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Abstract

Monitoring machine learning models once they are deployed
is challenging. It is even more challenging to decide when
to retrain models in real-case scenarios when labeled data is
beyond reach, and monitoring performance metrics becomes
unfeasible. In this work, we use non-parametric bootstrapped
uncertainty estimates and SHAP values to provide explainable
uncertainty estimation as a technique that aims to monitor
the deterioration of machine learning models in deployment
environments, as well as determine the source of model deteri-
oration when target labels are not available. Classical methods
are purely aimed at detecting distribution shift, which can lead
to false positives in the sense that the model has not deterio-
rated despite a shift in the data distribution. To estimate model
uncertainty we construct prediction intervals using a novel
bootstrap method, which improves previous state-of-the-art
work. We show that both our model deterioration detection
system as well as our uncertainty estimation method achieve
better performance than the current state-of-the-art. Finally,
we use explainable AI techniques to gain an understanding
of the drivers of model deterioration. We release an open
source Python package, doubt, which implements our pro-
posed methods, as well as the code used to reproduce our
experiments.

Introduction
Monitoring machine learning models in production is not
an easy task. There are situations when the true label of the
deployment data is available, and performance metrics can
be monitored. But there are cases where it is not, and perfor-
mance metrics are not so trivial to calculate once the model
has been deployed. Model monitoring aims to ensure that a
machine learning application in a production environment
displays consistent behavior over time.

Being able to explain or remain accountable for the perfor-
mance or the deterioration of a deployed model is crucial, as
a drop in model performance can affect the whole business
process (Mougan, Kanellos, and Gottron 2021), potentially
having catastrophic consequences1. Once a deployed model
has deteriorated, models are retrained using previous and
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1The Zillow case is an example of consequences of model
performance degradation in an unsupervised monitoring scenario,

new input data in order to maintain high performance. This
process is called continual learning (Diethe et al. 2018) and
it can be computationally expensive and put high demands on
the software engineering system. Deciding when to retrain
machine learning models is paramount in many situations.

Traditional machine learning systems assume that training
data has been generated from a stationary source, but data
is not static, it evolves. This problem can be seen as a dis-
tribution shift, where the data distributions of the training
set and the test set differ. Detecting distribution shifts has
been a longstanding problem in the machine learning (ML)
research community (Shimodaira 2000; Sugiyama, Kraule-
dat, and Müller 2007; Sugiyama and Müller 2005; Tasche
2017; Zadrozny 2004; Stolzenberg and Relles 1997; Heck-
man 1990; Cortes et al. 2008; Huang et al. 2006; He et al.
2014), as it is one of the main sources of model performance
deterioration (Candela et al. 2009). Furthermore, data scien-
tists in machine learning competitions claim that finding the
train/validation split that better resembles the test (evaluation)
distribution is paramount to winning a Kaggle competition
(Guschin et al. 2018).

However, despite the fact that a shift in data distribution
can be a source of model deterioration, the two are not identi-
cal. Indeed, if we shift a random noise feature we have caused
a change in the data distribution, but we should not expect
the performance of a model to decline when evaluated on
this shifted dataset. Thus, we emphasize here that our focus
is on model deterioration and not distribution shift, despite
the correlation between the two.

Established ways of monitoring distribution shift when the
real target distribution is not available are based on statistical
changes either the input data (Diethe et al. 2018; Rabanser,
Günnemann, and Lipton 2019) or on the model output (Garg
et al. 2021). These statistical tests correctly detect univariate
changes in the distribution but are completely independent
of the model performance and can therefore be too sensi-
tive, indicating a change in the covariates but without any
degradation in the model performance. This can result in
false positives, leading to unnecessary model retraining. It is
worth noting that several authors have stated the clear need to
identify how non-stationary environments affect the behavior
of models (Diethe et al. 2018).

see https://edition.cnn.com/2021/11/09/tech/zillow-ibuying-home-
zestimate/index.html (Online accessed January 26, 2022).
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Aside from merely indicating that a model has deteriorated,
it can in some circumstances be beneficial to identify the
cause of the model deterioration by detecting and explaining
the lack of knowledge in the prediction of a model. Such ex-
plainability techniques can provide algorithmic transparency
to stakeholders and to the ML engineering team (Mougan,
Kanellos, and Gottron 2021; Bhatt et al. 2021; Koh and Liang
2017; Ribeiro, Singh, and Guestrin 2016; Sundararajan, Taly,
and Yan 2017).

