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Abstract
The huge training overhead, considerable commercial value,
and various potential security risks make it urgent to pro-
tect the intellectual property (IP) of Deep Neural Networks
(DNNs). DNN watermarking has become a plausible method
to meet this need. However, most of the existing watermark-
ing schemes focus on image classification tasks. The schemes
designed for the textual domain lack security and reliability.
Moreover, how to protect the IP of widely-used pre-trained
language models (PLMs) remains a blank.
To fill these gaps, we propose PLMmark, the first secure and
robust black-box watermarking framework for PLMs. It con-
sists of three phases: (1) In order to generate watermarks that
contain owners’ identity information, we propose a novel en-
coding method to establish a strong link between a digital
signature and trigger words by leveraging the original vocab-
ulary tables of PLMs. Combining this with public key cryp-
tography ensures the security of our scheme. (2) To embed
robust, task-agnostic, and highly transferable watermarks in
PLMs, we introduce a supervised contrastive loss to deviate
the output representations of trigger sets from that of clean
samples. In this way, the watermarked models will respond
to the trigger sets anomaly and thus can identify the owner-
ship. (3) To make the model ownership verification results re-
liable, we perform double verification, which guarantees the
unforgeability of ownership. Extensive experiments on text
classification tasks demonstrate that the embedded watermark
can transfer to all the downstream tasks and can be effectively
extracted and verified. The watermarking scheme is robust to
watermark removing attacks (fine-pruning and re-initializing)
and is secure enough to resist forgery attacks.

Introduction
Deep Neural Networks (DNNs) have achieved superior per-
formance in many domains. Since designing and training
DNNs require significant human cost and computational
power, the model owner wishes to protect his intellectual
property (IP). Nowadays, the Machine Learning as a Service
(MLaaS) market (Ribeiro, Grolinger, and Capretz 2015) has
sprung up, where DNNs can be sold as commodities. How-
ever, once the models are sold, they are vulnerable to redis-
tribution and reproduction. So, it is necessary to establish a
mechanism to verify and protect the ownership of models.
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Digital watermarking has become a popular method for
DNNs’ ownership verification and IP protection. More and
more watermarking schemes (Uchida et al. 2017; Adi et al.
2018; Zhang et al. 2020; Li, Wang, and Zhu 2022) have been
proposed to protect the copyright of DNNs. These schemes
can be divided into white-box ones and black-box ones, ac-
cording to whether need access to model parameters during
verification. Since the parameters of suspect models are usu-
ally inaccessible, the black-box watermarking schemes are
more in line with real-world application scenarios.

The embedding methods of black-box watermarking are
similar to backdoor attacks (Adi et al. 2018). Both of them
identify the model with carefully crafted trigger sets that
cause the model to produce abnormal responses. And the
biggest difference between them is that the triggers in wa-
termarking schemes need to reflect the identity information
of the model owner, so as to prove the model that produces
the abnormal outputs is belonging to whom. To deal with
this problem, (Guo and Potkonjak 2018; Li et al. 2019; Zhu
et al. 2020; Li and Wang 2021) utilize digital signature tech-
nology and hash functions to generate triggers, which estab-
lish a strong link between the triggers and the owner, and
hence make the ownership unforgeable.

However, most black-box watermarking schemes focus
on the Computer Vision (CV) domain. And the watermark-
ing schemes designed for the textual domain (Yadollahi et al.
2021; He et al. 2022) are vulnerable to forgery attacks be-
cause there is no connection between the watermark and the
model owner. In addition, since the images are continuous
digital pixel values while the text data are discrete symbols,
the unforgeable watermarking schemes designed for the CV
domain cannot be directly extended to the Natural Language
Processing (NLP) tasks. How to design trigger words that
contain the owner’s identity information remains a blank.

Moreover, almost all the existing watermarking schemes
are designed for specific training tasks, as they need
to assign specific task labels for trigger sets. However,
nowadays, pre-training-then-fine-tuning is a widely-used
paradigm (Zhang et al. 2021). Customers prefer to choose
pre-trained models (PTMs), and fine-tune them with their
own datasets to obtain final models (FMs). Since the PTMs
are trained on large-scale unlabeled data, how to design a
watermark embedding scheme without task labels is the first
challenge. And the next challenge exists in the verification
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stage. Since the PTMs’ owner cannot obtain the intermedi-
ate feature representations of FMs, he can only verify his
ownership through FMs’ final outputs (Wu et al. 2022). This
not only requires the watermark to be highly transferable,
but also requires new ownership verification metrics. How to
verify the ownership of PTMs is seriously under-researched.

