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Abstract

In image classification, debiasing aims to train a classifier to
be less susceptible to dataset bias, the strong correlation be-
tween peripheral attributes of data samples and a target class.
For example, even if the frog class in the dataset mainly con-
sists of frog images with a swamp background (i.e., bias-
aligned samples), a debiased classifier should be able to cor-
rectly classify a frog at a beach (i.e., bias-conflicting sam-
ples). Recent debiasing approaches commonly use two com-
ponents for debiasing, a biased model fB and a debiased
model fD . fB is trained to focus on bias-aligned samples
(i.e., overfitted to the bias) while fD is mainly trained with
bias-conflicting samples by concentrating on samples which
fB fails to learn, leading fD to be less susceptible to the
dataset bias. While the state-of-the-art debiasing techniques
have aimed to better train fD , we focus on training fB , an
overlooked component until now. Our empirical analysis re-
veals that removing the bias-conflicting samples from the
training set for fB is important for improving the debias-
ing performance of fD . This is due to the fact that the bias-
conflicting samples work as noisy samples for amplifying the
bias for fB since those samples do not include the bias at-
tribute. To this end, we propose a simple yet effective data
sample selection method which removes the bias-conflicting
samples to construct a bias-amplified dataset for training fB .
Our data sample selection method can be directly applied to
existing reweighting-based debiasing approaches, obtaining
consistent performance boost and achieving the state-of-the-
art performance on both synthetic and real-world datasets.

Introduction
When there exists a correlation between peripheral attributes
and labels which is referred to as dataset bias (Torralba and
Efros 2011) in the training dataset, image classification mod-
els often heavily rely on such a bias. Dataset bias is caused
when the majority of data samples include bias attributes,
the visual attributes that frequently co-occur with the tar-
get class but not innately defining it (Lee et al. 2021). For
example, frogs are commonly observed in swamps (bias at-
tribute), but frogs can also be found in other places such as
grasses or beaches. In such a case, the image classification
model trained with the biased dataset could use swamps as
the visual cue for classifying frogs. In other words, it may
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Figure 1: Visualization results of GradCAM applied to bi-
ased models with different initialization (i.e., f∗

B1
, . . . , f∗

B5
).

The first column indicates the original images. Starting from
the second column, we observe that each biased model with
different initialization focuses on different visual attributes.

fail to correctly classify frog images in other places. To mit-
igate such an issue, debiasing aims to train the image clas-
sification model to learn the intrinsic attributes, the visual
attributes which inherently define a target class, such as the
legs or eyes of frogs.

In a biased dataset, the data samples without the bias
attribute (i.e., bias-conflicting samples) such as frogs on
grasses or beaches are excessively scarce compared to the
samples including the bias attributes (i.e., bias-aligned sam-
ples). Due to the scarcity, existing state-of-the-art debiasing
studies (Nam et al. 2020; Lee et al. 2021) train a given model
by reweighting the data samples which refers to imposing 1)
high weight on losses of the bias-conflicting samples and 2)
low weight on those of the bias-aligned ones. For example,
Nam et al. (2020) reweight the data samples based on the
finding that the bias attributes are easy to learn compared
to the intrinsic attributes. To be more specific, they inten-
tionally train a biased model fB to be overfitted to the eas-
ily learned bias attribute. Then, they utilize fB for comput-
ing a reweighting value w for each training sample, which
the value is designed to be high for samples fB fails to
classify (i.e., bias-conflicting samples). The data items are
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reweighted with w during training the model fD to learn
the debiased representation. In this regard, how well fB is
overfitted to the bias attribute influences the debiasing per-
formance of fD since it determines the reweighting value.

However, our careful analysis points out that fB used in
the existing reweighting-based approaches (Nam et al. 2020;
Lee et al. 2021) fail to maximally exploit the bias attribute.
They utilize a loss function which is designed to emphasize
the bias-aligned samples in order to overfit fB to bias at-
tributes. Despite such a design, even the small number of
bias-conflicting samples still interfere with fB from being
overfitted to the bias attribute since they work as noisy sam-
ples for learning the bias. In spite of the importance of such
an issue, none of the previous studies shed light on remov-
ing the bias-conflicting samples from training sets for over-
fitting fB to the bias attribute to improve the debiasing per-
formance, especially challenging without explicit bias labels
(i.e., annotations of bias attributes) or prior knowledge on
certain bias.

