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Abstract

A family of methods that generate soft labels by mixing the
hard labels with a certain distribution, namely label refurbish-
ment, are widely used to train deep neural networks. How-
ever, some of these methods are still poorly understood in the
presence of label noise. In this paper, we revisit four label
refurbishment methods and reveal the strong connection be-
tween them. We find that they affect the neural network mod-
els in different manners. Two of them smooth the estimated
posterior for regularization effects, and the other two force
the model to produce high-confidence predictions. We con-
duct extensive experiments to evaluate related methods and
observe that both effects improve the model generalization
under label noise. Furthermore, we theoretically show that
both effects lead to generalization guarantees on the clean
distribution despite being trained with noisy labels.

Introduction

In supervised learning tasks, we always expect and assume
a large amount of correct-annotated training data. How-
ever, noisy labels are inevitably introduced in real-world
datasets collected from crowdsourcing or automatic labeling
systems. Zhang et al. (2018) have demonstrated that deep
neural networks end up memorizing noisy labels and lead
to poor generalization. Therefore, it is essential to develop
techniques for learning with noisy labels.

Numerous approaches have been proposed to improve ro-
bustness of deep neural networks, wherein a family of label
refurbishment methods generate soft targets by mixing the
hard labels with a certain distribution, are of great attraction.
Intuitively, label refurbishment methods can mitigate the in-
fluence of label noise, as a wrong label after refurbishing is
likely to be corrected or less “poisonous” to the networks.
For example, label smoothing (LS) (Szegedy et al. 2016)
utilizes soft labels by taking a positively weighted average
between the hard training labels and the uniform distribu-
tion. Take image classification as an example. Suppose we
have three classes (i.e. dog, cat, monkey) and a dog image
mislabeled as cat with one-hot noisy label [0, 1, 0]. After ap-
plying LS with smoothing rate « € [0, 1), the refurbished
label [ee/3,1—2a/3, e/ 3] contributes less misleading infor-
mation but still retains the maximal probability on assigned
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label. LS has been widely studied for improving the model
performance (Szegedy et al. 2016; Vaswani et al. 2017), im-
proving calibration (Miiller, Kornblith, and Hinton 2019),
and its close relationship with knowledge distillation (Yuan
et al. 2020; Shen et al. 2020). Empirical studies (Lukasik
et al. 2020; Zhang et al. 2021; Wei et al. 2022) have demon-
strated the effectiveness of LS in improving the model per-
formance in the presence of noisy labels.

Although label refurbishment methods are commonly
adopted as “add-on tricks” to boost the classification perfor-
mance in the label noise literature (Ma et al. 2018; Arazo
et al. 2019; Li, Socher, and Hoi 2020; Zhou, Wang, and
Bilmes 2020), the individual performance gains of these
methods have hardly been evaluated, and their correspond-
ing theoretical guarantees remain underexplored.

In this paper, we conduct an in-depth study of four label
refurbishment methods, including bootstrapping loss (BL)
(Reed et al. 2015), label smoothing (LS) (Szegedy et al.
2016), back correction (BC) (Patrini et al. 2017), and energy
regularized loss (ERL) (Pereyra et al. 2017). Specifically,
we first generalize these methods by introducing a trans-
formation matrix, which helps to reveal the intrinsic rela-
tionship between them. By investigating their effects on loss
functions, we discover that two of them (BC and BL), pro-
posed to improve model robustness against label noise, force
the model to produce high-confidence predictions, while the
other two (LS and ERL), proposed for regularization under
clean labels, have the opposite effect. We wonder if we can
reverse the effect of LS and ERL by using a negative hy-
perparameter (i.e. ), so that LS and ERL will yield high-
confidence predictions as BC and BL. By evaluating their
classification performance under label noise, we observe two
interesting phenomena.

1. The LS achieves superior performance when the smooth-
ing rate avis close to 1.0 (e.g. a = 0.9), referred to in this

paper as “extreme” label smoothing (ELS).

. When the methods restrict the model to produce high-
confidence predictions, their classification performance
under label noise is substantially improved, including
BL, BC, reversed LS and reversed ERL.