This paper’s primary focus is on non-deep learning models
and small to medium-sized tabular datasets, a size of data
that is very common in the average industry, where, non-deep
learning-based models achieve state-of-the-art results (Grin-
sztajn, Oyallon, and Varoquaux 2022; Borisov et al. 2022;
Elsayed et al. 2021).

Our contributions are the following:

1. We develop a novel method that produces prediction in-
tervals using bootstrapping with theoretical guarantees,
which achieves better coverage than previous methods on
eight real-life regression datasets from the UCI reposi-
tory (Dua and Graff 2017).

2. We use this non-parametric uncertainty estimation method
to develop a machine learning monitoring system for re-
gression models, which outperforms previous monitoring
methods in terms of detecting deterioration of model per-
formance.

3. We use explainable AI techniques to identify the source
of model deterioration for both entire distributions as a
whole as well as for individual samples, where classi-
cal statistical indicators can only determine distribution
differences.

4. We release an open source Python package, doubt,
which implements our uncertainty estimation method
and is compatible with all scikit-learn models (Pe-
dregosa et al. 2011).

Related Work
Model Monitoring
Model monitoring techniques help to detect unwanted
changes in the behavior of a machine learning application in
a production environment. One of the biggest challenges in
model monitoring is distribution shift, which is also one of
the main sources of model degradation (Candela et al. 2009;
Diethe et al. 2018).

Diverse types of model monitoring scenarios require dif-
ferent supervision techniques. We can distinguish two main
groups: Supervised learning and unsupervised learning. Su-
pervised learning is the appealing one from a monitoring per-
spective, where performance metrics can easily be tracked.
Whilst attractive, these techniques are often unfeasible as
they rely either on having ground truth labeled data available
or maintaining a hold-out set, which leaves the challenge
of how to monitor ML models to the realm of unsupervised
learning (Diethe et al. 2018). Popular unsupervised methods
that are used in this respect are the Population Stability Index
(PSI) and the Kolmogorov-Smirnov test (K-S), all of which
measure how much the distribution of the covariates in the

new samples differs from the covariate distribution within
the training samples. These methods are often limited to real-
valued data, low dimensions, and require certain probabilistic
assumptions (Diethe et al. 2018; Malinin et al. 2021).

Another approach suggested by Lundberg et al. (2020b)
is to monitor the SHAP value contribution of input features
over time together with decomposing the loss function across
input features in order to identify possible bugs in the pipeline
as well as distribution shift. This technique can account for
previously unaccounted bugs in the machine learning produc-
tion pipeline but fails to monitor the model degradation.

Is worth noting that prior work (Garg et al. 2021; Jiang
et al. .) has focused on monitoring models either on out-
of-distribution data or in-distribution data (Neyshabur et al.
2017, 2019). Such a task, even if challenging, does not accu-
rately represent the different types of data a model encounters
in the wild. In a production environment, a model can en-
counter previously seen data (training data), unseen data with
the same distribution (test data), and statistically new and
unseen data (out-of-distribution data). That is why we focus
our work on finding an unsupervised estimator that replicates
the behavior of the model performance.

The idea of mixing uncertainty with dataset shift was intro-
duced by Ovadia et al. (2019). Our work differs from theirs,
in that they evaluate uncertainty by shifting the distributions
of their dataset, where we aim to detect model deteriora-
tion under dataset shift using uncertainty estimation. Their
work is also focused on deep learning classification prob-
lems, while we estimate uncertainty using model agnostic
regression techniques. Further, our contribution allows us to
pinpoint the features/dimensions that are main causes of the
model degradation.

