reward. Moreover, to evaluate the global
certification bound, we propose a tree-search-based method
to find the lower bound of the team reward. In Section 4 and
5, we will detail our proposal to certify the robustness of
per-state actions and global reward.

4 Robustness Certification for Per-State
Action with Correction

Multiple Hypothesis Testing
Corollary 2. (Certified bound per state) In state s, given
N agents with action a, the joint policy is π(s) =
{π1(z1), ..., πN (zN )}. Suppose that the observation of each
agent is perturbed by random noise δn, where δn ∼
N (0, σ2I). ∀n ∈ N , if P(πn(zn + δn) := am,n) ≥ 0.5,
we can compute the certified bound by Definition 2.

The proof is presented in Appendix B. To obtain the certi-
fied bound for all agents per state, we can employ Corollary
2, and, as suggested, for each agent, we need to ensure that
condition P(π̃n(zn) := am,n) ≥ 0.5 is satisfied. Hence,
after sampling, with the count (ctn1 ), we can implement the
one-sided binomial test to obtain its p-value pvn. These p-
values can be processed to indicate which tests should be
accepted under (1− α) confidence.

Definition 3. (Hypothesis Test) The hypothesis test with null
hypothesis for each agent is H0 : P(π̃n(zn) := am,n) <
0.5, and the alternative is H1 : P(π̃n(zn) := am,n) ≥ 0.5

In the hypothesis test, if the null hypothesis H0 is true,
we can determine the p-value, which is the probability of
finding a statistic that is equally extreme as the observed one
or more extremes. Given the statistical test in Definition 3,
if the p-value is below the confidence level, we can reject the
null hypothesis, which means that the bound is certified.

In multiple hypothesis tests, the probability of the occur-
rence of false positives (FP) will increase, where the FP de-
notes that we reject the null hypothesis when it is true, which
is also called type I error. Suppose that the confidence level
is α, and the probability of FP is expected to be less than
α. To control type I error for multiple tests with H tests, the
family-wise error rate (FWER) is introduced, which changes
α for each test to α/H . However, it is still conservative,
which can increase the true negative rate (i.e., type II error).

To solve this problem, Benjamini and Hochberg (1995)
proposed the false discovery rate (FDR) to find the expected
false positive portion. The FDR method applies a corrected
p-value for each test case, achieving a better result: test-
ing for as many positive results as possible while keeping
the false discovery rate within an acceptable range. The
Benjamini-Hochberg (BH) procedure first sorts the p-values
of tests in ascending order and then finds the largest k such
that pk ≤ kα/H , rejecting null if the p-value is below pk.
Fithian, Sun, and Taylor (2014) then proposed selective hy-
pothesis tests by applying inference to the selected model to

Algorithm 2: Certified Robustness Bound of the Perturba-
tion for Actions of Each State with Correction (CRSC)
Input: Trained Qπ; N agents;
Parameter: sampling size M ; Gaussian distribution param-
eter σ; confidence parameter α

1: Actlists← SMOOTHING(M,Qπ, α, σ)
2: am,n, ar,n, ctn1 , ct

n
2 ← Counts(Actlists[n]) for n ∈ N

3: IF ← IF function(Qπ, Actlists)
▷ Obtain importance factor for agent

4: pvn ← BioPV ALUE(ctn1 ,M, 0.5) for n ∈ N
5: cn ← BHproc((pvn ∗ IF [n]), α) for n ∈ N
6: If ¬cn : dn ← 0 ▷ Remove failed agent
7: Icert := {n | dn ̸= 0} ▷ Obtain certified agent set
8: Compute dn for each agent in Icert
9: D = min(dn|n ∈ Icert)

10: return D, Icert

control the selective type I error, which controls the global
error as E[#FalseRejections]

E[#H0Selected] ≤ α. Inspired by the selective
hypothesis tests, we propose to multiply every agent’s im-
portance factor with its p-value to control the selective FDR
via executing the BH procedure on the corrected p-values.