To explain the first phenomenon, we find that training with
ELS restricts the network parameters close to its initializa-
tion. Based on the theory of neural tangent kernel (Jacot,



Gabriel, and Hongler 2018), we theoretically prove that ELS
is robust to label noise when using wide neural networks as
classifiers. For the second phenomenon, we prove that an
extremely confident model implicitly makes the loss func-
tion robust to label noise, which bridges the gap between
the label refurbishment methods and noise-robust loss func-
tions (Ghosh, Kumar, and Sastry 2017). We also conduct ex-
tensive experiments to support our findings, shedding light
upon the robustness of deep neural networks in the presence
of label noise.

Preliminaries

Consider the C-class classification problem, we denote
clean training setby D = {(z[, y[1)}N |~ P(, ), where
z[! is an input and y1! € [C] = {1,...,C} is label. In
the noisy label scenario, the clean training set is unobserv-
able. We only have a noisy training set D = { ([, gl1)}N |
from noisy distribution I@’(w, ), i.e., the observed labels are
not reflective of the ground truth labels. As the generation of
real-world label noise is unknown, a common methodology
to cope with noisy labels is to posit noise assumptions. A
typical noise assumption is class-conditional noise (Natara-
janetal. 2013), wherein the true label is corrupted by a noise
transition matrix T € [0,1]9%¢ and T;; = Pr(§ = jly =
i) is the probability of the true label i being flipped into a
noisy label j. Given the noise rate 7, symmetric noise further
assumes that flip probability to other labels is constant, i.e.,
Vi=jTij = 1—n AVix;Tij = &5 In contrast, asymmetric
noise assumes the flip probability can be various for different
classes, i.e., Vi:jTZ‘j =1—-n A Eigéj,i;ék,j;ékTij > T A
classifier f maps an input x to a softmaxed C'-dimensional
prediction probability distribution f(®,x). Let © denotes
the parameters and /(y, f(©,x)) : [C] x R® — RT de-
notes the loss function. Suppose we train with cross entropy
(CE) loss on the noisy data D, and let p = f(@, ), we have

Z

_N
Zym log(p'),

where 9!l € {0,1}€ is one-hot vector of noisy label 7.
When directly optimizing Eq. (1) by gradient descent, it was
observed that the deep neural networks fit the training data
including the samples with wrong labels, resulting in perfor-
mance degradation (Zhang et al. 2018).

@, f(©,l))

ey

Generalization of Label Refurbishment

Many methods have been proposed to prevent the model
from becoming over-confident or to improve the model gen-
eralization, including a few approaches are specifically de-
signed to combat noisy labels. We can simply introduce a
transformation matrix M € R¢*¢ to scale the hard label
vector y to refurbished soft label £. Then we have t = M -y
and different M leads to different forms of soft label ¢. Now
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Type Method Matrix M Prediction confidence
i LS QI-a)I+&J N
BC —1-2-J) a
i ‘ BL ‘ I—a)+ap-j' Va
ERL I-ap-j' ¢

Table 1: Comparison of related methods. Let bold I denotes
the C x C' identity matrix, bold J denotes the C' x C' all-ones
matrix and j denotes the C' x 1 all-ones vector. /* means
increase and \, means decrease.

the refurbished cross entropy loss becomes

N

£(8) = =5 > (M- g) T log(p!").

i=1

2

Compared to the loss in Eq. (1), we now potentially involve
all entries in noisy labels, scaled appropriately by the trans-
formation matrix M.

Existing Label Refurbishment Methods

Baseline. As a baseline method, it directly trains the deep
neural networks with cross entropy loss using noisy labels.
Thus, the transformation matrix M = I, where I denotes a
C x (' identity matrix.

Bootstrapping Loss (BL). Reed et al. (2015) propose the
perceptually-consistent training by adding a perceptual term
(i.e. current prediction of the model) to noisy labels. So the
refurbished label t = (1 — «)§ + ap, where o € [0,1) is
hyperparameter.

Label Smoothing (LS). Label smoothing (Szegedy et al.
2016) mixes the hard labels with a uniform distribution over
all possible labels by given smooth rate « € [0, 1). The soft
label t = (1 — a)§ + &. It was empirically shown that LS
prevents the network from producing over-confident predic-
tions (Miiller, Kornblith, and Hinton 2019).