Garg et al. (2021) introduces a monitoring system for clas-
sification models, based on imposing thresholds on the soft-
max values of the model. Our method differs from theirs in
that we work with regression models and not classification
models, and that our method utilizes external uncertainty
estimation methods, rather than relying on the model’s own
“confidence” (i.e., the outputted logits and associated softmax
values).

Rabanser, Günnemann, and Lipton (2019), presents a com-
prehensive empirical investigation of dataset shift, examining
how dimensionality reduction and two-sample testing might
be combined to produce a practical pipeline for detecting
distribution shift in a real-life machine learning system. They
show that the two-sample-testing-based approach performs
best. This serves as a baseline comparison within our models,
even if their idea is more focused on binary classification,
whereas our works focus on building a regression indicator.

Uncertainty
Uncertainty estimation is being developed at a fast pace.
Model averaging (Kumar and Srivastava 2012; Gal and
Ghahramani 2016; Lakshminarayanan, Pritzel, and Blundell
2017; Arnez et al. 2020) has emerged as the most common
approach to uncertainty estimation. Ensemble and sampling-
based uncertainty estimates have been successfully applied
to many use cases such as detecting misclassifications (Ren
et al. 2019), out-of-distribution inputs (D’Angelo and Hen-
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ning 2021), adversarial attacks (Carlini and Wagner 2017;
Smith and Gal 2018), automatic language assessments (Ma-
linin 2019) and active learning (Kirsch, Van Amersfoort, and
Gal 2019). In our work, we apply uncertainty to detect and
explain model performance for seen data (train), unseen and
identically distributed data (test), and statistically new and
unseen data (out-of-distribution).

Kumar and Srivastava (2012) introduced a non-parametric
method to compute prediction intervals for any ML model
using a bootstrap estimate, with theoretical guarantees. Our
work is an extension of their work, where we take into ac-
count the model’s variance in the construction of the predic-
tion intervals. The result, as we will see in the experiments
section, is that such intervals have better coverage in such
high-variance scenarios.

Barber et al. (2021) recently introduced a new non-
parametric method of creating prediction intervals, using
the Jackknife+. Our method differs from theirs in that we are
using general bootstrapped samples for our estimates, rather
than leave-one-out estimates. In the experimental, we will see
that the two methods perform similarly, but that our method
is again more accurate in a high-variance scenario.

Methodology
Evaluation of Deterioration Detection Systems
The problem we are tackling in this paper is evaluating and
accounting for model predictive performance deterioration.
To do this, we simulate a distribution shift scenario in which
we have access to the true labels, which we can use to mea-
sure the model deterioration and thus evaluate the monitoring
system. A naive simulation in which we simply manually
shift a chosen feature of a dataset would not be representa-
tive, as the associated true labels could have changed if such
a shift happened ”in the wild”.

Therefore, we propose the following alternative approach.
Starting from a real-life dataset D and a numerical feature
F of D, we sort the data samples of D by the value of
F , and split the sorted D in three equally sized sections:
{Dbelow,Dtr,Dupper} ⊆ D. The model is then fitted to the
middle section (Dtr) and evaluated on all of D. The goal of
the monitoring system is to input the model, the labeled data
segment Dtr and a sample of unlabelled data S ⊆ D, and
output a “monitoring value” which behaves like the model’s
performance on S. Such a prediction will thus have to take
into account the training performance, generalization perfor-
mance as well as the out-of-distribution performance of the
model.

In the experimental section, we compare our monitoring
technique to several other such systems. To enable compari-
son between the different monitoring systems, we standard-
ize all monitoring values as well as the performance metrics
of the model. From these standardized values, we can now
directly measure the goodness-of-fit of the model monitor-
ing system by computing the absolute difference between
its (standardized) monitoring values and the (standardized)
ground truth model performance metrics. Our chosen eval-
uation method is very similar to the one used by Garg et al.
(2021). They focus on classification models and their sys-

tems output estimates of the model’s accuracy on the dataset.
They evaluate these systems by computing the absolute differ-
ence between the system’s accuracy estimate and the actual
accuracy that the model achieves on the dataset.

