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Abstract
We study the problem of training and certifying adversarially
robust quantized neural networks (QNNs). Quantization is a
technique for making neural networks more efficient by run-
ning them using low-bit integer arithmetic and is therefore
commonly adopted in industry. Recent work has shown that
floating-point neural networks that have been verified to be
robust can become vulnerable to adversarial attacks after quan-
tization, and certification of the quantized representation is
necessary to guarantee robustness. In this work, we present
quantization-aware interval bound propagation (QA-IBP), a
novel method for training robust QNNs. Inspired by advances
in robust learning of non-quantized networks, our training
algorithm computes the gradient of an abstract representation
of the actual network. Unlike existing approaches, our method
can handle the discrete semantics of QNNs. Based on QA-
IBP, we also develop a complete verification procedure for
verifying the adversarial robustness of QNNs, which is guar-
anteed to terminate and produce a correct answer. Compared
to existing approaches, the key advantage of our verification
procedure is that it runs entirely on GPU or other accelerator
devices. We demonstrate experimentally that our approach
significantly outperforms existing methods and establish the
new state-of-the-art for training and certifying the robustness
of QNNs.

Introduction
Quantized neural networks (QNNs) are neural networks that
represent their weights and compute their activations using
low-bit integer variables. QNNs significantly improve the la-
tency and computational efficiency of inferencing the network
for two reasons. First, the reduced size of the weights and
activations allows for a much more efficient use of memory
bandwidth and caches. Second, integer arithmetic requires
less silicon area and less energy to execute than floating-
point operations. Consequently, dedicated hardware for run-
ning QNNs can be found in GPUs, mobile phones, and au-
tonomous driving computers.

Adversarial attacks are a well-known vulnerability of neu-
ral networks that raise concerns about their use in safety-
critical applications (Szegedy et al. 2013; Goodfellow, Shlens,
and Szegedy 2014). These attacks are norm-bounded input
perturbations that make the network misclassify samples,
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despite the original samples being classified correctly and
the perturbations being barely noticeable by humans. For
example, most modern image classification networks can
be fooled when changing each pixel value of the input im-
age by a few percent. Consequently, researchers have tried
to train networks that are provably robust against such at-
tacks. The two most common paradigms of training robust
networks are adversarial training (Madry et al. 2018), and
abstract interpretation-based training (Mirman, Gehr, and
Vechev 2018; Wong and Kolter 2018). Adversarial training
and its variations perturb the training samples with gradient
descent-based adversarial attacks before feeding them into
the network (Madry et al. 2018; Zhang et al. 2019; Wu, Xia,
and Wang 2020; Lechner et al. 2021). While this improves
the robustness of the trained network empirically, it provides
no formal guarantees of the network’s robustness due to the
incompleteness of gradient descent-based attacking meth-
ods, i.e., gradient descent might not find all attacks. Abstract
interpretation-based methods avoid this problem by overap-
proximating the behavior of the network in a forward pass
during training. In particular, instead of directly training the
network by computing gradients with respect to concrete sam-
ples, these algorithms compute gradients of bounds obtained
by propagating abstract domains. While the learning process
of abstract interpretation-based training is much less stable
than a standard training procedure, it provides formal guar-
antees about the network’s robustness. The interval bound
propagation (IBP) method (Gowal et al. 2019) effectively
showed that the learning process with abstract interpretation
can be stabilized when gradually increasing the size of the
abstract domains throughout the training process.

Previous work has considered adversarial training and IBP
for floating-point arithmetic neural networks, however ro-
bustness of QNNs has received comparatively much less at-
tention. Since it was demonstrated by (Giacobbe, Henzinger,
and Lechner 2020) that neural networks may become vul-
nerable to adversarial attacks after quantization even if they
have been verified to be robust prior to quantization, one
must develop specialized training and verification procedures
in order to guarantee robustness of QNNs. Previous works
have proposed several robustness verification procedures for
QNNs (Giacobbe, Henzinger, and Lechner 2020; Baranowski
et al. 2020; Henzinger, Lechner, and Žikelić 2021), but none
of them consider algorithms for learning certifiably robust
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QNNs. Furthermore, the existing verification procedures are
based on constraint solving and cannot be run on GPU or
other accelerating devices, making it much more challenging
to use them for verifying large QNNs.

