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Abstract

Deep Neural Networks (DNN) have been shown to be vul-
nerable to adversarial examples. Adversarial training (AT) is
a popular and effective strategy to defend against adversar-
ial attacks. Recent works have shown that a robust model
well-trained by AT exhibits a remarkable robustness disparity
among classes, and propose various methods to obtain con-
sistent robust accuracy across classes. Unfortunately, these
methods sacrifice a good deal of the average robust accuracy.
Accordingly, this paper proposes a novel framework of worst-
class adversarial training and leverages no-regret dynamics
to solve this problem. Our goal is to obtain a classifier with
great performance on worst-class and sacrifice just a little av-
erage robust accuracy at the same time. We then rigorously
analyze the theoretical properties of our proposed algorithm,
and the generalization error bound in terms of the worst-class
robust risk. Furthermore, we propose a measurement to eval-
uate the proposed method in terms of both the average and
worst-class accuracies. Experiments on various datasets and
networks show that our proposed method outperforms the
state-of-the-art approaches.

Introduction
Deep Neural Networks (DNNs) are known to be vulnerable
to adversarial examples (Szegedy et al. 2014; Goodfellow,
Shlens, and Szegedy 2015). An adversarial example in a
small perturbation from test data can easily fool the DNN
model, which remains a security issue and is unacceptable in
some applications of DNN, such as road sign classification
(Eykholt et al. 2018) , text classification (Ebrahimi et al.
2018), self-supervised learning (Wang and Liu 2022) and
object detection (Xu et al. 2020).

Numerous works (Raghunathan, Steinhardt, and Liang
2018; Madry et al. 2018; Li, Zou, and Liu 2022) have at-
tempted to improve the model robustness with various de-
fenses. Adversarial Training (AT) (Goodfellow, Shlens, and
Szegedy 2015; Madry et al. 2018) is one of the most widely
used and effective methods of defense. AT generates adver-
sarial examples from the training data in every mini-batch,
then uses these examples to replace training data or adds
them into the training data during the training phase.
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Although AT obtains great average adversarial robustness
over classes, Benz et al. (2020); Xu et al. (2021); Tian et al.
(2021) find that a robust model well-trained by AT exhibits
a large robustness disparity in different classes on various
balanced datasets, like the left classifier in Figure 1. Thus,
AT leaves some classes vulnerable and may not perform well
on some specific classes in certain real-world secure systems.
For example, in the autonomous driving context, a classifier
that has been well trained by AT may perform well on traffic
sign classification and achieve great adversarial robustness
performance on average while still exhibiting vulnerabilities
on specific signs, which represents a potential danger for
users.

Recently, some works (Benz et al. 2020; Xu et al. 2021)
have attempted to solve this problem. Benz et al. (2020)
analyze this phenomenon and use cost-sensitive learning
to make the performance consistent over classes. Xu et al.
(2021) propose employing re-weight and re-margin strategies
to solve this problem. Both of these methods obtain consistent
robust accuracy over classes, but they sacrifice a good deal of
the average robust accuracy, like middle classifier in Figure
1. To overcome the limitations of Benz et al. (2020); Xu
et al. (2021), this paper proposes a novel min-max learning
paradigm to optimize worst-class robust risk and leverages no-
regret dynamics to solve the proposed min-max problem, our
goal is to achieve a classifier with great performance on worst-
class but sacrifice a little average robust accuracy like the
right classifier in Figure 1. Moreover, we rigorously analyze
the theoretical properties of our proposed algorithm, and the
generalization error bound in terms of the worst-class robust
risk. Empirically, we find that a trade-off exists between
average and worst-class robust accuracies, and accordingly
propose a measurement to evaluate the method in terms of
both the average and worst-class accuracies.

The main contributions in this paper are as follows:

• We propose a novel framework of worst-class adversarial
training that leverages no-regret dynamics to solve the
problem.

• We analyze the theoretical properties of our proposed
algorithm, and the generalization error bound in terms of
the worst-class robust risk.

• A measurement is presented to evaluate the method in
terms of both the average and worst-class accuracies.
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Figure 1: A brief introduction of our main idea. Previous works only care about average or worst-class robust accuracy, while our
method considers both worst-class and average robust accuracy.

• Extensive experimental results on various datasets and
networks verify that our proposed method outperforms
state-of-the-art baselines.