To address the above limitations, we propose PLMmark,
a secure and robust task-agnostic black-box watermarking
framework, to protect the IP of PLMs, which effectively em-
beds the owner’s identity information into PLMs, and reli-
ably verifies the ownership of PLMs through FMs.

Our watermarking framework consists of three mod-
ules: (1) In order to generate watermarks that contain the
owner’s identity information, we propose an encoding func-
tion to map digital signatures into trigger words by leverag-
ing the original vocabulary tables of PLMs. Combining this
with public key cryptography, our watermark is resistant to
forgery attacks. (2) In watermark embedding, in order to
make FMs produce abnormal outputs on trigger sets, we add
additional constraints on PLMs’ outputs. The feature repre-
sentations of trigger sets are deviated from clean datasets by
leveraging contrastive learning. We also introduce the other
loss term to guarantee the embedded watermark does not af-
fect the accuracy of original tasks. (3) The watermark ver-
ification consists of two steps. A trusted authority first ver-
ifies if the submitted digital signature matches the identity
of the submitter. If it matches, then the authority proceeds to
verify if the digital signature has been embedded in the sus-
pect model. And we propose a metric (Watermark Accuracy)
to verify the ownership in a reliable way.

Experiments show that the embedded watermark is highly
transferable, which can be effectively extracted and verified
after downstream fine-tuning, and is robust to fine-pruning
and re-initializing attacks. The watermarking framework is
secure enough to resist forgery attacks and has a low false
positive rate, which makes the verification results reliable.

To summarize, our contributions are fourfold:

• We propose the first secure and robust black-box water-
marking framework to protect the IP of PLMs.

• We design a novel encoding function to map identity in-
formation into triggers by leveraging the original vocab-
ulary tables of PLMs, which is simple and efficient.

• We put forward a task-agnostic watermarking embed-
ding algorithm based on supervised contrastive learning,
which is more robust than two state-of-the-art schemes.

• Extensive experiments demonstrate that the embedded
watermark is highly transferable and robust to removing
attacks. The proposed watermarking framework is secure
and reliable, and can effectively resist forgery attacks.

Related Work
Black-box Digital Watermarks for DNNs. (Zhang et al.
2018) and (Adi et al. 2018) first proposed watermarking
schemes in the black-box scenario. They viewed the gen-
erated trigger sets (i.e., task-unrelated images) as the water-
mark, and assigned special task labels for them. Then they
trained DNNs with both trigger sets and clean datasets to
embed the watermark. However, the zero-bit watermark has

no link to the model owner, so it is vulnerable to forgery
attacks. In response to this problem, (Guo and Potkonjak
2018) proposed to generate triggers with the owner’s sig-
nature. (Li et al. 2019) introduced public key cryptography
into watermark generation and verification. (Zhu et al. 2020)
made the triggers form a one-way chain by leveraging the
one-way hash function. With these techniques, the security
of the watermarking scheme is greatly improved. However,
they are all designed for image classification tasks, and can-
not be directly generalized to the NLP field.

There are some basic requirements for model watermark-
ing (Xue, Wang, and Liu 2021):
• Fidelity. The appearance of the watermark should not af-

fect the accuracy of original tasks.
• Effectiveness. The embedded watermark should be ex-

tracted effectively and verified successfully.
• Reliability. Unwatermarked models should not be mis-

judged in ownership.
• Robustness. The watermark should be robust to removing

attacks, i.e., fine-tuning, and pruning.
• Unforgeability. An adversary cannot fraudulently claim

ownership of the watermarked model.