In this work, we present the first abstract interpretation
training method for the discrete semantics of QNNs. We
achieve this by first defining abstract interval arithmetic se-
mantics that soundly over-approximate the discrete QNN se-
mantics, giving rise to an end-to-end differentiable represen-
tation of a QNN abstraction. We then instantiate quantization-
aware training techniques within these abstract interval arith-
metic semantics in order to obtain a procedure for training
certifiably robust QNNs.

Next, we develop a robustness verification procedure
which allows us to formally verify QNNs learned via our
IBP-based training procedure. We prove that our verification
procedure is complete, meaning that for any input QNN it
will either prove its robustness or find a counterexample. This
contrasts the case of abstract interpretation verification pro-
cedures for neural networks operating over real arithmetic
which are known to be incomplete (Mirman, Baader, and
Vechev 2021a). The key advantage of our training and verifi-
cation procedures for QNNs is that it can make use of GPUs
or other accelerator devices. In contrast, the existing verifi-
cation methods for QNNs are based on constraint solving so
cannot be run on GPU.

Finally, we perform an experimental evaluation showing
that our method outperforms existing state-of-the-art certified
L∞-robust QNNs. We also elaborate on the limitations of
our training method by highlighting how the low precision
of QNNs makes IBP-based training difficult.

We summarize our contribution in three points:
• We introduce the first learning procedure for learn-

ing robust QNNs. Our learning procedure is based on
quantization-aware training and abstract interpretation
method.

• We develop the first complete robustness verification al-
gorithm for QNNs (i.e., one that always terminates with
the correct answer) that runs entirely on GPU or other
neural network accelerator devices and make it publicly
available.

• We experimentally demonstrate that our method advances
the state-of-the-art on certifying L∞-robustness of QNNs.

Related Work
Abstract interpretations for neural networks Abstract in-
terpretation is a method for overapproximating the semantics
of a computer program in order to make its formal analysis
feasible (Cousot and Cousot 1977). Abstract interpretation
executes program semantics over abstract domains instead
of concrete program states. The method has been adapted to
the robustness certification of neural networks by computing
bounds on the outputs of neural networks (Wong and Kolter
2018; Gehr et al. 2018; Tjeng, Xiao, and Tedrake 2019). For
instance, polyhedra (Katz et al. 2017; Ehlers 2017; Gehr et al.
2018; Singh et al. 2019; Tjeng, Xiao, and Tedrake 2019),
intervals (Gowal et al. 2019) , hybrid automata (Xiang, Tran,
and Johnson 2018), zonotopes (Singh et al. 2018), convex

relaxations (Dvijotham et al. 2018; Zhang et al. 2020; Wang
et al. 2021), and polynomials (Zhang et al. 2018b) have been
used as abstract domains in the context of neural network
verification. Abstract interpretation has been shown to be
most effective for verifying neural networks when directly
incorporating them into gradient descent-based training algo-
rithms by optimizing the obtained output bounds as the loss
function (Mirman, Gehr, and Vechev 2018; Wong and Kolter
2018; Gowal et al. 2019; Zhang et al. 2020).

Most of the abstract domains discussed above exploit the
piecewise linear structure of neural networks, e.g., linear
relaxations such as polytopes and zonotopes. However, linear
relaxations are less suited for QNNs due to their piecewise-
constant discrete semantics.

Verification of quantized neural networks The earliest
work on the verification of QNNs has focused on binarized
neural networks (BNNs), i.e., 1-bit QNNs (Hubara et al.
2016). In particular, (Narodytska et al. 2018) and (Cheng
et al. 2018) have reduced the problem of BNN verification
to boolean satisfiability (SAT) instances. Using modern SAT
solvers, the authors were able to verify formal properties of
BNNs. (Jia and Rinard 2020) further improve the scalability
of BNNs by specifically training networks that can be handled
by SAT-solvers more efficiently. (Amir et al. 2021; Lazarus
and Kochenderfer 2022) developed satisfiability modulo the-
ories (SMT) approaches for BNN verification.