Related Work
Adversarial Robustness. To improve adversarial robust-
ness of DNN, adversarial training (Goodfellow, Shlens, and
Szegedy 2015; Madry et al. 2018) is one of the most effec-
tive defenses. A large number of works (Zhang et al. 2019;
Tsipras et al. 2019; Yang et al. 2020) have explored the
trade-off between robustness and accuracy. Amongst them,
TRADES (Zhang et al. 2019) is one of the most popular meth-
ods due to its promising experimental results. Besides, Ma,
Wang, and Liu (2022) analyze the trade-off between robust-
ness and fairness. Montasser, Hanneke, and Srebro (2019);
Yin, Ramchandran, and Bartlett (2019); Xu and Liu (2022)
theoretically analyze the adversarially robust generalization
of a model while Simon-Gabriel et al. (2019) analyzes the
first-order adversarial vulnerability of neural networks. Re-
cently, a few works have been developed to further improve
its performance, such as using unlabeled data (Carmon et al.
2019), feature alignments (Yan et al. 2021), wider networks
(Wu et al. 2021) and a few tricks (Pang et al. 2021).

Disparity of Class-Wise Robustness. In natural training,
class-imbalance is a classical problem in long-tailed data. In
such problem, major class has more data than minor class.
Most of previous works to solve this problem can be con-
cluded as resampling (Zhou and Liu 2006) and cost-sensitive
learning (Zou et al. 2018). Recently, some works have opted
to focus on the class-wise robustness disparity in the adver-
sarial training. Benz et al. (2020) study this problem em-
pirically, and find that AT obtains a larger robust disparity
among classes than that of natural training even in balanced
data (e.g., CIFAR-10). Tian et al. (2021) also find the sim-
ilar experimental results on six different datasets. To solve
this problem, Benz et al. (2020) use a cost-sensitive learn-
ing fashion which is widely used in natural learning with
imbalanced datasets; Xu et al. (2021) propose a new method
to reduce the class-wise variance of robust accuracy over
classes. However their approaches both sacrifice a good deal
of the average robust accuracy because they aim to make the
performance consistent over classes. To address this issue,
this paper aims to improve the worst-class adversarial robust-
ness, while obtaining less average robust accuracy loss than
previous works.

Preliminaries
This paper considers a K-class classification problem over
input space X and output label space Y = {1, 2, · · · ,K}.
Assume D is a distribution over Z = X × Y . We denote the
sample as S : {X×Y}n. Let F be the hypothesis class, while
f(x; θ) : X → Y is a classifier in F , where x is the input
variable and f is parametrized by θ. Let ℓ : F × Z → [0, B]
be the loss function. Throughout this paper, we assume that ℓ
is bounded. The expected natural risk Rnat(f) and expected
robust risk Rrob(f) over distribution D and classifier f(x; θ)
can then be defined with respect to loss function ℓ as follows:

Rnat(f) = E
(x,y)∼D

ℓ(f(x; θ), y) (1)

Rrob(f) = E
(x,y)∼D

max
x′∈B(x,ϵ)

ℓ(f(x′; θ), y) (2)

where B(x, ϵ) = {x′ : ||x′ − x||p ≤ ϵ} denotes the ℓp-norm
(p ≥ 1) ball centered at x with radius ϵ.

Worst-Class Adversarial Robustness
Typically, one aims to use ERM to obtain a good classifier
from a hypothesis class with low empirical risk. However, a
classifier with low empirical risk may not perform well on
the worst class. To illustrate this phenomenon, we present the
results of different AT variants on the CIFAR-10 in Figure
2. From results in Figure 2(b), we can see that TRADES
(Zhang et al. 2019) obtains a worst-class robust accuracy of
25.6% under PGD-20 (Madry et al. 2018) attack, while the
average robust accuracy of TRADES is 51.94%. A similar
phenomenon occurs when different variants of AT are used on
different datasets. This degree of robustness disparity among
classes is unacceptable in certain real-world secure systems.
To study this problem, we define class-wise risk and worst-
class risk as follows. We use Dk to denote the distribution
of sample belonging to class k class, and Sk to denote the
sample drawn from Dk.