As we are working with regression models in this paper,
we will only operate with a single model performance metric:
mean squared error. We will introduce our monitoring system,
which is based on an uncertainty measure, and will compare
our monitoring system against statistical tests based on input
data or prediction data. In that section, we will also com-
pare our uncertainty estimation method to current state-of-art
uncertainty estimation methods.

Uncertainty Estimation
In order to estimate uncertainty in a general way for all ma-
chine learning models, we use a non-parametric regression
technique, which is an improvement of the technique intro-
duced by (Kumar and Srivastava 2012). This method aims
at determining prediction intervals for outputs of general
non-parametric regression models using bootstrap methods.

Setting d ∈ N to be the dimension of the feature space,
we assume that the true model y : Rd → R is of the form
y(x) = δ(x) + ε(x), where δ : Rd → R is a deterministic
and continuously differentiable function, and the observa-
tion noise ε : Rd → R is a uniform random field such that
ε(x1), . . . , ε(xt) are iid for any x1, . . . , xt ∈ Rd, have zero
mean and finite variance. We will assume that we have a data
sample X of size N , as well as a convergent estimator δ̂(n)
of δ, meaning the following:

Definition 1 Let δ̂(n) : Rd → R be a function for every n ∈
N. We then say that δ̂(n) is a convergent estimator of a
function δ : Rd → R if:

1. δ̂(n) is deterministic and continuous, for all n ∈ N.
2. There is a function δ̂ : Rd → R such that δ̂(n) converges

pointwise to δ̂ as n → ∞.
We define an associated bias function β(x) := δ(x) −

δ̂(x). Note that in Kumar and Srivastava (2012) they assumed
that E[(δ̂(n)(x)− δ(x))2] → 0 for n → ∞, effectively mean-
ing that the candidate model would be able to perfectly model
the underlying distribution given enough data. It turns out
that their method does not require this assumption, as we will
see below. Aside from removing this assumption, the primary
difference between our approach and Kumar and Srivastava
(2012) is that our approach extends the latter by maintaining
good coverage in a high-variance situation, as we will also
see below. We start by rewriting the equation for the true
model as follows:

y(x) = δ(x) + ε(x) (1)

= δ̂(N)(x) + β(x) + ε(N)
v (x) + ε(x), (2)

where ε
(N)
v (x) := δ(x) − β(x) − δ̂(N)(x) is the model

variance noise. Note that
ε(n)v (x) = δ̂(x)− δ̂(n)(x) → 0 as n → ∞. (3)

To produce correct prediction intervals we thus need to
estimate the distribution of the observation noise, bias and
model variance noise.
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Estimating Model Variance Noise To estimate the model
variance noise term ε

(N)
v (x) we adapt the technique in Ku-

mar and Srivastava (2012) to our scenario, using a boot-
strap estimate. Concretely, we bootstrap our dataset B > 0
times, fitting our model on each of the bootstrapped sam-
ples Xb and generating bootstrapped estimates δ

(N)

b (x) for
every b < B. Centering the bootstrapped predictions as
m

(N)
b (x) := Eb[δ̄(N)

b ]− δ̄
(N)
b , we have that

Db[m(N)
b (x)] = Db[Eb[δ̄(N)

b (x)]− δ̄
(N)
b (x)] (4)

→ DX [δ̂(x)− δ̄(N)(x)] (5)

= DX [ε(N)
v (x)] (6)

as B → ∞, giving us our estimate of the model variance
noise.