Backward Correction (BC). Suppose the label transition
matrix T is either known or being estimated, backward cor-
rection (Patrini et al. 2017) transforms the noisy labels by
an estimated T~!. It theoretically recovers the noisy class
probability back to the clean one. The main drawback of
them is that they need to know the noise type and noise ratio,
which makes it impractical in real life. For class-conditional
label noise, the estimated T~ = ﬁ(l —-&-J ), where
o= % - 1) is theoretical optimal choice in original paper.
Energy Regularized Loss (ERL). Pereyra et al. (2017) aim
to prevent the neural networks from being over-confident
by penalizing low-entropy (confident) distributions. The en-
tropy of a prediction (conditional distribution) is calculated
by H(p) = —p" log(p). ERL adds the negative entropy to
the loss. So the refurbished soft label is ¢ = y — ap for
cross entropy loss, where o > 0 controls the strength of the
confidence penalty.

In this paper, we focus on the above four methods. Note
that there are variants based on label refurbishment (Arazo
et al. 2019; Li, Dasarathy, and Berisha 2020; Lu and He
2022), but their core ideas are similar. We summarize the
transformation matrix M of four methods in Table 1. They
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Figure 1: Effect of LS, BL, BC and ERL on logistic loss (C' = 2). (a) LS introduces a finite positive minima. (b) BL with
uniform prediction (i.e. p = % J) performs exactly the same effect as LS. (c-d) BL weakens/reinforces its effect if prediction is
aligned/misaligned with noisy label. (¢) BC makes the loss negative for large positive logits. (f) ERL performs the similar effect
as BC with uniform prediction. (g-h) ERL weakens/reinforces its effect if prediction is aligned/misaligned with noisy label.

can be divided into two categories. The first category, in-
cluding LS and BC, linearly combines an identity matrix
I with an all-ones matrix J and treats all samples equally.
Thus the label with maximal probability is preserved as long
as a < 1. Another category combines an identity matrix I
with all-ones vector j scaled by current prediction p. In this
case, the label with maximal probability can be potentially
modified if the current prediction p is not aligned with the
given label, resulting in a label correction effect.

The Effect on Loss and Model Confidence

Let 4e(y, p) denotes the cross entropy loss for a sample
(z,y) and H(p) denotes the entropy of a prediction p. Based
on the different M, we have the refurbished loss functions
as follows:

«
ZlcgeL(yap) X fce(y,P) + m . H(p); 3)
a C
gljeC(y’p) X gce(yap) - 6 : che(c; p), (4)
c=1

«

C
m : czzléce(QP% (5)

EICEeRL(yvp) chce(yap) —CYH(p) (6)
Figure 1 depicts the effect of these methods on the logis-
tic loss when C' = 2. The standard logistic loss (o = 0.0)
vanishes for large positive logits while performing almost
linearly for large negative logits. Both LS and BL introduce
finite positive minima, while BC and ERL guarantee an un-
biased risk estimate, allowing for a negative loss on positive
samples that are correctly predicted.

Base on the derived loss functions, we observe that the ef-
fects of these methods on model confidence are fundamen-

03 (y, p) o Lee(y, p) +
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tally different: BL aims to minimize the entropy of predic-
tion while ERL seeks to maximize it. LS aims to minimize
the average per-class loss & Zle {(c,p), while BC seeks
to maximize it. In other words, both BL and BC tend to push
the model become overly confident early in the training (see
Figure 2(b) and 2(c)), while LS and ERL seek to penalize
confident predictions (see Figure 2(d) and 2(e)).

Since BL and BC are proposed to improve robustness un-
der label noise, we now return to our original question: can
we reverse the effect of LS and ERL? To achieve it, we ex-
tend the hyperparameter o of LS and ERL to negative val-
ues. As shown in Figure 2(f) and 2(g), both of the reversed
LS and ERL (with « —0.7) make the model become
over-confident on correct predictions and under-confident on
wrong predictions. In the next section, we empirically assess
whether this effect improves model robustness to label noise.

Classification Performance

In this section, we re-evaluate the label refurbishment meth-
ods to see the classification performance in the noisy label
scenario. We test these methods on two benchmark datasets
MNIST (LeCun et al. 1998) and CIFAR-10 (Krizhevsky
et al. 2009) with class-conditional label noise.