Rnat
k (f) = E

(x,y)∼Dk

[ℓ(f(x; θ), y)] (3)

Rrob
k (f) = E

(x,y)∼Dk

[ max
x′∈B(x,ϵ)

ℓ(f(x′; θ), y)] (4)

Similarly, we define the worst-class natural risk as
Rnat

wc (f) = maxk∈[K] Rnat
k (f) and worst-class robust risk

as Rrob
wc (f) = maxk∈[K] Rrob

k (f), where [K] denotes the
set of all positive integers in [1,K]. It follows that we have
Rrob

wc (f) ≥ Rrob(f) ≥ Rnat(f).

14983



Disparity of Adversarial Robustness
Figures 2(a) and 2(b) show that a large gap exists between the
worst-class robust accuracy and the average robust accuracy.
Therefore, a classifier with low expected natural risk and
expected robust risk may have high robust risk on some
classes.

To solve this problem, recently, various strategies (Benz
et al. 2020; Xu et al. 2021) aimed at making the robust perfor-
mance of the model consistent over all classes have been pro-
posed. For example, Xu et al. (2021) propose the re-weight
and re-margin strategies on TRADES. Empirically, these
works show that existing strategies typically sacrifice the av-
erage robust accuracy to improve worst-class robust accuracy.
It is hard to choose proper weight for each class.

In Figure 3, we use TRADES to train a ResNet-18 (He et al.
2016) on CIFAR-10. We assign weight wk for class-k and
use a weighted loss

∑K
k=1 wkℓtrades(·, ·), where ℓtrades(·, ·)

is the loss used in TRADES and is defined as ℓtrades :=
maxx′∈B(x,ϵ) CE(hθ(x), y) + βKL(hθ(x), hθ(x

′)). We
change the weight of class-4 from 0.05 to 0.25 and set the
weights of the other classes to be (1− w4)/(K − 1). In Fig-
ure 2(a), we find that the worst robust accuracy appears in
class-4, so we choose to change the weights of class-4.

From the results in Figure 3, we can determine that when
the weight of class-4 is increased from 0.05 to 0.15, the worst-
class robust accuracy of TRADES grows by 23.1%, while
the average robust accuracy of TRADES drops by 0.09%.
Moreover, when the weight of class-4 is increased from 0.15
to 0.25, the worst-class and average robust accuracy drop
at the same time. It is therefore demonstrably difficult to
find the optimal weight for each class, and it is imperative to
propose a measurement to simultaneously evaluate how much
a given strategy would boost worst-class robust accuracy and
decrease the average robust accuracy.

We use A to denote a vanilla adversarial training with-
out any strategy, and A∆ to denote adversarial training
with the strategy ∆. We run the algorithm A on hypoth-
esis class F and sample Strain, and obtain the classifier
f̂ = A(F ,Strain).

The average natural accuracy of a classifier f with respect
to distribution D is defined as

Accnat(f,D) = 1− P(x,y)∼D {y ̸= f(θ,x)} (5)

(a) PGD on CIFAR-10 (b) TRADES on CIFAR-10

Figure 2: Class-wise robustness disparity of different AT
using ResNet-18 on CIFAR-10. The robust accuracy (%) is
evaluated under PGD-20 attack.

Figure 3: Trade-off between average and worst-class robust
accuracy of ResNet-18 on CIFAR-10.

while average robust accuracy is defined as

Accrob(f,D)=1−P(x,y)∼D {∃x′∈B(x, ϵ), s.t.y ̸=f(θ,x′)}
(6)

Similarly, we denote the k-th class natural accuracy
as Accnatk (f,D), the worst-class natural accuracy as
Accnatwc (f,D), the k-th class robust accuracy as Accrobk (f,D)
and the worst-class robust accuracy as Accrobwc (f,D). Let the
average robust accuracy, the accuracy of the k-th class and
the worst-class accuracy of a classifier f on a test set Stest

be Accrob(f,Stest), Acck(f,Stest) and Accwc(f,Stest), re-
spectively. For simplicity, we here use Âcc(f) to denote
Acc(f,Stest). This paper proposes a novel measurement to
evaluate a method in terms of both the average and worst-
class accuracy.

ρ̂(F ,∆,A,S) = Âccwc(A∆(F))− Âccwc(A(F))

Âccwc(A(F))

− Âcc(A(F))− Âcc(A∆(F))

Âcc(A(F))

(7)

Clearly, the larger the value of ρ̂ is, the better a method
performs.