Verification for many bit QNNs was first reported in (Gia-
cobbe, Henzinger, and Lechner 2020) by reducing the QNN
verification problem to quantifier-free bit-vector satisfiabil-
ity modulo theory (QF_BV SMT). The SMT encoding was
further improved in (Henzinger, Lechner, and Žikelić 2021)
by removing redundancies from the SMT formulation. (Bara-
nowski et al. 2020) introduced fixed-point arithmetic SMT
to verify QNNs. The works of (Sena et al. 2021, 2022) have
studied SMT-based verification for QNNs as well. Recently,
(Mistry, Saha, and Biswas 2022) proposed encoding of the
QNN verification problem into a mixed-integer linear pro-
gramming (MILP) instance. IntRS (Lin et al. 2021) considers
the problem of certifying adversarial robustness of quantized
neural networks using randomized smoothing. IntRS is lim-
ited to L2-norm bounded attacks and only provides statistical
instead of formal guarantees compared to our approach.

Decision procedures for neural network verification
Early work on the verification of floating-point neural net-
works has employed off-the-shelf tools and solvers. For in-
stance, (Pulina and Tacchella 2012; Katz et al. 2017; Ehlers
2017) employed SMT-solvers to verify formal properties of
neural networks. Similarly, (Tjeng, Xiao, and Tedrake 2019)
reduces the verification problem to mixed-integer linear pro-
gramming instances. Procedures better tailored to neural net-
works are based on branch and bound algorithms (Bunel
et al. 2018). In particular, these algorithms combine incom-
plete verification routines (bound) with divide-and-conquer
(branch) methods to tackle the verification problem. The
speedup advantage of these methods comes from the fact that
the bounding methods can be easily implemented on GPU
and other accelerator devices (Serre et al. 2021; Wang et al.
2021).
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Quantization-aware training There are two main strate-
gies for training QNNs: post-training quantization and
quantization-aware training (Krishnamoorthi 2018). In post-
training quantization, a standard neural network is first
trained using floating-point arithmetic, which is then trans-
lated to a quantized representation by finding suitable fixed-
point format that makes the quantized interpretation as close
to the original network as possible. Post-training quantization
usually results in a drop in the accuracy of the network with
a magnitude that depends on the specific dataset and network
architecture.

To avoid a significant reduction in accuracy caused by
the quantization in some cases, quantization-aware training
(QAT) models the imprecision of the low-bit fixed-point arith-
metic already during the training process, i.e., the network
can adapt to a quantized computation during training. The
rounding operations found in the semantics of QNNs are non-
differentiable computations. Consequently, QNNs cannot be
directly trained with stochastic gradient descent. Researchers
have come up with several ways of circumventing the prob-
lem of non-differentiable rounding. The most common ap-
proach is the straight-through gradient estimator (STE) (Ben-
gio, Léonard, and Courville 2013; Hubara et al. 2017). In
the forward pass of a training step, the STE applies rounding
operations to computations involved in the QNN, i.e., the
weights, biases, and arithmetic operations. However, in the
backward pass, the rounding operations are removed such
that the error can backpropagate through the network. The
approach of (Gupta et al. 2015) uses stochastic rounding that
randomly selects one of the two nearest quantized values for
a given floating-point value. Relaxed quantization (Louizos
et al. 2019) generalizes stochastic rounding by replacing the
probability distribution over the nearest two values with a
distribution over all possible quantized values. DoReFA-Net
(Zhou et al. 2016) combines the straight-through gradient
estimator and stochastic rounding to train QNN with high ac-
curacy. The authors observed that quantizing the first and last
layer results in a significant drop in accuracy, and therefore
abstain from quantizing these two layers.