To this end, we propose a simple yet effective biased sam-
ple selection method that builds a refined dataset which dis-
cards bias-conflicting samples and mainly includes the bias-
aligned ones in order to amplify bias when training fB .
While the bias attribute (e.g., gender) is easy to learn (Nam
et al. 2020), it is composed of multiple visual attributes (e.g.,
make-up, hairstyle, beards). We found that it is challeng-
ing for a biased model to consider multiple visual attributes
comprehensively for making biased predictions. To be more
specific, as shown in Fig. 1, differently initialized biased
models only utilize certain visual attributes for making bi-
ased predictions. Additionally, these attributes are different
among the models (e.g., one focuses on the lips mainly while
the other concentrates on the hairstyle for predicting the gen-
der). Such a finding aligns with the previous studies which
found that deep neural networks learn in different ways with
different random initialization (Bian and Chen 2021; Zaidi
et al. 2021). This observation indicates that we can better un-
derstand the bias by capturing diverse visual attributes of the
bias by utilizing the predictions of multiple biased models.

The procedure of our proposed method is as follows. First,
in order to capture diverse visual attributes of a bias, we pre-
train multiple biased models with different random initial-
ization for a small number of iterations by using the easy-
to-learn property of bias attributes (Nam et al. 2020). By
utilizing the predictions of the differently initialized biased
models, we refine the train dataset with the bias-conflicting
samples discarded. The newly refined dataset which mainly
includes bias-aligned samples is then used to train fB . Train-
ing with the bias-amplified dataset encourages fB to max-
imally exploit the bias attribute when making predictions,
and improve the debiasing performance of fD overall.

In summary, the main contributions of our paper are as
follows:

• Based on our preliminary analysis, we reveal that how
well fB is overfitted to the bias influences the debiasing
performance crucially, an important observation over-
looked in the previous reweighting-based approaches.

• We propose a simple yet effective biased sample selection

method which better captures a bias attribute by consid-
ering multiple visual attributes of a bias.

• Our method can be easily adopted to existing
reweighting-based approaches, and we achieve the
new state-of-the-art performances on both synthetic and
real-world datasets.

Related Work
Existing early studies of debiasing explicitly use bias labels
during training (Kim et al. 2019; Tartaglione, Barbano, and
Grangetto 2021; Sagawa et al. 2020) or implicitly prede-
fine the bias types (e.g., focusing on mitigating the color
bias) (Wang et al. 2019; Geirhos et al. 2019; Bahng et al.
2020). Bias labels or prior knowledge on the bias types
are generally used to identify bias-conflicting samples. Al-
though not utilizing explicit bias labels, ReBias (Bahng et al.
2020) predefines a certain bias type (e.g., color and tex-
ture) and focuses on mitigating such bias by leveraging
a color- and texture-oriented network with small receptive
fields (Brendel and Bethge 2019) to capture the predefined
color or texture bias. However, acquiring bias labels or pre-
defining a bias type 1) necessitates humans to identify the
bias type of a given dataset and 2) limits the debiasing per-
formance on unknown bias types (Lee et al. 2021).

Recent debiasing studies proposed several methods to ad-
dress such an issue (Darlow, Jastrzebski, and Storkey 2020;
Huang et al. 2020; Nam et al. 2020; Lee et al. 2021).
Nam et al. (2020) propose LfF which identifies the bias-
conflicting samples based on the intuitive finding that the
bias attributes are easy to learn compared to the intrinsic
attributes. By using the fact that fB outputs a relatively
high loss value for bias-conflicting samples, they impose
high weight on (i.e., emphasize) bias-conflicting samples
and low weight on the bias-aligned samples during train-
ing fD. Lee et al. (2021) augment the bias-conflicting sam-
ples via disentangled feature-level augmentation, emphasiz-
ing them along with the bias-conflicting samples in the orig-
inal training set by using the reweighting method. Although
the previous studies utilize fB for computing the reweight-
ing value, we reveal that they overlooked the importance of
amplifying bias for fB , crucial for improving the debiasing
performance of fD.