Estimating Bias and Observation Noise We next have to
estimate the bias β(x) and the observation noise ε(x). By
rewriting (1) we get that that

β(x) + ε(x) = y(x)− δ̂(N)(x)− ε(N)
v (x), (7)

so since we already have an estimate for ε(N)
v (x), it re-

mains to estimate the residual y(x) − δ̂(N)(x). In Kumar
and Srivastava (2012) this was estimated purely using the
training residuals without using any bootstrapping, whereas
our approach will estimate the expected value of this residual
via a bootstrap estimate, by using bootstrapped validation
residuals y(x)− δ̄

(N)
b (x), where x is not in the b’th bootstrap

sample Xb. Concretely, we have that

D(b,x∈X\Xb)[y(x)− δ̄
(N)
b (x)] (8)

→ D(X,x/∈X)[y(x)− δ̂(N)(x)] (9)

as B → ∞. An initial estimate is thus

D(X,x/∈X)[β(x) + ε(x)]] (10)

≈ D(b,x∈X\Xb)[y(x)− δ̄
(N)
b (x)−m

(N)
b (x)] (11)

Denote (11) by valError(N)
b . The problem with this

approach is that the resulting prediction intervals arising
from these validation errors are going to be too wide, as
the bootstrap samples only contain on average 63.2% of the
samples in the original dataset (Friedman et al. 2001), causing
the model to have artificially large validation residuals. To fix
this, we follow the approach in Friedman et al. (2001) and
use the 0.632+ bootstrap estimate instead, defined as follows.
We start by defining the no-information error rate

noInfoError(N) :=
1

N2

N∑
i=1

N∑
j=1

(y(xi)−δ̂(xj))
2, (12)

corresponding to the mean-squared error if the inputs and
outputs were independent. Next, define the associated train-
ing residuals trainError(N)

b as:

D(b,x∈Xb)[y(x)− δ̄
(N)
b (x)− (Eb[δ̄(N)

b (x)]− δ̄
(N)
b (x))]].

(13)

Combining these two, we set the relative overfitting rate
overfittingRate(N)

b to be:

valError(N)
b − trainError(N)

b

noInfoError− trainError(N)
b

. (14)

This gives us a convenient number between 0 and 1, denot-
ing how much our model is overfitting the dataset. From this,
we define the validation weight valWeight(N)

b as:

0.632

1− (1− 0.632)× overfittingRate(N)
b

, (15)

which denotes how much we should weigh the validation
error over the training error. In case of no overfitting, we
get that valWeight(N)

b = 0.632 and this reduces to the
standard 0.632 bootstrap estimate (Friedman et al. 2001),
whereas in case of severe overfitting the weight becomes 1
and thus only prioritizes the validation error.

Our final estimate of β(x) + ε(x) is thus

DX [β(x) + ε(x)] ≈ Db[o(N)
b ], (16)

where

o
(N)
b := (1− valWeight(N)

b )× trainError(N)
b +

valWeight(N)
b × valError(N)

b .

Note that this estimate is only an aggregate and is not
specific to any specific value of x, as opposed to the model
variance estimate in equation (4).

Prediction Interval Construction Calculating the estimate
of the prediction interval is then a matter of joining the results
from the section of model variance noise and bias observation
noise, in the same way as in Kumar and Srivastava (2012).
As the estimate of β(x) + ε(x) does not depend on any new
sample, we can pre-compute this in advance by bootstrapping
B samples Xb, fit our model to each and calculate the o

(N)
b

using Equation (16). Now, given a new data point x0 and
α ∈ (0, 1), we can estimate an α prediction interval around
x0 as follows. We again bootstrap B samples Xb, fit our
model to each and calculate the m

(N)
b (x0) values. Next, we

form the set C(N)(x0) := {m(N)
b (x0) + o

(N)
b | b < B}, and

our interval is then (start,end), where

start := δ̂(N)(x0)− qα
2
(C(N)(x0)) (17)

end := δ̂(N)(x0) + q
1−α2

(C(N)(x0)), (18)

with qξ(C
(N)(x0)) being the ξ’th quantile of C(N)(x0).