Instead of having a fixed pre-defined quantization range,
i.e., fixed-point format, more recent QAT schemes allow
learning the quantization range. PACT (Choi et al. 2018)
treats the maximum representable fixed-point value as a free
variable that is learned via stochastic gradient descent us-
ing a straight-through gradient estimation. The approach of
(Jacob et al. 2018) keeps a moving average of the values
ranges during training and adapts the quantization range ac-
cording to the moving average. LQ-Nets (Zhang et al. 2018a)
learn an arbitrary set of quantization levels in the form of a
set of coding vectors. While this approach provides a better
approximation of the real-valued neural network than fixed-
point-based quantization formats, it also prevents the use of
efficient integer arithmetic to run the network. MobileNet
(Howard et al. 2019) is a specialized network architecture
family for efficient inference on the ImageNet dataset and
employs quantization as one technique to achieve this target.
HAWQ-V3 (Yao et al. 2021) dynamically assigns the number
of bits of each layer to either 4-bit, 8-bit, or 32-bit depending
on how numerically sensitive the layer is. EfficientNet-lite

(Tan and Le 2019) employs a neural architecture search to
automatically find a network architecture that achieves high
accuracy on the ImageNet dataset while being fast for infer-
ence on a CPU.

Preliminaries
Quantized neural networks (QNNs) Feedforward neural
networks are functions fθ : Rn → Rm that consist of several
sequentially composed layers fθ = l1 ◦ . . . ◦ ls, where layers
are parametrized by the vector θ of neural network parame-
ters. Quantization is an interpretation of a neural network fθ
that evaluates the network over a fixed point arithmetic and
operates over a restricted set of bitvector inputs (Smith et al.
1997), e.g. 4 or 8 bits. Formally, given an admissible input
set I ⊆ Rn, we define an interpretation map

J·KI : (Rn → Rm)→ (I → Rm),

which maps a neural network to its interpretation operat-
ing over the input set I. For instance, if I = Rn then
JfθKR is the idealized real arithmetic interpretation of fθ,
whereas JfKfloat32 denotes its floating-point 32-bit imple-
mentation (Kahan 1996). Given k ∈ N, the k-bit quantization
is then an interpretation map J·Kint-k which uses k-bit fixed-
point arithmetic. We say that JfθKint-k is a k-bit quantized
neural network (QNN).

The semantics of the QNN JfθKint-k are defined as follows.
Let [Z]k = {0, 1}k be the set of all bit-vectors of bit-width k.
The QNN JfθKint-k then also consists of sequentially com-
posed layers JfθKint-k = l1 ◦ . . . ◦ ls, where now each layer
is a function li : [Z]ni

k → [Z]ni+1

k that operates over k-bit
bitvectors and is defined as follows:

x′
i =

ni∑
j=1

wijxj + bi, (1)

x′′
i = round(x′

i,Mi) = ⌊x′
i ·Mi⌋, and (2)

yi = σi(min{2Ni − 1, x′′
i }), (3)

Here, wi,j ∈ [Z]ni

k and bi ∈ [Z]ni

k for each 1 ≤ j ≤ ni and
1 ≤ i ≤ n0 denote the weights and biases of f which are
also bitvectors of appropriate dimension. Note that it is a task
of the training procedure to ensure that trained weights and
biases are bitvectors, see below. In eq. (1), the linear map
defined by weights wi,j and biases bi is applied to the input
values xj . Then, eq. (2) multiplies the result of eq. (1) by Mi