Proposed Method
In this section, we formulate a novel min-max problem and
then transform it into a two-player zero-sum game, and sub-
sequently proposes a no-regret dynamics algorithm to solve
the problem.

No-Regret Dynamics
Consider a two-player zero-sum game, in which a decision-
maker repeatedly plays a game against an adversary. More
specifically, the decision-maker plays before the adversary
and does not know the action taken by the adversary in each
round. No-regret dynamics is one of the most efficient meth-
ods of achieving an ϵ-coarse correlated equilibrium (Rough-
garden and Iwama 2017).

Multiplicative Weight Updates Algorithm (Arora, Hazan,
and Kale 2012) is one of the most widely used no-regret
dynamic algorithms. Assume a game repeats for T rounds,
while the decision-maker has a choice of n decisions. The
decision-maker needs to repeatedly make a decision from
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the decision set and obtains an associated payoff from the
adversary, while the best decision may not be known as a
priori. Let t = 1, 2, · · · , T denote the current round. In each
round t, the decision-maker produces a distribution pt over
the decision set and chooses an action from the set according
to pt. At this time, the adversary chooses a cost vector Ct.
Let ptk be the k-th element of pt while Ct

k denotes the k-th
element of Ct. Hedge Algorithm (Freund and Schapire 1997)
is one of Multiplicative Weights Updates Algorithm that uses
an exponential function to adjust the weight of every decision
as follows.

ptk =
exp(

∑t−1
i=1 ηC

i
k)∑K

k=1 exp(
∑t−1

i=1 ηC
i
k)

. (8)

Clearly, Hedge Algorithm produces the weights depending on
past performance. Intuitively, this scheme works well because
it tends to put heavy weights on high payoff decisions in the
long run.

Worst-Class Adversarial Training
The loss of a classifier f on training set Str can be defined as

Ltr
0 (f) = Ltr(f) =

1

|Str|
∑

(xi,yi)∈Str

ℓtrades(f(xi; θ), yi),

(9)
where | · | denotes the cardinality of a set. Let Ltr

k (f) be
the training loss on class k. Similarly, we use Lval

0 (f) and
Lval
k (f) to denote the loss of a classifier f on the validation

set Sval and validation loss on class k, respectively. ℓtrades
is the loss used in TRADES.

We aim to minimize the following risk

min
f

max
k∈[0,K]

Rrob
k (f), (10)

where Rrob
0 (f) = Rrob(f). We then formulate (10) as a

zero-sum game. In such a game, the learner has a decision
set {∂Ltr

0 (f)
∂f , · · · , ∂Ltr

K (f)
∂f }, Ltr

0 (f) is the excepted training
loss and Ltr

k (f) is the training loss of class-k for every 1 ≤
k ≤ K. The best decision is not known as a priori.

Remark. The reason that we add ∂Ltr
0 (f)
∂f to decision set is

the learner can directly choose ∂Ltr
0 (f)
∂f as a decision in such

a game.
The weight of each decision is initialized as 1/(K + 1).

In epoch t, we use the validation set to evaluate the classifier,
and use validation loss to denote the cost. The learning rate
is λ. In epoch t, the learner updates the model according to
the following rule:

f t = f t−1 − λ
K∑

k=0

wt
k

∂Ltr
k (f t−1)

∂f
, (11)

where

wt
k =

exp(
∑t−1

i=1 ηL
val
k (f i))∑K

k=0 exp(
∑t−1

i=1 ηL
val
k (f i))

. (12)

After the learner updates the model, it obtains a loss
vector from the adversary. The algorithm is described in

Algorithm 1: WAT: Worst-Class Adversarial Training

Input: training data Str, validation data Sval, learning
rate λ, training epochs T , number of classes K and hyper-
parameter η.
Initialize f0, w0

k = 1
K+1 for every k ∈ [K].

for 1 ≤ t ≤ T do
use Strto obtain Ltr

0 (f t−1), · · · , Ltr
K(f t−1).

use Sval to obtain Lval
0 (f t−1), · · · , Lval

K (f t−1).

f t = f t−1 − λ
∑K

k=0 w
t
k
∂Ltr

k (ft−1)
∂f

for 0 ≤ k ≤ K do
wt+1

k =
exp(

∑t
i=1 ηLval

k (fi))∑K
k=0 exp(

∑t
i=1 ηLval

k (fi))
.

end for
end for
Output: f∗ = arg max

k∈[K]
min

f∈{f1,··· ,fT }
Lval
k (f).

more detail in Algorithm 1. Algorithm 1 outputs f∗ =
arg max

k∈[K]
min

f∈{f1,··· ,fT }
Lval
k (f). The following theorem pro-

vides the guarantee of the worst-class loss.