Measuring the Importance of Agents
To obtain each agent’s important factor, we can measure
each agent’s contribution to the team reward at each state.
We adopt the advantage function proposed in COMA (Fo-
erster et al. 2018), which is used to decentralise agents by
estimating the individual reward during training. As the im-
portance factor defined in Definition 4, it is applied to ex-
amine the behaviour of the current action of the agent.

Definition 4. For each agent n, the importance factor IFn

of each agent is computed by comparing the Q value of the
current action an with the counterfactual reward baseline,
which is obtained by altering the action of agent n, an

′
, and

keeping the other agents’ actions a−n unchanged:

IFn(s, a) = Q(s, a)−
∑

an′∈A

P(π̃n(s) := an′
)·Q

(
s,
(
a−n, an′))

Algorithm 2 shows the process for certifying the robust-
ness of the actions of each state while controlling the error.
To correct the p-value in the multiple tests, we adapt the p-
value for each test by multiplying it with the agent’s impor-
tance factor (Line 4). Then we can perform the BH proce-
dure (Line 5) to determine which tests should be rejected.
Lastly, we obtain the set of certified agents Icert.
Theorem 2. For each agent in Icert := {n | dn ̸= 0}, the
action can be certified as π̃n(zn + ϵn) = π̃n(zn), where
∥ϵn∥2 ≤ D := min(dn), ∀n ∈ Icert.

Proof. Considering each agent independently, given that
agent n updates its policy π̃n(zn) in each state, under the
condition P(π̃n(zn) := am,n) > 0.5, we can obtain the
lower bound probability of selecting the am,n and the upper-
bound probability for the “runner-up” action, ar,n, for each
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Algorithm 3: Tree-Search-based certified robustness bound
and global reward (T-CRGR)
Input: Trained Qπ; N agents; confidence parameter α
Parameter: sampling times M ; Gaussian distribution pa-
rameter σ

1: function GETNODE(s)
2: Actlists← SMOOTHING(M,Qπ, α, σ)
3: IF ← IF function(Q,Actlists)
4: A dic, d list← ∅
5: for n ∈ Iagent do
6: am,n, ar,n, ctn1 , ct

n
2 ← Counts(Actlists)

7: pvn ← BioPV ALUE(ctn1 ,M, 0.5)
8: if pvn ∗ IF [n] > α then
9: A dic[n]← A dic[n] ∪ {am,n, ar,n}

10: p1 ← BioConBnd(ctn1 + ctn2 ,M, 1− α)
11: else
12: A dic[n]← A dic[n] ∪ {am,n}
13: p1 ← BioConBnd(ctn1 ,M, 1− α)

14: d list← d list ∪ (σΦ−1
(
p1
)
)

15: d← min(d list)
16: return A dic, d

17: function SEARCH(d, s, a, R, done):
18: if R ≥ Rmin then ▷ Prune the tree
19: return 0
20: if done then
21: Rmin ← min(R,Rmin)
22: return 0
23: A dic, dnew ← GETNODE(s)
24: d← min(dnew, d), Action list← A dic
25: for a in Action list do
26: snew, done← env.step(a, s)
27: SEARCH(d, snew,a, R+Q(s, a), done)

agent and then compute the certified bound dn. The mini-
mum certified bound holds for any agent that satisfies the
condition, denoted by the set Icert.

5 Robustness Guarantee on Global Reward
To certify the bound of global reward under the certified per-
turbation bound for each step, the CRSC is no longer appli-
cable, as it cannot find the lower bound of global reward.
Therefore, we propose a tree-search-based method to find
the global lower bound of the team reward.