Backdoor Attacks for PLMs. Because the methods of
black-box watermark embedding are the same as the back-
door attacks, it is beneficial to pay attention to the backdoors
designed for NLP tasks. (Kurita, Michel, and Neubig 2020)
first proposed a backdoor attack for PLMs. They introduced
a restricted inner product loss to insert a backdoor that can
transfer to downstream tasks. However, their design relied
on the knowledge of fine-tuning datasets, which restricted
the PLMs to a specific downstream task. (Zhang et al. 2021)
and (Shen et al. 2021) proposed to backdoor PLMs without
prior knowledge of downstream tasks. Instead of assigning
specific task labels, they assigned predefined output repre-
sentations (POR) for trigger sets, which can lead the FMs
to output the same predict label for the same POR. How-
ever, artificially assigned output representations cannot fully
utilize the high-dimensional space. Their attack success rate
is heavily affected by the initialization of downstream clas-
sifiers (Cui et al. 2022). And this method is vulnerable to
pruning and re-initializing (Zhang et al. 2021).

Contrastive Learning. Contrastive learning (CL) has
been widely used to improve the learning ability of PLMs
in self-supervised learning scenarios. For each sample x,
the CL algorithm constructs a positive sampe x+ and nega-
tive samples x−. By pulling together f(x) and f(x+) while
pushing apart f(x) and f(x−), the PLM f can learn effec-
tive representations (Gao, Yao, and Chen 2021). Moreover,
(Khosla et al. 2020) extended the batch contrastive approach
from a self-supervised setting to a supervised setting, which
can effectively utilize label information. Since inserting a
trigger into a clean sample x and altering its label actually
generates a negative sample for x, this inspires us to utilize
CL loss in watermark embedding. Furthermore, since the
model owner can clearly distinguish between clean datasets
and trigger sets, we can make full use of this, and turn the
loss into a supervised setting.
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Figure 1: The watermarking framework of PLMmark.

Method
In this section, we first discuss the application scenarios and
the main workflow of our scheme. Then, the motivation and
design details of each module are elaborated.

Considered Scenarios. A model owner O has trained a
PLM f and wants to publish it on the MLaaS market for
a profit. A client who gets a license can get access to f ,
add a classifier g behind f to form a final model F , and use
specific downstream datasets to fine-tune F . However, there
may be malicious clients who access f without a license,
which will damage the interests of O. So, O hopes there are
verification mechanisms that can verify his ownership.

Overview. Our goal is to design a secure and robust black-
box watermarking framework to meet the needs of O. The
generated watermark has a strong connection with the owner
and is resistant to forgery attacks. The watermark embed-
ding algorithm is task-agnostic. The ownership of f is veri-
fied through the prediction of F . Figure 1 shows our water-
marking framework, and the main workflow is as follows:

The owner O generates watermarks that contain his
identity information. O generates a digital signature with
O’s private key over an identity message, and then con-
structs a one-way hash chain. Each hash value in the chain is
mapped to a trigger word which is viewed as the watermark.

The owner O embeds the watermarks during training
the PLM. O first inserts the triggers into clean samples to
obtain trigger sets, then trains the PLM on clean datasets
and trigger sets with embedding loss and fidelity loss.

The authority A verifies the ownership of the PLM
through black-box access to the suspect FM. A first veri-
fies O’s identity by checking the submitted digital signature,
and then generates triggers with O’s signature, and verifies
whether they have been embedded in the FM.

Next, we will elaborate on the design motivation and de-
tails of each module.

Generate Identity Information Containing Watermarks.
In the black-box watermarking verification scenario, the
model parameters are not accessible, but we can identify the
model by changing the model’s outputs for the trigger sets T
that are generated by inserting triggers t into clean samples.
In order to prove ownership, the triggers need to reflect the
identity of the owner. Modern cryptography has established

Algorithm 1: The Encode(.) Function
Input: owner’s signature sig, triggers number n
Parameter: len is the length of vocabulary table in the
PLM, Tokenizer is the tokenizer of the PLM
Output: trigger list t

1: initialize trigger list t=[]
2: h1=Hash(sig)
3: idx1 = h1%len
4: t1 = Tokenizer. convert ids to tokens(idx1)
5: t.append(t1)
6: for i = 2 to n do
7: hi = Hash(hi−1)
8: idxi = hi%len
9: ti = Tokenizer. convert ids to tokens(idxi)

10: t.append(ti)
11: end for
12: return t

many mature authentication mechanisms, what we need to
do is to establish a stable and clear mapping relationship be-
tween textual triggers and digital identity information.