Theorem 1. Assume the range of Lval(f) is [0, 1], and
1/T

∑T
t=1 L

val
k (f t) ≥ 1/(1 − η)mint L

val
k (f t) for every

k and some η ≤ 1/2. We then have

max
k

min
t

Lval
k (f t) ≤ 1

T

T∑
t=1

K∑
k=0

wt
kL

val
k (f t)+

log(K + 1)

Tη
.

(13)

Proof. The proof of Theorem 1 can be found in supplemen-
tary materials.

Remark. Theorem 1 shows that if we choose a proper η, after
T rounds, the worst-class cost of the best classifier can be
bounded by the average loss of previous rounds. Our bound
also depends on η and T ; a larger η and T will provide a
tighter bound.

Generalization Error Bound
This section provides the generalization error bound in terms
of the worst-class robust risk. The empirical natural risk and
robust risk are defined as R̂nat(f) = 1

n

∑n
i=1 ℓ(f(xi; θ), yi)

and R̂rob(f) = 1
n

∑n
i=1 maxx′∈B(x,ϵ) ℓ(f(x

′; θ), yi), re-
spectively.

Rademacher complexity (Bartlett and Mendelson 2002)
is one of the classic measurements for generalization error.
Let S = {z1, z2, · · · , zn} be an independent and identically
distributed (i.i.d.) sample with size n and σi be a random
variable such that P[σi = 1] = P[σi = −1] = 1/2. The
Rademacher complexity of function class H is defined as

RS(H) :=
1

n
Eσ

[
sup
h∈H

n∑
i=1

σih (zi)

]
. (14)

We next analyze the gap between the empirical risk and
population risk of the worst class. Let the training set Sk
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be drawn i.i.d. from the distribution Dk. The empirical k-th
class robust risk is defined as

R̂rob
k (f) =

1

|Sk|
∑

(xi,yi)∈Sk

max
x′∈B(x,ϵ)

ℓ(f(x′
i; θ), yi). (15)

The empirical worst-class robust risk over S := ∪k∈[K]Sk

is R̂rob
wc (f) = maxk R̂rob

k (f). and ℓ̃F is defined as ℓF =
{(x, y) → ℓ(f(x), y) : f ∈ F}. We assume |Sk| = |S|/K
holds for every k. We present the following Theorem.

Theorem 2. Suppose that the range of ℓ(f(x), y) is [0, B].
Let ℓ̃(f(x), y) := maxx′∈B(x,ϵ) ℓ(f(x

′), y). Then, for any
δ ∈ (0, 1), with probability at least 1− δ, the following holds
for all f ∈ F ,

Rrob
wc (f) ≤ R̂rob

wc (f) + 2Bmax
k

RSk
(ℓ̃F ) + 3B

√
K log 2

δ

2|S|
.

Proof. The proof of Theorem 2 can be found in supplemen-
tary materials.

Multi-Class Linear Classifiers
This section studies the generalization error of multi-class
linear classifiers. We here consider a K-class classification
problem. Let FW be a multi-class linear classifier hypothesis,
and fW : X → RK in FW be parameterized by a matrix W
with dimension K × d. The k-th coordinate of fW(x) is the
score of the k-th class, and the prediction of fW is the class
with the highest score among the K classes. Let wk ∈ Rd be
the k-th column of W⊤ and be upper bounded by W under
the ℓp norm (p ≥ 1): FW = {fW(x) : ||W⊤||p,∞ ≤ W}.
For multi-class classification problems, we define the margin
operator M(ξ, y) : RK × [K] → R as M(ξ, y) = ξy −
maxy′ ̸=y ξy′ , and a classifierf predicts correct if and only if
M(ξ, y) > 0. The ramp loss is defined as follows:

ϕγ(t) =


1 t ≤ 0,

1− t
γ 0 < t < γ,

0 t ≥ γ.