Experimental Setups. We corrupt MNIST and CIFAR-10
by noise transition matrix T. As mentioned in Preliminaries,
T has two representative noise assumptions (Patrini et al.
2017). 1) Symmetric label noise is generated by uniformly
flipping the label to one of the other class label; 2) Asym-
metric label noise is a simulation of fine-grained classifica-
tion with noisy labels in the real world, where the mistakes
only occur within very similar classes (e.g. dog <> cat). We
implement all methods using Pytorch and train them on a
NVIDIA A100 GPU. We use a 4-layer CNN for MNIST and
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Figure 2: Model confidence distribution of correct and wrong predictions on CIFAR-10 test data. All models are trained on

CIFAR-10 with symmetric noise n = 0.2.
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Figure 3: Test accuracies of compared methods with different & on MNIST and CIFAR-10. For each noise case, we run 3 times
with random seeds to get mean accuracy and the corresponding standard deviations (denoted by the shaped regions).

ResNet34 (He et al. 2016) for CIFAR-10 as backbones. For
hyperparameter, all compared methods contain a parameter
« to adjust the strength of refurbishment. Although in the
label noise literature, it is customary to estimate the opti-
mal a. For example, the theoretical optimal « for BC equals

% -n. However, here we simply treat all « as a tuning pa-

rameter. For reversed LS and reversed ELR, we use negative
« to test their performance.

Results. Figure 3 reports the results on MNIST and CIFAR-
10 with symmetric and asymmetric noise. We observe that
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label refurbishment methods can significantly improve per-
formance over the baseline with an appropriate ov. Both BL
and BC achieve impressive performance under symmetric
label noise, while excessive correction of BL on noisy la-
bels (e.g. a > 0.7) leads to performance degradation as soft
targets end with a delusional agent, resulting in underfitting.
Besides, the original BL paper (Reed et al. 2015) suggests
that the optimal choice of « should be 0.05, while we find
that the optimal « is from 0.6 to 0.7 in our setting.

Our second observation is that, the optimal « for LS is
extremely large (i.e. 0.8, 0.9) on MNIST and CIFAR-10
with symmetric label noise. This phenomenon is consid-
ered counterintuitive. Here we call LS with « close to 1.0
extreme label smoothing (ELS) and deeply investigate this
phenomenon theoretically in next section. Besides, choos-
ing a > n improves performance for BC. It is totally in
contrast to the theoretically optimal choice as noted in (Pa-
trini et al. 2017). Therefore, we suggest that it is valuable
and more practical to treat « as a tuning hyperparameter.

For reversed LS and reversed ERL (with negative ), we
observe that they also significantly outperform baseline with
most o, which empirically validates our hypothesis that forc-
ing the models to produce high-confidence predictions helps
improve robustness under label noise.

Theoretical Analysis

In this section, we provide theoretical analyses to answer the
following two questions: (1) How does ELS specifically im-
prove the classification performance under symmetric label
noise? (2) How does a model with high-confidence predic-
tions achieve robustness to label noise?

Regularization Effect of Extreme Label Smoothing

Prior work (Lukasik et al. 2020) has demonstrated that LS
has a similar effect to an explicit L2 regularization in a lin-
ear model. Given a linear model f(®,x) = Ouw, trained
on features X € R4 and one-hot labels Y € {0, 1}V*¢
using the I5 loss, i.e., ming ||X©® — Y||2. Then LS at level

« transforms the optimal solution ®* to ®* = (1 — «) -
©* + & - (XTX)"!XT"J. LS encourages shrinkage of the
parameters towards zero, which is similar to L2 regulariza-
tion. However, it requires a strong assumption that the matrix
X TX has an inverse (i.e. data is centered). Otherwise, we
may use gradient-based strategy, gradually updating the pa-
rameters to reach the optimum. Intuitively, « — 1 makes the
smoothed distribution close to a uniform distribution, which
dramatically slows down the learning as the smoothed labels
are less informative. Consequently, the network parameters
would stay close to the initialization. In contrast, « = 0
recovers the label smoothing to regular training. Therefore,
we speculate that ELS has an effect to constrain the network
parameters close to the initialization, rather than zero.