Since DNNs can only process digital data, PLMs should
convert the input text to digital data in data preprocessing.
And the reverse process can exactly realize the transforma-
tion from digital indexes to words, thus can establish a map-
ping relationship between a digital signature and triggers.

Based on the above analysis, we propose an encoding
function Encode(.) to map a digital signature to triggers,
as shown in Algorithm 1. Combining this mapping function
with digital signature algorithms, the identity containing wa-
termarks are generated. The specific process is as follows:

The owner O first creates an identity message m and his
private key Opri, and then adopts a digital signature algo-
rithm Sign(.) to produce a signature sig = Sign(Opri,m).
Then O runs the Encode(.) function to generate a trigger
list t = Encode(sig, n). The identity message m is a string
that can reflect the link between the model and the owner.
Hash(.) in Algorithm 1 is a cryptological secure hash func-
tion. Since the triggers contain O’s identity information, they
can be seen as watermarks, that is the watermarks W = t =
[t1, t2, ..., tn].

We use RSA public-key cryptography algorithm to imple-
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ment Sign(.), and use SHA256 as the Hash(.) function. By
using the secure watermarking protocol proposed by (Zhu
et al. 2020), we construct a one-way hash chain in which
the successor hash value is calculated from the precursor to
generate multiple triggers, and in this way improve the ro-
bustness against forgery attacks.

Watermark PLMs by Supervised Contrastive Learning.
In this stage, we insert the triggers generated in the previ-
ous step into clean datasets to form trigger sets, and then use
both of them to train the PLMs. Since we do not know the
specific downstream tasks when training PLMs, we cannot
assign special task labels for trigger sets as previous schemes
do. However, the outputs of a final model F depend heavily
on the feature representations outputted by the PLM f which
F uses. So, we can make F output abnormal results by de-
viating f ’s outputs from normal values.

Formally, we insert the triggers t into clean samples x of
task-agnostic clean datasets D to form the trigger sets T by
an insertion function I(.). That is T=I(x, t, p, k), where p is
the insert positions and k is the insertion times. We also use
a simple symbol ⊕ to denote the insertion operations when
there is no need to emphasize p and k. Inserting a trigger tj
into a clean sample xi obtains its corresponding trigger sam-
ple xtj

i = xi⊕ tj . We use fclean and fWMK to distinguish a
clean PLM and the model in which we aim to embed water-
marks. Accordingly, Fclean and FWMK represent the final
models which are built on fclean and fWMK respectively.
The fWMK takes input from both D and T , and outputs
their feature representations fWMK(x) and fWMK(x⊕ t).

Considering the effectiveness and fidelity requirements
for watermarks, we design two loss functions: embedding
loss Lemd and fidelity loss Lfid. Next, we will introduce the
design intuitions and concrete forms of them.

Embedding loss. We hope fWMK(x) and fWMK(x⊕ t)
can make the unknown downstream classifier g generate dif-
ferent prediction results, so we need to add additional con-
straints to the training of fWMK to make the two parts of
feature representations as different as possible. By insert-
ing a trigger tj into a clean sample xi, we actually obtain
a negative sample of xi, and this leads us to come up with
the idea to use contrastive learning to solve this problem. In
the meantime, we hope different triggers can play different
roles in deviating the feature representations from normal
values, so as to improve the transferability and robustness
to complex and variable downstream tasks. To sum up, we
hope fWMK(x ⊕ t) is far away from fWMK(x) for any x
and any t, and we want fWMK(x⊕ tj) to be far away from
fWMK(x ⊕ tk) when j ̸= k. Since the model owner can
clearly distinguish between trigger sets and clean datasets
as well as the specific trigger which is inserted when gener-
ating trigger sets, we can make full use of this information
and assign contrastive learning labels y for feature represen-
tations clustering. Note that the labels y are used to distin-
guish different trigger sets and are irrelated to downstream
tasks. They are the indexes of t in the trigger list in our im-
plementation. We use the supervised contrastive loss that is
proposed by (Khosla et al. 2020), which significantly outper-
forms traditional contrastive loss to achieve the above goals.

The loss term is shown in Eq.1.