Importance of Amplifying Bias
Background
Overfitting model to the bias. Since annotating bias la-
bels or identifying the bias types in advance is challenging
and labor intensive (Lee et al. 2021), recent studies lever-
age the Generalized Cross Entropy (GCE) loss (Zhang and
Sabuncu 2018) that does not require such information for
amplifying the bias (Nam et al. 2020; Lee et al. 2021). The
GCE loss is defined as:

LGCE(p(x; θ), y) =
1− py(x; θ)

q

q
, (1)

where q is a scalar value which controls the degree of ampli-
fication, and p(x; θ) and py(x; θ) are the softmax outputs of
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Figure 2: Comparison of LfF utilizing fB trained with 1) GCE loss (blue) and 2) explicit bias labels (red). (a) and (b) indicate the
results on Colored MNIST and BFFHQ, respectively. Starting from the first column, each graph represents the 1) unbiased test
set accuracy of fB , 2) biased test set accuracy of fB , 3) averaged reweighting value w(x) of bias-aligned samples (abbreviated
as B.A.), 4) that of bias-conflicting samples (abbreviated as B.C.), and 5) unbiased test set accuracy of fD.

the network parameterized by θ and the softmax probabil-
ity of the target class y, respectively. The GCE loss assigns
high weights on the gradients of the samples with the high
prediction probability on the target class y, which can be
formulated as:

∂LGCE(p, y)

∂θ
= pqy

∂LCE(p, y)

∂θ
. (2)

The GCE loss encourages the model to focus on the easy
samples with high probability values. As revealed in the
work of Nam et al. (2020), the bias attributes are easy to
learn compared to the intrinsic attributes, so a model pre-
dicts bias-aligned samples with high probability values. Due
to this fact, in a biased dataset, the GCE loss encourages the
model to focus mainly on the bias-aligned samples, leading
the model to be biased.
Reweighting-based approaches. Recent state-of-the-art
debiasing methods (Nam et al. 2020; Lee et al. 2021)
reweight data samples by utilizing two different models: 1)
a biased model fB and 2) a debiased model fD. The former
one is trained to be overfitted to the bias attribute while the
latter one is mainly trained with the bias-conflicting samples,
those which are identified by utilizing fB . To be more spe-
cific, since fB heavily relies on the bias attributes for making
predictions, it fails to correctly classify the bias-conflicting
samples, those without the bias attributes. Due to this fact,
the Cross Entropy (CE) loss values of bias-conflicting sam-
ples are relatively high compared to those of bias-aligned
ones. By utilizing such a characteristic, the loss of each data
sample x is reweighted for training fD with the reweighting
value w(x). Specifically, Nam et al. (2020) formulated w(x)
as

w(x) =
LCE(fB(x), y)

LCE(fB(x), y) + LCE(fD(x), y)
, (3)

where fB(x) and fD(x) indicate the prediction outputs of
fB and fD, respectively, and y is the target label of the sam-
ple x. Using the formula, the reweighting value w(x) is de-
signed to be imposed 1) high for the bias-conflicting samples
and 2) low for the bias-aligned samples in order to improve
the debiasing performance of fD. In this regard, how well

fB is overfitted to the bias attribute determines the w(x)
which crucially influences the debiasing performance of fD.

Revisiting fB in Debiasing Methods
In this section, we show that the existing state-of-the-art
reweighting methods fail to fully overfit fB to the bias, re-
sulting in an unsatisfactory reweighting of the data sam-
ples during training fD overall. For the experiments, we
use Colored MNIST (Lee et al. 2021) and biased FFHQ
(BFFHQ) (Kim, Lee, and Choo 2021) to demonstrate that
our analysis is applicable both on synthetic and real-world
datasets. Bias-conflicting samples consist 1% of both train-
ing sets in this analysis. Detailed descriptions of the datasets
are included in Supplementary. In Fig. 2, we compare 1)
LfF (Nam et al. 2020) training fB with GCE loss (blue) and
2) LfF training fB with explicit bias labels using Cross En-
tropy (CE) loss (red). For the evaluation, we use 1) a biased
test set, a dataset having a similar data distribution as the bi-
ased training set, and 2) the unbiased test set, a dataset which
has no correlation found in the biased training set.
Imperfectly biased fB . A fully biased fB is likely to
achieve 1) high accuracy on the biased test set and 2) low
accuracy on the unbiased test set since it only uses the bias
attribute as the visual cue for predictions. In other words,
the gap between the biased test set accuracy and the unbi-
ased test set accuracy increases as fB focuses on the bias
attribute. As shown in Fig. 2, however, fB trained with GCE
loss (blue) shows relatively higher unbiased test set accu-
racy compared to fB trained with the explicit bias labels
(red). Assuming that fB trained with the explicit bias la-
bels is perfectly overfitted to the bias attribute, such results
demonstrate that fB trained with GCE loss is less overfitted
to the bias. In other words, even the small number of bias-
conflicting samples work as noisy samples for learning bias.
Debiasing fD via fB . The reweighting value w(x) deter-
mines the degree of how much fD should focus on a given
sample x during the training phase. It is crucial to satisfy two
conditions simultaneously for training a debiased classifier
fD: imposing 1) high w(x) on the bias-conflicting samples
and 2) low w(x) on the bias-aligned samples. In other words,
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Figure 3: Illustration of BiasEnsemble. (a) By filtering out pseudo bias-conflicting samples detected via utilizing M pretrained
biased models (f∗