(16)

Based on the margin operator and ramp loss, we have
ℓ(fW(x), y) = ϕγ(M(fW(x), y)) and ℓ̃(fW(x), y) =
max

x′∈B(x,ϵ)
ϕγ(M(fW(x), y)). We use 1(·) to denote a {0,1}-

valued indicator function, and present the following Theorem.

Theorem 3. Consider the multi-class linear classifiers in the
adversarial setting, and suppose that 1

p + 1
q = 1, p, q ≥ 1.

For any fixed γ > 0 and W > 0, we have with probability at
least 1− δ, for all W such that ∥W⊤∥p,∞ ≤ W ,

1−Accrobwc (f,D) ≤ K

|S|
∑

(xi,yi)∈S

Ei +
2WK3

γ|S|
U + c,

where

c=
2WK2ϵd

1
q

γ
√
|S|

+ 3

√
K log 2

δ

2|S|
,

U=max
y,k

Eσ

∥∥∥∥∥∥
∑

(xi,yi)∈Sk

σixi1 (yi = y)

∥∥∥∥∥∥
q

 ,

Ei=1

(
⟨wyi

,xi⟩≤γ+max
y′̸=yi

(⟨wy′ ,xi⟩+ϵ∥wy′−wyi
∥1)

)
.

Proof. The proof of Theorem 3 can be found in supplemen-
tary materials.

Remark. Only if we optimize worst-class robust risk, as
in our method, Theorem 2 and 3 hold. However, previous
works do not optimize this risk and Theorem 2 and 3 are not
applicable to them.

Experiments
In this section, we conduct experiments on various datasets
and models to evaluate the performance of our proposed
method. Code is available at https://github.com/boqili/WAT.

Datasets and Baselines
The datasets used in the experiments are CIFAR-10 and
CIFAR-100 (Krizhevsky, Hinton et al. 2009), which are de-
scribed in more detail in supplementary materials.

TRADES (Zhang et al. 2019), FRL (Xu et al. 2021) and
Cost-sensitive Learning (CSL) (Benz et al. 2020) are used
as our baselines. TRADES is one of the most popular adver-
sarial training methods. FRL has two variants: FRL-RW is
based on the re-weight strategy, and FRL-RWRM is based
on the re-weight and re-margin strategy. CSL is a classical
approach to solving the class-imbalanced problem on im-
balanced datasets (Ting 2000; Khan et al. 2018). To be fair,
we use the same hyper-parameters and perform the model
selection for each method.

Evaluations
We use the following measures to evaluate the performance
of all methods.

Average and Worst-class accuracy. Following (Xu et al.
2021), we use average natural accuracy, average robust ac-
curacy, worst-class natural accuracy and worst-class robust
accuracy to evaluate the performance of all methods. We
use three strong adversarial attacks PGD-100, CW(Carlini
and Wagner 2017) attack and AutoAttack(Croce and Hein
2020) to evaluate robust accuracy. We set perturbation radius
ϵ = 8/255 for CIFAR-10 and CIFAR-100. Other details can
be found in supplementary materials.

Class-wise Variance (CV ). Class-wise variance is a com-
mon measure used in (Xu et al. 2021) and (Tian et al. 2021).
The definition of CV given in (Tian et al. 2021) is presented
below.
Definition 1. (Tian et al. 2021) Given one dataset containing
C classes, the accuracy of each class c is ac, the average
accuracy over all class is ā=(

∑C
c=1 ac)/C, and the CV is

defined as: CV =(
∑C

c=1(ac − ā)2)/C.
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CIFAR-10 Natural PGD-100 CW AutoAttack

Method Avg. Wst. ρnat Avg. Wst. ρpgd Avg. Wst. ρcw Avg. Wst. ρAA

TRADES 82.11 64.6 0 51.69 25.2 0 50.38 24.1 0 48.64 21.7 0
FRL-RW 81.75 69.2 0.067 49.02 30.8 0.171 47.80 27.8 0.102 46.08 25.4 0.118
FRL-RWRM 80.69 71.4 0.088 49.16 32.0 0.221 47.45 28.1 0.108 45.94 26.1 0.147
CSL 76.29 67.1 -0.032 43.30 33.8 0.179 41.60 31.3 0.124 40.32 29.2 0.175