Lemd =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp

(
vwmk
i · vwmk

p /τ
)∑

a∈A(i)

exp
(
vwmk
i · vwmk

a /τ
) .

(1)
This loss function is applied for an input batch of data,

N is the batch size, i ∈ I = {1, 2, ..., N} is the index of
any sample in the batch, A(i) and P (i) are indexes sets, and
A(i) = I \ {i} , P (i) = {p ∈ A(i) : yp = yi}, τ is a tem-
perature parameter, v is the feature vector that is selected to
represent the feature representations, i.e., the feature vector
of [CLS] token, or the average feature vector of all tokens.
And vwmk is the feature vector produced by fWMK .

With this loss term, we can pull together the samples with
the same trigger while pushing away others, and make the
samples of each class cluster in the same feature sub-space.

And there is a byproduct: since we cluster fWMK(xi⊕tk)
and fWMK(xj ⊕ tk) as long as they are inserted with the
same trigger tk while ignoring what the original x is, when
we only input a single trigger tk into fWMK , the fWMK(tk)
also falls into the feature sub-space where fWMK(x⊕ tk) is
located. In this way, we establish a link between fWMK(tk)
and fWMK(x⊕tk), which is shown in Eq.2, where the sym-
bol ”≈” means they are in the same feature sub-space.

fWMK (tk) ≈ fWMK (x⊕ tk) , ∀x ∈ D. (2)

Pr (FWMK (tk) = FWMK (x⊕ tk)) = 1− ϵ. (3)

WACC =
1

|t|
∑
tk∈t

Pr (FWMK (tk) = FWMK (x⊕ tk)) .

(4)
Because the outputs of F depend heavily on f , the Eq.2

can lead to Eq.3, where ϵ is the error rate that is close to zero.
And we can use this relationship to define a quantitative
evaluation metric: Watermark Accuracy (WACC) in Eq.4.
Using this metric to verify the ownership can increase the
reliability of the verification results because anyone without
the right to train PLMs is hard to establish such relationship.

Fidelity loss. To guarantee fWMK works normally on
clean datasets, we add the other constraint to make the fea-
ture vectors of fWMK(x) stay in the original feature space.
As (Shen et al. 2021), we introduce a clean PLM as the ref-
erence model fRef , which participates in fidelity loss Lfid:

Lfid =
1

|D(i)|
∑

i∈D(i)

MSE(vwmk
i , vrefi ), (5)

where D(i) = {i ∈ I : xi ∈ D}, MSE(.) refers to the mean
squared error loss function, and vref is the feature vector
obtained from fRef . In this way, we can embed watermarks
into fWMK and transfer them to FWMK without destroying
the original task accuracy.

Verify PLMs’ ownership Through FMs. After training
and watermark embedding, the owner O publishes fWMK .
When O suspects a final model Fsusp is built on fWMK ille-
gally, O submits his public key Opub, signature sig, identity
message m, and insertion function I(.,.,p,k) to a trusted au-
thority A. Then A runs Algorithm 2 to verify the ownership.
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Algorithm 2: PLMs Ownership Verification
Input: public key Opub, signature sig, identity message m,
triggers number n, insertion function I(.,.,p,k)
Parameter: downstream datasets Ddown = {x, y}, counters
c1 and c2, watermark accuracy WACC, threshold γ
Output: verification result

1: if Verify(Opub, sig,m)==False then
2: return False
3: end if
4: initialize WACC = c1 = c2 =0
5: t = Encode(sig, n)
6: for j = 1 to n do
7: ytj = Fsusp(tj)
8: for i = 1 to |Ddown| do
9: if yi ̸= ytj then

10: x
tj
i = I(xi, tj , p, k)

11: ŷi = Fsusp(x
tj
i )

12: c1+ = 1
13: if ŷi = ytj then
14: c2+ = 1
15: end if
16: end if
17: end for
18: end for
19: WACC=c2/c1
20: if WACC < γ then
21: return False
22: end if
23: return True