To verify our hypothesis, we adopt a special regulariza-
tion called distance to initialization (DTI) (Hu, Li, and Yu
2019) for comparison. We denote /5 loss ' by £(©)

"For the theoretical results we use ¢ loss, while we present
experimental results of both cross entropy and ¢5 loss in Figure 5.
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ISN (F(©, ) — §l1)2 initial parameters by ©, and
parameters movement by @ = © — Oy . Then the ELS
and DTI regularization minimize the following objectives:

N
1 i Ti a2
£9(©) = 53 (f(®.2l) — (1 - a)gt! - Z)”
i=1
N
1 w2 | A2
DTI - z] [] o 2
c 2;:1: f(©,x )"+ Slleal.

Then, we conduct experiments to investigate the network
parameters by measuring three metrics, including Frobe-
nius norm of current parameters ||@ |, the parameters
movement |@al|r and its corresponding logarithm term
lg(||®allr). In Figure 4(a), we observe that by using L2
regularization, the corresponding ||®||r shrinks fast as ex-
pected. In contrast, ||©||r of both ELS and DTI regulariza-
tion hardly change. In Figure 4(b), we find that a larger «
reinforces the restriction on parameters movement. In Fig-
ure 4(c), we observe that ELS has the similar 1g(||@a||r)
with DTT regularization during training. Therefore, similar
to DTI regularization, ELS has the effect of constraining net-
work parameters to be close to the initialization.

Relation to Kernel Ridge Regression To establish the
connection of ELS with kernel ridge regression in wide neu-
ral networks, we briefly recap the theory of neural tangent
kernel (NTK) (Jacot, Gabriel, and Hongler 2018; Arora et al.
2019), which builds the equivalence between training a wide
neural network and a kernel method.

Suppose a neural network is trained by minimizing the
l2 loss over training set. It was shown that if the network
is sufficiently wide and the parameters © stay close to the
initialization ® during training, the network can be effec-
tively approximated by its first-order Taylor expansion with
respect to its parameters at initialization. Thus, we have the
following approximation accurate in NTK regime.

f(@,:c) ~ f(@o,w) + <V@f(®07 m)? ®A> (7)

This approximation is exact in the infinite width limit, but
can also be demonstrated when the width is sufficiently
large. We have ¢(xz) = Ve f(@p,x) which induces the
NTK k(xz,x') = (¢p(x), p(x')). Then we obtain approxi-
mation f(©, ) =~ f(@¢,x)+¢(x) O . Assume we have
near-zero initial output: f(®y,x) ~ 0 2, then

f(©,z) ~ ¢(x) Oa. (8)

At the end of training, each output of network leads to the
kernel regression solution (Arora et al. 2019). Using the cor-
responding dimension in the targets g%, the h-th output of
the network at the end of training approximately computes
the following function

FP (@) = k2, X) T (k(X, X)) YM ne 0], )

2We can ensure small or even zero output at initialization by
multiplying a small factor (Arora et al. 2019).
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Figure 4: ||®||F, ||®allF, and 1g(]|® || r) during training on CIFAR-10 with 40% symmetric noise. We set & = 0.9 for LS
and coefficient A = 0.02 for both L2 regularization and DTI regularization. The backbone network is ResNet34.

where X = (zM,..., 2N} denotes the inputs, Y
(G, .. gM)T € RE*N denotes the training targets,
/f(azX) = (k(z,aM) k(@ 2l), ... k(z,a™)T e
RY, and k(X,X) € RM*N with (i,7)-th entry being
k(z;,x;). Y € RN is the h-th row of Y. Since the ef-
fect of ELS on network parameters is akin to the condition
in NTK regime. Under the approximation in Eq. (8), it suf-
fices to consider gradient descent on the objectives of ELS
and DTT using the linearized model instead:

N

AELS _1 ENT (1 — ol & ?

L <®>—2;(¢<w>eA (-t -2
N

DTl g _ L NTe. — a1 Mo .2

L (@)—2;@@ )Tes—3") + Slleal?

We then drive the kernel approximations as follows:

Theorem 1 (Kernel Approximations) Consider gradient
descent on L(®©) with initialization ©¢ and fixed learning
rate vy > 0:

O, =0, —1Vel(®,), t=0,1,2,..