Ours 80.98 69.5 0.062 49.13 36.6 0.403 47.57 33.3 0.326 46.04 30.1 0.334

CIFAR-100 Natural PGD-100 CW AutoAttack

Method Avg. Wst. ρnat Avg. Wst. ρpgd Avg. Wst. ρcw Avg. Wst. ρAA

TRADES 54.57 19.00 0 27.39 3.00 0 24.87 1.00 0 23.57 1.00 0
FRL-RW 53.08 24.00 0.236 25.76 3.00 -0.060 22.39 2.00 0.900 21.09 1.00 -0.105
FRL-RWRM 52.55 22.00 0.121 26.04 4.00 0.284 22.33 2.00 0.898 21.11 2.00 0.896
CSL 53.83 21.00 0.092 26.19 4.00 0.290 22.35 2.00 0.899 22.25 2.00 0.944

Ours 53.99 19.00 -0.020 26.91 5.00 0.643 24.26 3.00 1.945 22.89 3.00 1.971

Table 1: Comparison results of all methods using ResNet-18 on CIFAR-10 and CIFAR-100. We evaluate every method in terms
of both accuracy (%) and ρ. We report the average natural accuracy, worst-class natural accuracy, average robust accuracy,
worst-class robust accuracy, ρnat, ρpgd, ρcw and ρAA for every method. The best value in every metric is in bold font.

(a) Ours vs TRADES (b) Ours vs CSL (c) Ours vs FRL-RW (d) Ours vs FRL-RWRM

Figure 4: Class-wise robust accuracy disparity of all methods using ResNet-18 on CIFAR-10. We compare our method and
another method in terms of the class-wise robust accuracy evaluated under CW attack. We denote the results of our method with
a blue line, while the results of the comparison methods are represented by a purple line.

We use CVnat to denote the class-wise variance of natural
accuracy and CVrob to denote the class-wise variance of
robustness accuracy, We also use ρ as defined in Eq.(7) to
evaluate the method in terms of both the average and worst-
class accuracies.

Results
In Table 1, we report the performance of every method using
ResNet-18 on CIFAR-10 and CIFAR-100. We can clearly
observe that our method successfully outperforms other meth-
ods on both CIFAR-10 and CIFAR-100. More specifically,
under PGD-100 attack, our method improves the worst-class
robust accuracy of all compared methods by at least 2.8% on
the CIFAR-10 dataset and 1.0% on the CIFAR-100 dataset,
while improving the worst-class robust accuracy of all com-
pared methods for at least 2.0% on CIFAR-10 dataset and
1.0% on CIFAR-100 under CW attack. Under AutoAttack,
our method improves the worst-class robust accuracy of all
compared methods by at least 0.9% on the CIFAR-10 dataset

and 1.0% on the CIFAR-100 dataset as well. Moreover, com-
pared with TRADES, although all compared methods in-
crease the robust accuracy, our method achieves the best
ρpgd, ρcw and ρAA value; in short, we sacrifice the least aver-
age robust accuracy to obtain the highest worst-class robust
accuracy.

Furthermore, to study the effectiveness of our method in
more detail, we conduct a comparison of the class-wise robust
accuracy evaluated under CW attack between our method and
all compared methods in Figure 4. As shown in Figure 4(a),
our method achieves higher robust accuracy of class-4 and
class-5 than TRADES, thus, our method obtains a good per-
formance on worst-class robust accuracy. In Figure 4(b), al-
though CSL achieves a great performance on the worst class,
it performs worse than our method on most other classes,
which leads to a low average robust accuracy. From Figures
4(c) and 4(d), we can see that our method achieves higher
robust accuracy on class-4 (the most vulnerable class) than
the other two baselines. Moreover, our proposed method sig-

14987



CIFAR-10 Natural PGD-100 CW AutoAttack

Method Avg. Wst. ρnat Avg. Wst. ρpgd Avg. Wst. ρcw Avg. Wst. ρAA

TRADES 84.51 64.7 0 53.68 23.3 0 53.18 22.8 0 51.22 20.9 0
FRL-RW 83.93 74.5 0.145 50.59 30.0 0.230 50.58 29.1 0.227 48.36 27.1 0.241
FRL-RWRM 83.86 72.1 0.107 51.25 32.9 0.367 51.08 32.2 0.373 48.98 28.6 0.325
CSL 79.78 75.1 0.105 45.7 32.2 0.233 44.74 30.8 0.192 43.10 29.4 0.248

Ours 83.71 74.0 0.062 51.53 34.9 0.458 50.89 33.4 0.422 49.12 30.7 0.428

Table 2: Comparison results of all methods using WideResNet-34-10 on CIFAR-10.