B1
, . . . , f∗

BM
), we obtain the bias-amplified dataset DA. (b) Then, we train fB with DA while training fD with

the original training set D. S and R indicate the sample selection module and reweighting module, respectively. Although not
used for training fB , the pseudo bias-conflicting samples are still fed to fB for obtaining the reweighting value used for training
fD.

the difference between w(x) of bias-conflicting samples and
that of bias-aligned samples, w(x)diff, should be large in or-
der to improve the debiasing performance. We observe that
LfF trained with GCE loss, however, outputs relatively small
w(x)diff compared to LfF trained with explicit bias labels
(third and fourth column in Fig. 2). This is due to utiliz-
ing a less overfitted fB for computing w(x). Low w(x) on
bias-conflicting samples indicates that they are less empha-
sized in training fD, which should be emphasized for learn-
ing debiased features (fourth column in Fig. 2). Therefore,
fD of LfF trained with GCE loss shows lower test accuracy
than the one trained with explicit bias labels (fifth column in
Fig. 2). Based on the finding that how well fB is overfitted to
the bias significantly influences the debiasing performance
of fD, we propose an approach which further amplifies the
bias for training fB .

Debiasing with Bias-Amplified Dataset
Detecting Bias-Conflicting Samples
At a high level, since even a small number of bias-conflicting
samples work as noisy samples for learning the bias, we dis-
card them and build a bias-amplified dataset, mainly con-
sisted of bias-aligned ones. We pretrain an additional biased
model f∗

B with GCE loss for a small number of iterations by
utilizing the property that the bias attribute is easy to learn
in the early training phase (Nam et al. 2020). Note that f∗

B
is a pretrained biased model while fB is the biased model
used for reweighting data samples during training fD. Since
we pretrain f∗

B only for a small number of iterations, our
method requires a minimal amount of additional computa-
tional costs.

As f∗
B is overfitted to the bias at a certain degree, it mainly

1) correctly classifies the bias-aligned samples and 2) mis-
classifies the bias-conflicting samples. In other words, the
model outputs 1) high confidence (i.e., the softmax proba-
bility) on the target class for the bias-aligned samples and 2)

low confidence for the bias-conflicting samples. By utiliz-
ing the probability of the target class py , we build the bias-
conflicting detector BCD as follows:

BCD(x; τ, f) =

{
0, if py(x; f) < τ

1, if py(x; f) ≥ τ
, (4)

where τ is the confidence threshold. The detector regards the
samples with confidence higher than the threshold as bias-
aligned samples and vice versa.