and takes the floor of the obtained result. This is done in order
to scale the result and round it to the nearest valid fixed-point
value, for which one typically uses Mi of the form 2−k for
some integer k. Finally, eq. (3) applies an activation function
σi to the result of eq. (2) where the result is first “cut-off”
if it exceeds 2Ni − 1, i.e., to avoid integer overflows, and
then passed to the activation function. We restrict ourselves
to monotone activation functions, which will be necessary for
our IBP procedure to be correct. This is still a very general
assumption which includes a rich class of activation function,
e.g. ReLU, sigmoid or tanh activation functions. Furthermore,
similarly to most quantization-aware training procedures our
method assumes that it is provided with quantized versions
of these activation functions that operate over bit-vectors.
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Adversarial robustness for QNNs We now formalize the
notion of adversarial robustness for QNN classifiers. Let
JfθKint-k : [Z]nk → [Z]mk be a k-bit QNN. It naturally defines
a classifier with m classes by assuming that it assigns to an
input x ∈ [Z]nk a label of the maximal output neuron on input
value x, i.e. y = class(x) = argmax1≤i≤mJfθKint-k(x)[i]
with JfθKint-k(x)[i] being the value of the i-th output neuron
on input value x. If the maximum is attained at multiple
output neurons, we assume that argmax picks the smallest
index 1 ≤ i ≤ m for which the maximum is attained.

Intuitively, a QNN is adversarially robust at a point x if
it assigns the same class to every point in some neighbour-
hood of x. Formally, given ϵ > 0, we say that JfθKint-k is
ϵ-adversarially robust at point x if

∀x′ ∈ [Z]nk . ||x− x′||∞< ϵ⇒ class(x′) = class(x),

where ||·||∞ denotes the L∞-norm. Then, given a finite
dataset D = {(x1, y1), . . . , (x|D|, y|D|)} with xi ∈ [Z]nk
and yi ∈ [Z]mk for each 1 ≤ i ≤ |D|, we say that JfθKint-k
is ϵ-adversarially robust with respect to the dataset D if it is
ϵ-adversarially robust at each datapoint in D.

Quantization-aware Interval Bound
Propagation

In this section, we introduce an end-to-end differentiable
abstract interpretation method for training certifiably robust
QNNs. We achieve this by extending the interval bound prop-
agation (IBP) method of (Gowal et al. 2019) to the discrete
semantic of QNNs. Our resulting quantization-aware interval
bound propagation method (QA-IBP) trains an interval arith-
metic abstraction of a QNN via stochastic gradient descent by
propagating upper and lower bounds for each layer instead
of concrete values.

First, we replace each layer li with two functions li, li:
[Z]ni

k → [Z]n0

k defined as follows:

µj =
xj + xj

2
rj =

xj − xj

2
(4)

µi =

ni∑
j=1

wijµj + bi ri =

ni∑
j=1

|wij |rj (5)

x′
i = µi − ri x′

i = µi + ri (6)

x′′
i = round(x′

i, ki) = ⌊x′
i ·Mi⌋ (7)

x′′
i = round(x′

i, ki) = ⌊x′
i ·Mi⌋ (8)

yi = max{0,min{2Ni − 1, x′′
i }} (9)

yi = max{0,min{2Ni − 1, x′′
i }}. (10)

As with standard QNNs, wi,j ∈ [Z]ni

k and bi ∈ [Z]ni

k for
each 1 ≤ j ≤ ni and 1 ≤ i ≤ n0 denote the weights
and biases of f which are also bit-vectors of appropriate
dimension. By the sequential composition of all layers of the
QNN we get the IBP representation of the QNN in the form
of two functions JfθKint-k and JfθKint-k. For a given input
sample x and ϵ > 0 we can use the IBP representation of
JfθKint-k to potentially prove the adversarial robustness of
the QNN. In particular, the input sample defines an abstract

x x

y y
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dot

dot+ | · |

biases weights

basis change
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x x

y y
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dot

dot+ | · |
quant
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quant
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A) B)

Figure 1: Illustration of how the interval bound propagation
training graph is affected by quantization-aware training. A)
Standard IBP inference graph. B) IBP inference path with
fake quantization operations inserted to model quantized
weights, biases, and computations.

interval domain (x, x) with x = x − ϵ and x = x + ϵ.
Next, we propagate the abstract domains through the IBP
representation of the network to obtain output bounds y =

JfθKint-k(x, x) and y = JfθKint-k(x, x). Finally, we know
that JfθKint-k is ϵ-adversarially robust at point x if

yi > yj , for i = class(x) and ∀j ̸= class(x). (11)