The verification procedure consists of two steps. First, A
runs a digital signature verification algorithm Verify(.) to
check if sig is generated over m with the private key cor-
responding to Opub, so as to verify the identity of O. If
O succeeds in identity verification, then A collects part of
datasets Ddown = {x, y} which match the downstream task
performed by Fsusp, then runs the procedure below to check
if such identity information is embedded in Fsusp. Specif-
ically, A first runs Encode(sig, n) to obtain trigger list t,
then queries Fsusp with each tj in t to get trigger labels ytj .
Since an embedded trigger can change the predicted label
from the original value while a forge trigger can barely do, A
selects the sample xi whose ground truth label yi is different
from the trigger label ytj , and then inserts tj into xi. Ben-
efitting from the relationships shown in Eq.2 and Eq.3, the
ownership can be judged by comparing WACC with the ver-
ification threshold γ. γ is determined by experimental expe-
rience. If O succeeds in all the verification, then O succeeds
in claiming his ownership of the PLM used by Fsusp.

Experiments
In this section, we first evaluate the performance of our
scheme with five criteria: fidelity, effectiveness, reliability,
robustness, and unforgeability. Then we visualize the feature
representations to further illustrate why our scheme works.
Finally, the influence of hype-parameters is discussed.

Dataset #Classes Avg.Len Train Valid Test

SST-2 2 9.54 60613 6734 872

SST-5 5 19.17 8544 1101 2210

Offenseval 2 22.36 11915 1323 859

Lingspam 2 695.26 2604 289 580

AGNews 4 37.96 108000 12000 7600

Table 1: The statistics of datasets.

Models and Implementation Details. We choose the
base versions of two widely used pre-trained language mod-
els: BERT (Devlin et al. 2019) and RoBERTa (Liu et al.
2019) to evaluate our watermarking framework. Due to the
limited computation resource, we use the pre-trained mod-
els from HuggingFace1 to initialize the PLMs and then use
the WikiText-2 dataset (Merity et al. 2017) to train them.
We generate the trigger words following Algorithm 1 and
set the triggers number n = 6. To generate the trigger sets,
we randomly choose one trigger word and insert it into a
clean sample each time, and do this for all the clean samples
in the training dataset, and assign contrastive learning labels
for clean datasets and trigger sets. We choose the insert po-
sitions p randomly and set the insertion times k = 5. Hav-
ing watermarked the PLMs, we add downstream classifiers
and fine-tune them with downstream datasets to obtain final
models, and evaluate the watermark performance on them.

Downstream Datasets. To demonstrate the universality of
the watermarking scheme, we use a variety of downstream
datasets: SST-2 and SST-5 (Socher et al. 2013) for senti-
ment analysis, Offenseval (Zampieri et al. 2019) for toxic-
ity detection, Lingspam (Sakkis et al. 2003) for spam de-
tection, and AGNews (Zhang, Zhao, and LeCun 2015) for
multi-class classification. The details are shown in Tabel 1.

Evaluation Metrics. We adopt two evaluation metrics in
our experiments. Clean Accuracy (CACC) refers to the pre-
diction accuracy of the final models on clean datasets. This
metric can reflect the fidelity of the watermarking schemes.
The other metric is Watermark Accuracy (WACC), which is
calculated based on Eq.4, and can reflect the effectiveness,
reliability, robustness, and unforgeability of the watermark.

Baseline Methods. Although there are no other water-
marking schemes for PLMs, the backdoor attack methods
NeuBA (Zhang et al. 2021) and POR (Shen et al. 2021) have
similar considered scenarios and evaluation metrics as ours.
So, we make comparisons with them in experiments.

Performance Evaluation
Fidelity. The fidelity property requires the watermarked
model to behave as well as a clean model on original tasks
(Adi et al. 2018), which means the CACC of the water-
marked model should be close to the clean model. As shown
in Table 2, our method almost does not affect the accuracy of

1https://huggingface.co/
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Model Method
SST-2 SST-5 Offenseval Lingspam AGNews