Detecting the Source of Uncertainty/Model
Deterioration
Using uncertainty as a method to monitor the performance of
an ML model does not provide any information on what fea-
tures are the cause of the model degradation, only a goodness-
of-fit to the model performance. We propose to solve this
issue with the use of Shapley values.
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We start by fitting a model fθ to the training data, X train.
We next shift the test data by five standard deviations (call the
shifted data Xood) and compute uncertainty estimates Z of fθ
on Xood. We next fit a second model gψ on (Xood) to predict
the uncertainty estimate Z, and compute the associated Shap-
ley values (Lundberg et al. 2020b) of gψ . These Shapley val-
ues thus signify which features are the ones contributing the
most to the uncertainty values. With the correlation between
uncertainty values and model deterioration that we hope to
conclude from the experiment described in the experimen-
tal section, this thus also provides us with a plausible cause
of the model deterioration, if deterioration has taken place.
Particularly, this methodology can be extended to large-scale
datasets and deep learning-based models.

Experiments
Our experiments have been organized into three main groups:
Firstly, we compare our non-parametric bootstrapped estima-
tion method with the previous state-of-the-art, Kumar and
Srivastava (2012) and Barber et al. (2021). Secondly, we as-
sess the performance of our proposed uncertainty method for
monitoring the performance of a machine learning model.
And then, we evaluate the usability of the explainable un-
certainty for identifying the features that are driving model
degradation in local and global scenarios. In the main body
of the paper, we present the results over several real-world
datasets in the appendix we provide the experiments on syn-
thetic datasets that exhibits, non-linear and linear behavior.

Uncertainty Method Comparison
To demonstrate the accuracy of our prediction intervals intro-
duced in the uncertainty estimation section, we compare the
coverage of the intervals with the NASA method from Kumar
and Srivastava (2012) on eight regression datasets from the
UCI repository (Dua and Graff 2017). The statistics of these
datasets can be seen in Table 1.

Dataset # Samples # Features
Airfoil Self-Noise 1,503 5
Bike Sharing 17,379 16
Concrete Strength 1,030 8
QSAR Fish Toxicity 908 6
Forest Fires 517 12
Parkinsons 5,875 22
Power Plant 9,568 4
Protein 45,730 9

Table 1: Statistics of the regression datasets used in this paper.

We split each of the eight datasets into a 90/10 train/test
split, uniformly at random. Next, we fit a linear regression,
a decision tree, and a gradient boosting decision tree on
the training split. We chose these three models to have
an example of a model with large bias (the linear regres-
sion model), a model with large variance (the decision tree
model), and an intermediate model that achieves state-of-
the-art performance in many tasks, the gradient boosting
model. We will use the xgboost (Chen and Guestrin 2016)

implementation of the gradient boosting model. After fit-
ting the three models we compute α-prediction intervals for
α ∈ {0.75, 0.76, . . . , 0.99}, using our “Doubt” prediction
intervals, the “NASA” prediction intervals from (Kumar and
Srivastava 2012) as well as the “MAPIE” prediction intervals
from (Barber et al. 2021), the latter implemented with the
MAPIE package2. We can then compare the coverage of the
three methods on the eight test sets.

As the goal of an α prediction interval is to have a coverage
of α, we can measure the performance of a prediction inter-
val system by reporting the absolute difference between the
actual coverage of the interval and this ideal coverage α. In
Table 2 we report the mean and standard deviations of these
absolute differences, for each of the three model architec-
tures. We have performed pairwise two-tailed paired t-tests
on all absolute differences, and the best-performing predic-
tion interval methods are marked in bold for each model
architecture.

We see (cf. Table 2) that there is no significant difference
between the three methods in the high bias case with the
linear regression model. In the case of the XGBoost model,
a model with higher variance, both the MAPIE and Doubt
methods outperform the NASA method, but there is no signif-
icant difference between the MAPIE method and the Doubt
method in this case. In the high-variance scenario with the de-
cision tree, however, the Doubt intervals achieve significantly
better coverage than both of the other two methods.