Improving Detection via Multiple BCDs
While a single BCD may discard the bias-conflicting sam-
ples at a reasonable level, we empirically found that con-
structing DA relying on only a single BCD shows large per-
formance variations (Table 3 and Table 4). Although the bias
attribute (e.g., gender bias) is easy to learn compared to the
intrinsic attribute in the early training phase, it may form as
a combination of multiple visual attributes (e.g., make-up,
hairstyle, beards), especially in the real-world datasets. As
shown in Fig. 1, differently initialized biased models only
utilize certain visual attributes for learning the bias attribute.
Also, the visual attributes utilized for the biased predictions
are different among models. For example, one BCD captures
the gender bias of a female image by mainly using the long
hair as the visual cue while the other may recognize the bias
mainly due to the lip makeups. Thus, each BCD may make
different predictions on a same sample, leading to perfor-
mance variation overall. One of the straight-forward solu-
tions is considering both visual attributes to predict gender
bias (i.e., predicting an image as female if it includes both
long hair and lip makeups). As demonstrated in the previ-
ous studies (Bian and Chen 2021; Fort, Hu, and Lakshmi-
narayanan 2019; Zaidi et al. 2021), utilizing differently ini-
tialized models enables to induce diversity among models.
Thus, we utilize multiple BCDs to better capture the bias via
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considering diverse visual attributes consisting the bias at-
tribute. Since we utilize multiple BCDs, we term our method
as ‘BiasEnsemble (BE)’.

To this end, we select data samples based on the predic-
tions of multiple BCDs. To be more specific, we leverage
multiple pretrained biased models (f∗

B1
, f∗

B2
, ..., f∗

BM
). We

utilize the property that bias attribute is learned in the early
training phase (Nam et al. 2020), so we only need a negligi-
ble training time for each f∗

B . Quantitative measurement on
the marginal computational costs of our method is reported
in our Supplementary. Then, M number of BCDs are built
using each pretrained biased model f∗

B . Finally, we discard
the sample that the majority of the detectors consider as the
bias-conflicting sample. For example, setting M=5, a given
sample is regarded as the bias-conflicting sample if more or
equal to three BCDs considered it as the bias-conflicting one
(i.e., pseudo bias-conflicting sample) and vice versa. Note
that all biased models have the same architecture, so we
iteratively re-initialize biased models in order to save the
memory space. As aforementioned, even such iterative re-
initialization accompanies a marginal training time since we
train each biased model for a small number of steps.

In summary, pseudo bias-aligned sample (PBA) can be
formulated as

PBA =

{
0, if

∑M
i=1 BCD(x; τ, f∗

Bi
) < ⌈M

2 ⌉
1, if

∑M
i=1 BCD(x; τ, f∗

Bi
) ≥ ⌈M

2 ⌉
, (5)

where M is the number of BCDs used. Finally, the data sam-
ples labeled as pseudo bias-aligned ones consist DA, used
for training fB .

In the Supplementary, given that bias labels are not pro-
vided, we show that BiasEnsemble is superior to simply en-
sembling multiple biased models (fB1 , fB2 , ..., fBM

) in the
main stage of debiasing. Without the bias-conflicting sam-
ples discarded, the ensembled predictions of the multiple
biased models fail to emphasize the bias-conflicting ones
for fD. That is, each biased model (fBi

) learns the intrin-
sic attribute from the bias-conflicting samples as training
proceeds. While ensembling has been widely adopted in
other fields to bring further performance gain, this exper-
iment shows that ensembling without careful consideration
does not guarantee performance gain in debiasing. Although
ensembling itself may be regarded as a simple and naive ap-
proach, we believe that finding how to adjust ensembling to
debiasing is important and needs careful consideration.

Training Debiased Model Using DA
After obtaining a bias-amplified dataset DA which con-
tains a significantly smaller number of bias-conflicting sam-
ples compared to the original training dataset D, we train
fB using DA. When applying BiasEnsemble to existing
reweighting-based approaches, LfF (Nam et al. 2020) and
DisEnt (Lee et al. 2021), we do not modify the training pro-
cedure of fD. Thus, BiasEnsemble can be easily applied to
existing methods that leverage fB for reweighting data sam-
ples. Note that fB is utilized for reweighting all the training
data samples during training fD, although the pseudo bias-
conflicting ones (i.e., the samples not included in DA) are
not used for training fB . Both fB and fD are trained with
the CE loss.