The insight of implementing the search tree is that, if we
cannot certify the bound of perturbation at some time steps
for some agent, we can take the second most frequent action,
which will result in a new trajectory. Then we can explore
the new trajectory by developing it as an expanded branch
of the search tree, which may result in a lower global re-
ward. Thus, the minimum reward can be determined as the
certified lower bound of the global reward after exploring
all trajectories. The main function is presented in Algorithm
3. As it shows, at first, we figure out all possible actions to
formulate the action list to be explored using the function
GETNODE. Then we perform the SEARCH function to ex-
pand the tree based on each action node. Once all new trajec-

tories have been explored, we obtain the certified bound of
perturbation and the minimum reward among all leaf nodes.
We also apply pruning to control the size of the search tree,
which requires the reward in the environments to be non-
negative. When the cumulative reward of the current node
has already reached the lower bound, it can be pruned, as
the subsequent tree will not lead to a lower bound.

6 Experiments
Baseline In single-agent environments, we compare our
method with CROP-LORE (Wu et al. 2021). We follow the
same setting as CROP-LORE for a fair comparison. For cer-
tifying the c-MARLs, since there is no existing solution,
we apply the PGD attack (Kurakin, Goodfellow, and Bengio
2018) to demonstrate the validity of the certified bounds.

Environments For the single agent environment, we use
the “Freeway” in OpenAI Gym (Brockman et al. 2016) For
the case of c-MARLs, we choose two environments “Check-
ers” with two agents and “Switches” with four agents from
ma-gym (Koul 2019). Details of the environments are given
in Appendix D. Extra experiments in “Traffic Junction”
with four and ten agents are given in Appendix E.

RL Algorithms We apply our method to certify the DQN
trained by SA-MDP (PGD) and SA-MDP (CVX) (Zhang
et al. 2020a) in the single-agent setting. For c-MARLs, we
use VDN (Sunehag et al. 2017) and QMIX (Rashid et al.
2018), which are well-established value-based algorithms.

Experiments setup For all experiments, we sample noise
10,000 times for smoothing and set the discount factor γ
to 1.0. In the single-agent environment, we follow the same
setting as the baseline, where the time step is 200 and the
confidence level is α = 0.05. For c-MARLs, α = 0.01.

Evaluate the Robustness of the Global Reward
Compared with baseline on single agent The baseline de-
velops the smoothed policy based on the action-value func-
tion bounded by Lipschitz continuous, while our method is
based on the probability of selecting the most frequent ac-
tion. To make a fair comparison, we employ the same search
tree structure as the baseline, which organises all possible
trajectories and grows them by increasing the certified bound
to choose an alternative action. The technical details are
given in Appendix C.

As shown in Figure 1, our method obtains a tighter bound
than the baseline. Since we measure the probability of se-
lecting actions instead of the action value function to calcu-
late the bound and choose an action, we do not include the
actions that have never been chosen in the possible action
list, leading to a more reasonable action selection mecha-
nism, resulting in a tighter calculated bound. Moreover, the
Lipschitz continuity is used to compute the upper bound of
the smoothed value function in the baseline, which is less
tight than our bound based on high-probability guarantees.

Lower bound of global reward for c-MARLs In Table
1, we show the results of the lower bound of global reward
under the minimum certified bound of perturbation ϵcert. To
perform pruning, the per-step reward in each environment is
set to be non-negative. However, as the global reward ob-
tained for QMIX on Switch are below zero, for this case, we
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(a) SA-MDP(CVX)

(b) SA-MDP(PGD)

Figure 1: Comparing the robustness certification of the total reward for SA-MDP in Freeway with Wu et al. (2021). Solid lines
are the certified lower bounds of reward, and dashed lines indicate the empirical results under PGD attack.

Models Game No.agent σ = 0.03 σ = 0.06 σ = 0.1
ϵ Reward ϵ Reward ϵ Reward

Our PGD Our PGD Our PGD
VDN Checkers 2 0.0117 79.84 79.84 0.0221 79.84 79.84 0.0309 79.84 79.84

QMIX Checkers 2 0.0144 19.96 19.96 0.0369 19.96 19.96 0.0384 19.96 19.96
VDN Switch 4 0.0147 19.4 19.4 0.284 14.4 19.4 0.036 14 14.4

QMIX * Switch 4 0.0173 -20 -20 0.0233 -20 -20 0.038 -20 -20

Table 1: Lower bound of global reward under the minimum certified bound of perturbation ϵ, where the line with ‘*’ denotes
that we run the trajectory to the end without pruning to obtain the certified reward.