CIFAR-10 Natural PGD-100 CW AutoAttack

Method Avg. Wst. ρnat Avg. Wst. ρpgd Avg. Wst. ρcw Avg. Wst. ρAA

TRADES 82.11 64.6 0 51.69 25.2 0 50.38 24.1 0 48.64 21.7 0
Ours(η=0.01) 81.54 68.0 0.046 50.50 26.6 0.033 49.86 25.0 0.027 47.65 22.6 0.021
Ours(η=0.05) 81.76 69.3 0.068 50.06 34.2 0.326 49.53 31.7 0.298 47.05 28.1 0.262
Ours(η=0.1) 80.98 69.5 0.062 49.13 36.6 0.403 47.57 33.3 0.326 46.04 30.1 0.334
Ours(η=0.5) 79.30 67.3 0.008 48.09 37.5 0.418 45.42 32.5 0.250 43.98 31.1 0.337

Table 3: Results of our method with different η using ResNet-18 on CIFAR-10.

nificantly outperforms the other two baselines on class-5 and
class-8, which contributes to the highest ρcw of our method.
The results of class-wise robust accuracy disparity of all the
methods evaluated under PGD-100 attack and AutoAttack
on CIFAR-10 can be found in supplementary materials.

We go on to evaluate the performance of all the methods
on WideResNet-34-10 (Zagoruyko and Komodakis 2016).
The experimental results can be found in Table 2. From the
results in Table 2, we can find that our method achieves the
highest worst-class robust accuracy evaluated under all three
attacks with at least 1.3% improvement. we also achieve the
highest ρpgd, ρcw and ρAA while we have comparable result
with compared methods in average robust accuracy evaluated
under all three attacks on CIFAR-10.

Parameter Analysis on η
We study the impact of hyper-parameter η used in our method
on average and worst-class robust accuracy. We vary the
hyper-parameter η from {0.01,0.05,0.1,0.5}, and show the
results in Table 3. We find that a trade-off between the average
robust accuracy and the worst-class robust accuracy exists,
and if we improve the average robust accuracy, the worst-
class robust accuracy decreases at the same time. However,
a larger η does not lead to a larger ρnat and ρcw . In our
experiments, we find η = 0.1 yields the best ρnat and ρcw
while η = 0.5 yields the best ρpgd and ρAA.

Comparison between CV and ρ
From the results in Table 4, we can see that CSL obtains
the lowest CVcw value, while the average robust accuracy of
CSL is the worst. Notably, CVcw is not a good measurement
because it does not consider the trade-off between average
and worst-class robust accuracy. From the results in Table 4,
we can also see that our method achieves the best ρcw, has the

CIFAR-10 CW Attack

Method Avg. Wst. CVcw ρcw

TRADES 50.38 24.1 0.0269 0

FRL-RW 47.80 27.8 0.0215 0.102
FRL-RWRM 47.45 28.1 0.0172 0.108
CSL 41.60 31.3 0.0027 0.124
Ours 47.57 33.3 0.0147 0.326

Table 4: Comparison results between CVcw and ρcw using
ResNet-18 on CIFAR-10.

highest worst-class robust accuracy, and is comparable with
FRL and CSL in average robust accuracy. Therefore, ρcw is a
more reasonable measurement than CVcw because it consid-
ers average robust accuracy and worst-class robust accuracy
at the same time. The results evaluated under PGD-100 attack
and AutoAttack are shown in supplementary materials.

Conclusion

To improve the worst-class robustness in adversarial training,
this paper proposes a novel framework of worst-class ad-
versarial training and leverages no-regret dynamics to solve
the problem. Theoretically, we provide the guarantee of the
worst-class loss and analyze the generalization error bound
in terms of the worst-class robust risk based on Rademacher
complexity. Moreover, we propose a measurement to evalu-
ate the method in terms of both the average and worst-class
accuracies. Empirical results verify the superiority of our
proposed approach.
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