Experiment
Experimental Settings
Dataset. Following the previous studies, we conduct ex-
periments under four datasets: Colored MNIST (Lee et al.
2021), biased FFHQ (BFFHQ) (Kim, Lee, and Choo 2021),
Dogs & Cats (Kim et al. 2019), and biased action recogni-
tion (BAR) (Nam et al. 2020). Each dataset has an intrin-
sic attribute and a bias attribute: Colored MNIST - {digit,
color}, BFFHQ - {age, gender}, Dogs & Cats - {animal,
color}, and BAR - {action, background}. The former and
the latter visual attribute in the bracket correspond to the
intrinsic and bias attribute, respectively. We conduct experi-
ments under various ratios of bias-conflicting samples (i.e.,
the number of bias-conflicting samples out of the total num-
ber of training samples) in each dataset to evaluate the de-
biasing algorithms under different levels of bias severity,
following the previous studies (Nam et al. 2020; Lee et al.
2021). For evaluating the debiasing performance, we use un-
biased test sets which include images without the correlation
found in the training set. We use datasets with 1% ratio of
bias-conflicting samples for in-depth analyses.
Implementation details. Following Nam et al. (2020)
and Lee et al. (2021), we use a multi-layer percep-
tron (MLP) which consists of three hidden layers for Col-
ored MNIST. For the other datasets except for BAR, we train
ResNet18 (He et al. 2015) with the random initialization.
Since BAR has an extremely small number of images com-
pared to other datasets, we utilize a pretrained ResNet18. We
set M=5, meaning that we pretrain five biased models (i.e.,
f∗
B1

, f∗
B1

, . . . , f∗
B5

). While all experiments are trained for
50K iterations, each f∗

B is pretrained for 0.5K iterations on
all datasets, requiring negligible amount of additional com-
putational costs. We set the confidence threshold τ for the
BCD as 0.99. Note that all the hyper-parameters are con-
stant across all datasets and bias ratios. We report the mean
of the best unbiased test set accuracy over five independent
trials. We include the remaining details of datasets and im-
plementation in the Supplementary.

Comparisons on Unbiased Test Sets
Table 1 compares the image classification accuracies of the
debiasing approaches on the unbiased test sets. As afore-
mentioned, we applied BiasEnsemble on the state-of-the-art
reweighting-based approaches, LfF (Nam et al. 2020) and
DisEnt (Lee et al. 2021). We found that using BiasEnsem-
ble for the two methods significantly improves the debiasing
performances in four datasets regardless of the bias sever-
ities. We also observe that applying BiasEnsemble brings
larger performance gain when evaluated with real-world
datasets compared to the synthetic dataset. For example, us-
ing BiasEnsemble on DisEnt shows 7.48% and 9.56% per-
formance gain on BFFHQ with 1% and 2% ratio of bias-
conflicting samples, respectively. Note that we could not
evaluate the debiasing methods requiring bias labels (LNL
and EnD) on BAR dataset since the dataset does not include
explicit bias labels.

Utilizing our approach on DisEnt outperforms Re-
Bias (Bahng et al. 2020) on BAR. BAR dataset is biased
towards the background which mainly contains the color
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Method
Colored MNIST BFFHQ Dogs & Cats BAR

0.5% 1.0% 2.0% 5.0% 0.5% 1.0% 2.0% 5.0% 1.0% 5.0% 1.0% 5.0%

Vanilla (He et al. 2015) ✗ ✗ 34.75 51.14 65.72 82.82 55.64 60.96 69.00 82.88 48.06 69.88 70.55 82.53

HEX (Wang et al. 2019) ✗ ✓ 42.25 47.02 72.82 85.50 56.96 62.32 70.72 83.40 46.76 72.60 70.48 81.20

LNL (Kim et al. 2019) ✓ ✓ 36.29 49.48 63.30 81.30 56.88 62.64 69.80 83.08 50.90 73.96 - -

EnD (Tartaglione, Barbano, and Grangetto 2021) ✓ ✓ 35.33 48.97 67.01 82.09 55.96 60.88 69.72 82.88 48.56 68.24 - -

ReBias (Bahng et al. 2020) ✗ ✓ 60.86 82.78 92.00 96.45 55.76 60.68 69.60 82.64 48.70 65.74 73.04 83.90

LfF (Nam et al. 2020) ✗ ✗ 63.55 76.81 84.18 89.65 65.19 69.24 73.08 79.80 71.72 84.32 70.16 82.95

DisEnt (Lee et al. 2021) ✗ ✗ 68.49 79.99 84.09 89.91 62.08 66.00 69.92 80.68 65.74 81.58 70.33 83.13

LfF + BE ✗ ✗ 69.70 81.17 85.20 90.04 67.36 75.08 80.32 85.48 81.52 88.60 73.36 83.87