Evaluating Model Deterioration
The scenario we are addressing is characterized by regres-
sion data sets that have statistically seen data (train data), iid
statistically unseen data (test data), and out-of-distribution
data. Following the open data for reproducible research guide-
lines described in Arnold et al. (2019) and for measuring the
performance of the proposed methods, we have used eight
open-source datasets (cf. Table 1) for an empirical compari-
son coming from the UCI repository (Dua and Graff 2017).
As described in the methodology, in order to benchmark our
algorithm we, for each feature F in each dataset D, sort D
according to F and split D into three equally sized sections
{Dbelow,Dtr,Dupper} ⊆ D. We then train the model on Dtr
and test the performance of all of D. In this way we obtain a
mixture of train, test, and out-of-distribution data, allowing us
to evaluate our monitoring techniques in all three scenarios.

In evaluating a monitoring system we need to make a
concrete choice of the sampling method to get the unlabelled
data S ⊆ D. We are here using a rolling window of fifty
samples, which has the added benefit of giving insight into
the performance of the monitoring system on each of the
three sections Dlower, Dtr and Dupper (cf. Figure 1).

We compare our monitoring system using the uncertainty
estimation method against: (i) two classical statistical meth-
ods on input data: the Kolmogorov-Smirnov test statistic
(K-S) and the Population-Stability Index (PSI) (Diethe et al.
2018), (ii) a Kolmogorov-Smirnov statistical test on the pre-
dictions between train and test (Garg et al. 2021) that we

2https://github.com/scikit-learn-contrib/MAPIE
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Model Linear Regression XGBoost Decision Tree
NASA 3.854± 5.380 20.216± 12.405 20.669± 9.771
MAPIE 4.207± 4.755 5.264± 4.258 7.788± 4.782
Doubt 3.917± 4.870 4.861± 3.938 5.137± 3.984

Table 2: A comparison of different prediction interval methods, where the metric used is the mean absolute deviation from the
ideal coverage (lower is better), with its associated standard deviation. Here NASA is the method described in Kumar and
Srivastava (2012), MAPIE is the method from Barber et al. (2021) and Doubt is our method. The best results for each model
architecture are shown in bold.

Figure 1: Comparison of different model degradation detec-
tion methods for the Fish Toxicity dataset. Each of the plots
represents an independent experiment where each of the six
features has been shifted, using the method described in the
methodology section. Doubt achieves a better goodness-of-fit
than previous statistical methods. A larger version of this
figure can be found in Appendix.

denominate prediction shift and (iii) the previous state-of-
the-art uncertainty estimate MAPIE. We evaluate the monitor-
ing systems on a variety of model architectures: generalized
linear models, tree-based models as well as neural networks.

The average performance across all datasets can be found
in Table 3.3 From these we can see that our methods outper-
form K-S and PSI in all cases except for the Random Forest
case, where our method is still on par with the best method,
in that case, K-S. We have included a table with each dataset
and all the estimators in the appendix, where it can be seen
that both K-S and PSI easily identify a shift in the distribu-
tion but fail to detect when the model performance degrades,
giving too many false positives.

Detecting the Source of Uncertainty
For this experiment, we make use of two datasets: a syn-
thetic one (see the appendix) and the popular House Prices
regression dataset4, where the goal is to predict the selling
price of a given property. We select two of the features that
are the most correlated with the target, GrLivArea and
TotalBsmtSF, and also create a new feature of random
noise, to have an example of a feature with minimum corre-
lation with the target. A model deterioration system should

3See the appendix for a more detailed table.
4https://www.kaggle.com/c/house-prices-advanced-regression-

techniques

therefore highlight the GrLivArea and TotalBsmtSF
features, and not highlight the random features.

Concretely, we compute an estimation of the Shapley val-
ues using TreeSHAP (Lundberg et al. 2020b), which is an
efficient estimation approach values for tree-based models,
that allows for this second model to identify the features
that are the source of the uncertainty, and thus also provide
an indicator for what features might be causing the model
deterioration.

We fitted an MLP on the training dataset, which achieved
a R2 value of 0.79 on the validation set. We then shifted
all three features by five standard deviations and trained a
gradient boosting model on the uncertainty values of the
MLP on the validation set, which achieves a good fit (an R2

value of 0.94 on the hold-out set of the validation). We then
compare the SHAP values of the gradient boosting model
with the PSI and K-S statistics for the individual features.
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Figure 2: Global comparison of different distribution shift
detection methods. Statistical methods correctly indicate that
there exists a distribution shift in the shifted data. Shapley
values indicate the contribution of each feature to the drop in
predictive performance of the model.