CACC WACC CACC WACC CACC WACC CACC WACC CACC WACC

BERT

Clean 92.25 - 52.95 - 84.80 - 99.72 - 94.25 -

NeuBA-HF 91.26 34.42 52.65 51.51 84.68 64.37 99.66 7.20 94.14 5.11

POR-HF 92.16 84.01 52.60 84.74 84.68 87.47 99.52 8.22 94.01 14.20

NeuBA 91.97 66.39 52.17 75.16 84.98 82.05 99.10 69.45 94.03 28.97

POR 91.70 77.55 53.41 84.36 84.45 96.90 99.31 46.91 94.14 32.93

PLMmark 91.22 99.61 52.41 99.89 84.42 99.89 99.03 98.82 94.00 91.76

RoBERTa

Clean 93.49 - 55.48 - 84.89 - 99.59 - 94.44 -

NeuBA 93.62 62.68 54.92 68.53 85.01 92.40 99.69 40.41 94.47 44.91

POR 93.00 38.58 55.25 76.19 84.23 70.08 99.48 55.43 94.54 26.94

PLMmark 92.20 95.03 53.67 86.11 83.91 99.96 99.31 70.06 93.75 68.36

Table 2: The watermark performance of different models which trained with different methods and fine-tuned on different
downstream datasets. The methods ”NeuBA” and ”POR” train models with the same triggers and hype-parameters as ”PLM-
mark”. ”NeuBA-HF”2 and ”POR-HF”3 are the backdoored models published on HuggingFace. We use their original triggers to
calculate CACC and WACC. We repeat all the experiments five times and show the average result.

original tasks, and other methods also have the same prop-
erty. This is because the watermark task is actually a differ-
ent task from the original one, due to the over-parameterized
property of DNNs, they can learn multiple tasks well at the
same time.

Effectiveness. Effectiveness can be reflected by a high
WACC, which measures whether the watermark embedded
in PLMs can transfer to FMs. From the WACC shown in Ta-
ble 2, we can find that our method significantly outperforms
the baseline methods in different models and all the down-
stream tasks. And we find the fluctuation of our method is
obviously lower than theirs. This is because they manually
and statically assign output representations for trigger sets,
and hope these predefined output representations will cause
the final models to misclassify. However, this approach is
significantly affected by the initialization of downstream
classifiers, which leads to the large fluctuation of their per-
formance. On the contrary, we use contrastive learning to dy-
namically separate the output representations of clean sam-
ples and different trigger sets. In this way, the high dimen-
sional feature space is more fully utilized while the probabil-
ity of being influenced by downstream classifiers is reduced.

Reliability. We hope that a watermarked model can be
successfully verified with the correct signature, and a forged
wrong signature cannot pass the verification. In the mean-
while, unwatermarked models should not be falsely claimed.
Table 3 shows the reliability evaluation results. We can find
that: (1) The WACC of watermarked models with correct
signatures is obviously higher than wrong signatures. (2)
The WACC of unwatermarked models is low regardless of
whether the signature is correct or not. (3) There are some
differences between different downstream tasks. The false

2https://huggingface.co/thunlp/neuba-bert
3https://huggingface.co/Lujia/backdoored bert

Dataset FWMK FWMK Fclean Fclean
+sigc +sigw +sigc +sigw

SST-2 99.61 18.29 10.21 11.93
SST-5 99.89 27.38 17.38 20.03

Offenseval 99.89 43.49 40.39 42.57
Lingspam 98.82 3.07 0.99 1.35
AGNews 91.76 5.07 4.68 3.27

Table 3: The WACC of watermarked models and clean mod-
els with correct signatures sigc and wrong signatures sigw.

positive rate is high on SST-5 and Offenseval. We specu-
late that because the CACC of the SST-5 is not high, which
means that it is hard for the models to correctly deal with
the original task, and it is easy to cause the model to misclas-
sify when we insert triggers. And for Offenseval, the original
task is to detect whether the text samples are rude or disre-
spectful, since the triggers generated by the hash mapping
are always inconsistent with the original content, this may
lead to misclassification. Based on these observations, the
verification threshold γ in Algorithm 2 should be set to dif-
ferent values according to the WACC of clean models on dif-
ferent downstream tasks, i.e., γi = CWACCi + 50%, where
CWACCi refers to the WACC of clean models on task i.