run each trajectory to the end without pruning to calculate
the global reward. We can see that VDN obtains a higher re-
ward compared to QMIX but is less robust (has lower ϵcert).
This is because, during the training process, VDN simply
adds rewards obtained by the two agents to achieve a cen-
tralisation, leading one agent to choosing a simpler strategy
once another agent has learnt a useful strategy. On the other
hand, QMIX employs a more complex network to centralise
the agents instead of only adding their rewards, which helps
the network to capture more complex interrelationships be-
tween different agents and encourage each one to learn. This
leads to VDN achieving higher rewards faster than QMIX,
but being more vulnerable to perturbations.

Evaluate the Robustness for Each State
In Figure 2, we present the certified perturbation bounded by
l2 norm for each agent and for all agents at each state sepa-
rately. We see that in Checkers with two agents, the certified
bound for each agent (trained by QMIX) is close to each
other when the smoothing variance σ is 0.03. When we in-

crease the variance to 0.1, Agent2 engages a slightly higher
bound than Agent1, which means that Agent2 is more ro-
bust. For the agents trained by VDN, Agent2 always has a
much higher robustness bound than Agent1. It may be be-
cause when training QMIX, all agents are expected to learn
useful strategies, while VDN only needs some agents to
learn well, and others may use lazier strategies, which re-
sults in a big divergence in the robustness between agents of
VDN. In Switch with four agents, we observe that, by apply-
ing our p-value corrected method, the locally certified bound
at each step will not always take the minimum bound among
all agents and ignore the bound of agents with low impact.

7 Related work
Adversarial Attacks on DRLs Existing attack solutions
mainly focused on attacking single-agent RL systems, such
as Huang et al. (2017); Lin et al. (2017); Kos and Song
(2017); Weng et al. (2019). For attacking c-MARLs, there
are notably two existing works. Lin et al. (2020) proposed to
train a policy network to find a wrong action that the victim
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(a) Certified bound of perturbation for actions of each state of each agent in Checkers

(b) Certified bound of perturbation for actions of each state in Checkers

(c) Certified bound of perturbation for per-state action of each agent in Switch.

(d) Certified bound of perturbation for actions of each state in Switch

Figure 2: Certified robustness for per-step action.

agent is expected to take and set it as the targeted adversarial
example. Pham et al. (2022) then proposed to craft a stronger
adversary by using a model-based approach.

Robustness Certification of DRLs Majority research
on robustness certification concentrated on DNNs (Wang
et al. 2023; Zhang, Ruan, and Xu 2023; Ruan, Huang, and
Kwiatkowska 2018; Wu et al. 2020; Zhang, Ruan, and Field-
send 2022; Wang and Ruan 2022). Certification on DRLs is
still in its infancy. Lütjens, Everett, and How (2020) first
proposed a certified defence on the observations of DRLs.
Zhang et al. (2020a) then provided empirically provable cer-
tificates to ensure that the action does not change at each
state. However, this method cannot certify the robustness of
the reward if the action is changed under attacks. To tackle
this problem, Kumar, Levine, and Feizi (2021) proposed to
directly certify the total reward via randomised smoothing-
based defence, but it cannot certify the robustness at ac-

tion level. Recently, Wu et al. (2021) proposed a policy
smoothing method based on the randomised smoothing of
the action-value function. However, all existing methods can
only work on single-agent systems. To the best of our knowl-
edge, this paper is the first work to certify the robustness of
cooperative multi-agent RL systems.

8 Conclusion
We propose the first robustness certification solution for c-
MARLs. By combining the FDR-controlling strategy with
the importance factor of each agent, we certify the actions
for each state while mitigating the multiple testing problem.
In addition, a tree-search-based algorithm is applied to ob-
tain a lower bound of the global reward. Our method is also
applicable to single-agent RL systems, where it can obtain
tighter bound than the state-of-the-art certification methods.
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