In Figure 2, classical statistics and SHAP values to detect
the source of the model deterioration are compared. We see
that the PSI and K-S value correctly capture the shift in each
of the three features (including the random noise). On the
other hand, our SHAP method highlights the two substantial
features (GrLivArea and TotalBsmtSF) and correctly
does not assign a large value to the random feature, despite
the distribution shift.

Figure 3 shows features contributing to pushing the model
output from the base value to the model output. Features
pushing the uncertainty prediction higher are shown in red,
and those pushing the uncertainty prediction lower are in
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Method Linear Reg. Poisson Decision Tree Random Forest Gradient Boosting MLP
PSI 0.87± 0.08 0.93± 0.08 0.97± 0.10 0.95± 0.08 0.95± 0.08 0.84± 0.16
K-S 0.81± 0.10 0.94± 0.20 0.52± 0.12 0.50± 0.12 0.61± 0.19 0.72± 0.22
PredictionShift 0.86± 0.13 1.00± 0.15 0.80± 0.14 0.73± 0.18 0.75± 0.20 0.74± 0.22
MAPIE 0.77± 0.10 0.83± 0.18 0.60± 0.16 0.86± 0.15 0.73± 0.18 0.74± 0.38
Doubt 0.71± 0.14 0.79± 0.14 0.49± 0.10 0.74± 0.18 0.58± 0.23 0.68± 0.38

Table 3: Performance of model monitoring systems for model deterioration for a variety of model architectures on eight regression
datasets from the UCI repository (Dua and Graff 2017). The scores are the means and standard deviations of the absolute
deviation from the true labels on Dlower and Dupper (lower is better). K-S and PSI are the monitoring systems obtained by
computing the Kolmogorov-Smirnov test values and the Population Stability Index, respectively, Prediction Shift is the statistical
comparison of the model prediction, and Doubt is our method. The best results for each model architecture are shown in bold.
See the Appendix for all the raw scores.

ExternQual

OverallQual

Figure 3: Individual explanation that displays the source of
uncertainty for one instance. The previous method allowed
only for comparison between distributions, now with ex-
plainable uncertainty, we are able to account for individual
instances. In red, features pushing the uncertainty prediction
higher are shown; in blue, those pushing the uncertainty pre-
diction lower.

blue (Lundberg et al. 2018, 2020a; Lundberg and Lee 2017).
From these values, we can, at a local level, also identify the
two features (GrLivArea and TotalBsmtSF) causing
the model deterioration in this case.

Conclusion
In this work, we have provided methods and experiments to
monitor and identify machine learning model deterioration
via non-parametric bootstrapped uncertainty estimation meth-
ods, and use explainability techniques to explain the source
of the model deterioration.

Our monitoring system is based on a novel uncertainty esti-
mation method, which produces prediction intervals with the-
oretical guarantees and which achieves better coverage than
the current state-of-the-art. The resulting monitoring system
more accurately detects model deterioration than methods
using classical statistics. Finally, we used SHAP values in
conjunction with these uncertainty estimates to identify the
features that are driving the model deterioration at both a
global and local level, and qualitatively showed that these
more accurately detect the source of the model deterioration

compared to classical statistical methods.
Limitations:We emphasize here that due to computation-

ally limitations, we have only benchmarked on datasets of
relatively small to medium size (cf. Table 1), and further
work needs to be done to see if these results are also valid for
datasets of significantly larger size. This work also focused
on tabular data and non-deep learning models.

Reproducibility Statement
To ensure reproducibility of our results, we make the data,
data preparation routines, code repositories, and methods pub-
licly available5. Our novel uncertainty methods are included
in the open-source Python package doubt6. We describe
the system requirements and software dependencies of our
experiments. Our experiments were run on an 8 vCPU server
with 60 GB RAM.
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