DisEnt + BE ✗ ✗ 71.34 82.11 84.66 90.15 67.56 73.48 79.48 84.84 80.74 86.84 73.29 84.96

Table 1: Image classification accuracy on unbiased test sets with varying ratios of bias-conflicting samples. The cross and check
represent whether each model 1) uses bias labels during training and 2) requires predefined bias type. Best performing results
are marked in bold.
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Figure 4: Comparison of LfF trained 1) without BiasEnsemble (blue) and 2) with BiasEnsemble (red) on (a) Colored MNIST
and (b) BFFHQ. Each column corresponds to the ones in Fig. 2.

and texture bias. Since ReBias uses BagNet (Brendel and
Bethge 2019) which is a color- and texture-oriented model
to identify bias (i.e., leveraging a prior knowledge on the
bias type), it showed the state-of-the-art performance be-
fore using BiasEnsemble on existing reweighting-based ap-
proaches. However, even without such prior knowledge on
the bias type, applying BiasEnsemble on DisEnt outper-
forms ReBias regardless of bias severities.

For the Colored MNIST, ReBias utilizes four layers of
convolutional neural network while the other debiasing
methods use three layers of multi-layer perceptron. We in-
evitably use the convolutional neural network for ReBias
since it leverages a small receptive field of convolutional lay-
ers to capture the color bias. When comparing with the base-
lines using the same architecture, leveraging BiasEnsemble
on LfF and DisEnt achieve the state-of-the-art debiasing per-
formance on Colored MNIST.

Analysis
Amplified bias of fB . Similar to Fig. 2 which describes
the motivation of our work, we compare LfF trained 1)
without BiasEnsemble and 2) with BiasEnsemble in Fig. 4.

While achieving comparable or higher biased test set accu-
racy, fB with BiasEnsemble shows lower unbiased test set
accuracy compared to fB without applying BiasEnsemble.
This leads to increase the w(x)diff, the difference between
w(x) of bias-conflicting samples and that of bias-aligned
ones. Then, bias-conflicting samples are further emphasized
for training fD, improving the debiasing performance over-
all. Such improvement is valid in both synthetic (i.e., Col-
ored MNIST) and the real-world dataset (i.e., BFFHQ). This
visualization demonstrates that our proposed method indeed
improves debiasing performance of fD by further amplify-
ing bias of fB .

How to construct bias-amplified DA for debiasing. We
found two important factors when constructing DA: 1) dis-
carding sufficient number of bias-conflicting samples and 2)
maintaining a reasonable number of bias-aligned ones. To
understand how the data samples composing DA affects the
debiasing performance, Table 2 compares the debiasing per-
formances of LfF by adjusting the number of bias-aligned
and bias-conflicting samples in DA. In Table 2, # of B.A.
and # of B.C. indicate the remaining number of bias-aligned
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# of B.A. 100% 100% 100% 60% 20%
# of B.C. 100% 60% 20% 20% 20%

Colored MNIST 58.48 73.87 81.58 75.75 63.21
BFFHQ 62.10 73.96 79.36 75.88 69.12

Dogs&Cats 53.10 71.00 79.22 63.86 60.78

Table 2: Unbiased test set accuracies with adjusted num-
ber of bias-aligned samples (# of B.A.) and that of bias-
conflicting ones (# of B.C.) in the bias-amplified dataset DA

utilized for training fB of LfF with CE loss. First two rows
represent the ratio of samples in DA compared to D.

LfF LfF + BE

M - 1 5

Colored MNIST 76.81±4.56 79.51±1.56 81.17±0.68

BFFHQ 69.24±2.07 71.52±2.68 75.08±2.29

Dogs & Cats 71.72±4.56 76.98±6.63 81.52±1.13

BAR 70.16±0.77 71.63±1.59 73.36±0.97

Table 3: Unbiased test set accuracies on 1) LfF, 2) applying
our method on LfF with a single BCD and 3) multiple BCDs.
M indicates the number of BCDs when using our method.

samples and that of bias-conflicting samples in DA, respec-
tively, computed in ratio compared to the original training
set. For example, in the case of adjusted ratios of (20%,
20%), 50000 bias-aligned samples and 100 bias-conflicting
samples in D are adjusted to 10000 and 20 in DA, respec-
tively. We trained fB by using the adjusted dataset while
using the original training set for training fD.