For ELS, if the learning rate satisfies v < Wlx)n the h-th
output of the network learns the following kernel function:

(R)

ELS a)Y® 4 %

¢l
where h € [C). For DTI, if the learning rate satisfies
the h-th output of the network learns the

(2) = k(@ X) T (k(X, X))~ |0

1
TS TR
kernel function:

W) (@) = k(z, X) T (k(X,X) + A1) Y ®.

DTI

Theorem 1 indicates that using gradient descent on ELS
and DTI leads to the similar dynamics and converges to the
kernel ridge regression solution using the NTK. Compared
to regular training, the effect of ELS is to scale the func-
tion but preserves the maximal output in original entry. The
effect of DTI is to add A\?I to the kernel matrix.

Next, we show that gradient descent training on noisy data
with ELS and DTT leads to a generalization guarantee on the
clean data distribution.
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Theorem 2 (Generalization Guarantee) Consider the C-
classification with noisy labels, let {(z!" yl! 1)} | be
i.i.d. samples from the symmetric label noise, where the
transition probabilities from a matrix T;; = Pr(§ = j |
y = i)(Vi,; € [C]). Let X = (2l 2P ... 2N and
y = e ¢ RC § = @ e RC be the one-hot la-
bel vectors. Denote Y = (yl1 yl2 ... yINl) € ROV,
Y = (g, g2, . gV € ROV, and let YW € RN
be the h-row of Y. Consider the kernel ridge regression
solution in Theorem 1. Suppose the kernel matrix satisfies
tr[k(X, X)] = O(N). Then with probability at least 1 — 0,

the classification error of f gg s(x) on the clean data distri-
bution D is bounded as

1
<
T 1l-«

e ) and T =

(WT —1A(R) R .
25:1 \/(A ) (k(ﬁ’x)) AT and the classification error

off,(:,h%I(w) on D is bounded as

WPr |y ¢ e e 7D ()| (0(1) + ),

log &

where ) = C~O(

1 /A+0(1) ,

< - —7
(w,l;ND [y # arg Iré?é( fDTI(m)} - \IJ< 2 T+ Q)
where Q' = ( log’5 log £ =), ¥ =

mini’je[c]’#j (Ti,i — i7j)’ A = T . Y € RCXN and A(h)

is the h-th row of A.

Regarding the two generalization bounds in Theorem 2,
when the number of samples N — oo and hyperparam-
eter A in DTI grows with N 3, we have @ — 0 and
Q' — 0. Therefore, the dominating terms in two bounds are
=-0(Y) and $0(Y). Notice that these two terms depend
on the (unobserved) clean labels Y, rather than the noisy
labels Y. O(T) can be viewed as the complexity measure
of data. One can easily derive that regular training on clean
data leads to a population loss bound O(Y). In compari-
son, the dominating term for ELS only has an extra factor
ﬁ, the dominating term for DTI has an extra factor \. If

3This can be achieved by set A = N7 using a small constant g.

b



g Too el S
>80 = ) g “'u\)/ Wl
9 0 A
© o { i Ayt
3 3a0 [uiin’ o
O 60 O (it — CE
; ; ' ——— g, with DTI ; --— CE with DTI
8 R p— 1, with ELS L CE with ELS
40, 40 80 120 %o 40 80 120
Epoch Epochs
(@) €2 (b) CE

Figure 5: Test accuracy on CIFAR-10 with 40% symmetric
noise. We evaluate the classification performance of CE, /5,
and with ELS (a = 0.9) and DTI (A = 0.02) on them.

(AT (k(X,X))"*A™ grows much slower than N, by
choosing an appropriate o and ), these two generalization
bounds on the noisy data distribution are comparable to the
bound when trained with clean data, indicating that the un-
derlying clean distribution is still learnable in the presence
of label noise. Therefore, ELS improves the classification
performance under symmetric label noise.

As can be observed in Figure 5(a), training with DTT and
ELS achieve more robust test accuracy compared to using /o
loss alone, which verifies our theoretical results. Figure 5(b)
shows the similar results on CE loss.