Robustness. Malicious clients may try to evade own-
ership verification by removing the watermark through
Fine-Pruning (Liu, Dolan-Gavitt, and Garg 2018) and re-
initialization. Since all three methods have high CACC and
WACC on the SST-2 dataset, we compare the robustness of
them on it. As shown in Figure 2, our method is more robust
than baseline methods. The WACC is still very high when
pruning 80% of neurons. When WACC begins to decrease,
CACC also drops obviously. In Figure 3, we can find that
re-initialization hardly affects our method. This reflects that
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Figure 2: The watermark performance after Fine-Pruning.
(We first prune a specific ratio of neurons in the feed-forward
layers based on their activation on clean input samples and
then fine-tune the models on downstream datasets.)
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Figure 3: The watermark performance after re-initializing
the last layer (LL), the pooler layer (PL), and both of them.

the model separates the clean samples and trigger sets from
lower layers rather than high layers. However, the baseline
methods are so vulnerable to this attack. This is because they
make hard constraints on the final output layer of PLMs.

Unforgeability. An attacker may attempt to forge a signa-
ture to pass verification and claim ownership. There are two
possible forgery attacks: (1) The attacker submits a forged
signature sig’ which is generated from his own identity mes-
sage m’. However, we have shown in Table 3 that a wrong
signature cannot pass the verification. (2) The attacker vio-
lently enumerates the vocabulary table to find n words that
satisfy Eq.3 as triggers. Then he needs to reversely generate
n hash values, which satisfy the mapping function between
triggers and their corresponding word indexes in the vocab-
ulary table of fWMK . And these n hash values should form
a one-way chain. He also needs to construct a signature that
not only contains his own identity message, but also can map
to the first hash value in the one-way hash chain, and then
submit this forgery signature to the authority for verification.
However, due to the one-wayness and collision resistance of
the hash function, these operations are computationally in-
feasible. So, our scheme is resistant to forgery attacks.

Extra Analysis
Visualization. To intuitively show why our scheme is ef-
fective, we visualize the dimensionality-reduced output fea-
ture vectors of fWMK in Figure 4. It can be seen that the
clean dataset and the trigger sets generated with different
triggers are clustered into different feature sub-spaces. Al-
though we do not introduce hard constraints on the feature
vectors of single trigger words, they automatically fall into
the feature sub-space of the corresponding trigger sets. That
is why we can use the WACC to judge the ownership. And
these relationships are also satisfied after Fine-Pruning and
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8

16

 Clean dataset  Trigger set 1  Trigger set 2   Trigger set 3 
 Trigger set 4  Trigger set 5  Trigger set 6  Triggers

Figure 4: The visualization of dimensionality-reduced out-
put feature vectors of the watermarked PLM.

k SST-2 SST-5 Offenseval Lingspam AGNews
1 98.68 96.44 91.41 99.53 74.08
2 99.97 91.67 95.89 99.73 82.68
3 95.83 95.18 99.98 98.47 91.99
4 99.78 97.24 96.85 98.65 92.79
5 99.61 99.89 99.89 98.82 91.76

Table 4: The WACC of watermarked models that trained
with differnent insertion times k.

re-initialization. So, our scheme is robust to these attacks.

Insertion Times. In the previous experiments, we set k =
5. We also change this hype-parameter into 1, 2, 3, and 4,
to make a comparison. As shown in Table 4, although all of
them achieve excellent performance on most datasets, they
show obvious differences in AGNews, a large multi-class
dataset. So, it is beneficial to choose a relatively large k to
enhance the transferability of the watermark.

Insert Positions. We select insert positions p randomly so
that the watermarks are mainly reflected in the tokens rather
than the positions, which can reduce the false positive rate.
Moreover, (Li et al. 2019) calculate the embedding position
by hash functions in CV tasks. However, since the length
of samples is different even in the same dataset in an NLP
task, inserting at the position obtained from hash mapping is
equivalent to inserting randomly, so we choose p randomly.

Conclusion
In this paper, we propose a secure and robust watermarking
scheme to protect the IP of PLMs for the first time. A novel
encoding method is proposed to bind triggers with the model
owner. A task-agnostic watermark embedding algorithm is
proposed based on contrastive learning. The designed two-
stage verification makes the verification results reliable. Ex-
tensive experiments show that the embedded watermark is
highly transferable. Our watermarking framework is robust
enough to resist removing attacks, and is secure enough to
resist forgery attacks. We hope this work can provide insight
into this under-researched field and inspire better works.
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