When fixing the number of bias-aligned samples constant
(100%), the debiasing performance improves as the number
of bias-conflicting samples decreases (from 100% to 20%).
The main reason is that the bias-conflicting samples, pre-
venting fB from learning the bias attribute, are discarded.
This demonstrates that discarding sufficient number of bias-
conflicting samples is important for improving the debias-
ing performance which is straight-forward. On the other
hand, we also observe that debiasing performance deterio-
rates when the number of bias-aligned samples decreases
(from 100% to 20%) with the constant number of bias-
conflicting samples (20%). This indicates that fB also re-
quires a sufficient number of bias-aligned samples to learn
the bias attributes. We want to emphasize that simply dis-
carding numerous number of training samples for the pur-
pose of eliminating entire bias-conflicting samples may fail
to bring large performance gain since it also filters out bias-
aligned ones, those important for learning a bias. This analy-
sis demonstrates the importance of considering both factors
when constructing DA. In the Supplementary, along with the
standard deviation, we gradually change the adjusted num-
ber of samples (e.g., 80%, 40%) to show the detailed ten-
dency of change in debiasing performance with respect to
the adjusted number of samples.
Superiority of multiple BCDs over single BCD. We
compare the debiasing performance of using BiasEnsemble
with a single BCD (M=1) and multiple BCDs (M=5) on LfF

# of B.A.(%)↑ # of B.C.(%)↓
Dataset M=1 M=5 M=1 M=5

Colored MNIST 84.10±11.01 99.96±0.03 4.64±0.79 1.42±0.78

BFFHQ 84.51±4.34 92.22±0.26 24.47±4.63 24.37±3.07

Dogs&Cats 85.89±2.61 88.60±1.02 12.00±6.25 9.50±3.75

BAR 97.24±0.27 98.39±0.19 60.00±13.24 51.42±5.34

Table 4: The remaining number of bias-aligned samples (#
of B.A.) and bias-conflicting ones (# of B.C.) in the bias-
amplified dataset DA after applying our method. The re-
maining numbers are shown in ratios of samples compared
to the original training dataset D.

in Table 3. While using a single BCD brings performance
gain compared to LfF, the standard deviation of the perfor-
mance is larger when compared to using multiple BCDs. For
example, using a single BCD to train LfF shows the standard
deviation of 6.63% on Dogs & Cats dataset. This is due to
the fact that we rely on a single BCD for constructing DA.
When the single BCD fails to be overfitted to the bias, it
fails to filter out the bias-conflicting samples for building
DA. However, such an issue is mitigated when using multi-
ple BCDs since they better capture the bias attribute by con-
sidering multiple visual attributes of the bias, compared to
using a single BCD. We provide the further analysis on the
performance variations of single BCD and multiple BCDs in
Supplementary.

Such result is mainly due to the number of bias-aligned
samples and bias-conflicting ones included in DA, as
demonstrated in Table 2. Table 4 shows the remaining num-
ber of bias-aligned samples and bias-conflicting samples in
DA after applying BiasEnsemble, each computed in ratio
compared to the original training dataset D. We observe that
utilizing multiple BCDs 1) maintains a significant number
of bias-aligned samples and 2) further reduces the number
of bias-conflicting samples compared to using a single BCD.
Additionally, the standard deviations of the remaining num-
ber of samples are considerably larger when using the single
BCD, demonstrating that a single BCD fails to fully capture
the bias attribute at a stable level.

Conclusion
In this work, we propose a biased sample selection method,
BiasEnsemble, in order to train fB to maximally exploit the
bias attribute. Our main finding is that how well fB is over-
fitted to the bias influences the debiasing performance of
fD which was overlooked in the previous debiasing studies.
While training fB to overfit to the bias, the bias-conflicting
samples interfere with learning bias for fB , so we filter
them out to construct a refined bias-amplified dataset DA.
To do so, we utilize differently randomly initialized biased
models to consider diverse visual attributes to better cap-
ture the bias attribute and discard the bias-conflicting sam-
ples for constructing DA. Such a simple approach improves
the recent state-of-the-art reweighting-based debiasing ap-
proaches. We believe that we shed light on an important de-
biasing component fB which has been relatively overlooked
compared to fD, and provide insightful findings for future
researchers in debiasing.
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