Noise Robustness by Model Confidence

We define the risk of a classifier f under clean distribution
as Ry(f) = Epll(y, f(©,x))], and under noisy distribu-
tion as R} (f) = Ep[l(y, f(©,x))]. Let f* and f be the
global minimizers of Ry(f) and R} (f) respectively. (Note
that the achievable global minimization is a strong assump-
tion, we use it because it is widely accepted in existing works
(Ghosh, Kumar, and Sastry 2017; Wang et al. 2019; Ma et al.
2020)). We have demonstrated that the loss minimization of
BL, BC, reversed LS and reversed ERL pushes the model
to produce high-confidence predictions towards any vertex
v of (C' — 1)-simplex, i.e., the resultant model f outputs the
prediction f(®,x) € V, where V denotes the vertices set
of (C' — 1)-simplex. However, it causes the optimization to
fail as this discrete mapping produces many zero gradients
when using gradient-based strategies. Therefore, we relax
the restriction on confident predictions with an error € in the
following assumption.

Assumption 1 (Confident Prediction with error ¢) When
optimizing loss functions in BL, BC, reversed LS and re-
versed ERL, the trained classifier f produces the confident
prediction f(®,x) such that |f(©,x) — v| < € where
v € V and € denotes the restriction error.

According to the Assumption 1, we have the following
bounded risk guarantee.

Theorem 3 (Bounded Risk Guarantee with error ¢) In
the C-class classification problem, for any two predictions
f(©, ) and (O, x)s given classifier f, suppose the loss

{ satisfies ‘Zle(f(f((")aJ?)l,c) = U(f(®,x)2,0))| <0
when |f(©,x); — f(O,x)s] < ¢ and § — 0 when ¢ — 0.
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Then for symmetric label noise satisfying n < %, the two
risks can be expressed as

210
Cl-n)-1
where f} and f* denote the minimizer of R})(f) and Ry(f),

respectively.

Ru(f5) — Relf) < (10)

Theorem 3 indicates that when the classifier produces high-
confidence predictions following Assumption 1, the differ-
ence of the risks caused by the derived f and f* under
noisy labels and clean labels are always bounded. The bound
is related to the error € and the noise rate . When e — 0 or
n — 0, the bound tends to 0. Therefore, BL, BC, reversed
LS and reversed ERL achieve robustness under label noise.

Related Work

Learning with hard (one-hot) labels is prone to over-fitting,
thus using refurbished (soft) labels naturally attracts more
attention. In addition to the four label refurbishment meth-
ods discussed in this paper, label distribution learning (Geng
2016) provides instances with description degrees of all the
possible labels. Empirical studies have demonstrated that LS
boosts performance on different tasks (Vaswani et al. 2017;
Chorowski and Jaitly 2017) and also improves model cal-
ibration (Miiller, Kornblith, and Hinton 2019). Later, more
advanced forms of LS were proposed, such as structural
LS (Li, Dasarathy, and Berisha 2020) and non-uniform LS
(Chen et al. 2020). In the presence of label noise, Lukasik
et al. (2020) empirically demonstrate that LS improves the
model performance. Liu (2021) provides theoretical analy-
sis for the memorization behavior of LS. Wei et al. (2022)
show the effectiveness of negative label smoothing. Many
state-of-the-art noise-robust methods incorporate LS, BL or
ERL in their frameworks (Ma et al. 2018; Arazo et al. 2019,
Li, Socher, and Hoi 2020; Zhou, Wang, and Bilmes 2020).

Conclusion and Future Work

In this paper, we generalize four label refurbishment meth-
ods and investigate their effects on loss function and model
confidence. We conduct extensive experiments to show that
label refurbishment methods can effectively improve classi-
fication performance in the presence of label noise. In the-
ory, we explain two important phenomena in classification
with noisy labels: (1) The regularization effect caused by
extreme label smoothing ensures that the model has gen-
eralization guarantees on clean data. (2) The models with
high-confidence predictions are robust to label noise. Over-
all, our findings shed light on the potential benefits of label
refurbishment methods, and provide formal exploration of
their denoising effects.

Given most real-world datasets contain noisy labels, we
believe our findings can trigger interest in designing new
forms of techniques that improves model robustness to label
noise in practical applications. More broadly, this work rep-
resents a step towards studying the effects of common tricks
in training deep neural networks. Explaining more tricks the-
oretically is left for future work.
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