End-to-end differentiation We modify the IBP represen-
tation of QNNs described above to allow an end-to-end dif-
ferentiation necessary for a stochastic gradient descent-based
learning algorithm. In particular, first, we apply the straight-
through gradient estimator to propagate the error backward
through the rounding operations in Eq. 8. We do this by re-
placing the non-differentiable rounding operation with the
fake quantization function

fake_quant(xi) := round(xi, ki) (12)
∂ fake_quant(xi)

∂xi
:= 1. (13)

We also add fake quantization operations around the weights
and biases in Eq. 6. The modified training graph is visualized
in Figure 1.

For a single training sample (x, j), we define the per-
sample training loss

L(y, y, j) =
∑
i̸=j

(yi − yj)1[yj − yi ≤ 0], (14)

where y, y are the QA-IBP output bounds QNN with respect
to the input domain (x− ϵ, x+ ϵ) and j corresponds to the
label, i.e., class j. The loss term encourages the QA-IBP to
produce output bounds that prove adversarial robustness of
the QNN JfθKint-k with respect to the input x and adversarial
radius ϵ.
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Existence of robust QNNs We conclude this section by
presenting an interesting result on the existence of robust
QNNs. In particular, given ϵ > 0 and a finite dataset of 1-
dimensional bit-vectors whose any two distinct datapoints
are at least 2ϵ away, we prove that there exists a QNN with
ReLU activations that is ϵ-robust with respect to the dataset.
Furthermore, we provide an upper bound on the number of
neurons that the QNN must contain. We assume 2ϵ distance
simply for the ϵ-neighbourhoods of datapoints to be disjoint
so that robustness cannot impose contradicting classification
conditions.

Note that this result does not hold for real arithmetic feed-
forward neural networks with ReLU or any other continuous
activation functions. Indeed, it was observed in (Mirman,
Baader, and Vechev 2021b, Corollary 5.12) that a dataset
{(−2,−1), (0, 1), (2,−1)} cannot be 1-robustly classified
by a feed-forward neural network which uses continuous
activation functions. The intuition behind this impossibility
result for real arithmetic networks is that a classifier would
have to be a continuous function that correctly classifies all
points in some open neighbourhoods of x = −1 and x = 1.

Theorem 1. Let ϵ > 0 and let D =
{(x1, y1), . . . , (x|D|, y|D|)} with xi ∈ [Z]1k and yi ∈ [Z]1k
for each 1 ≤ i ≤ |D|. Suppose that ||xi − xj ||∞≥ 2ϵ for
each i ̸= j. Then, there exists a QNN JfθKint-k which is
ϵ-robust with respect to the dataset D and which consists of
O(|D|·⌈ϵ · 2k + 1⌉) neurons.

The proof of Theorem 1 is provided in the extended version
of the paper (Lechner et al. 2022). It starts with an observation
that the set Bϵ(xi) = {x′ ∈ [Z]1k | ||x′ − xi||∞< ϵ} is finite
and consists of at most ⌈2ϵ · 2k + 1⌉ bit-vectors for each 1 ≤
i ≤ |D|. Hence, constructing a QNN JfθKint-k that is ϵ-robust
with respect to the dataset D is equivalent to constructing
a QNN that correctly classifies D′ = ∪|D|

i=1{(x′, yi) | x′ ∈
Bϵ(xi)} which consists of O(|D|·⌈ϵ · 2k + 1⌉) datapoints.
In the extended version of the paper (Lechner et al. 2022),
we then design the QNN JfθKint-k that correctly classifies
a dataset and consists of at most linearly many neurons in
the dataset size. Our construction also implies the following
corollary.

Corollary 1. LetD = {(x1, y1), . . . , (x|D|, y|D|)}with xi ∈
[Z]1k and yi ∈ [Z]1k for each 1 ≤ i ≤ |D|. Then, there
exists a QNN JfθKint-k which correctly classifies the dataset,
i.e. JfθKint-k(xi) = yi for each 1 ≤ i ≤ |D|, and which
consists of O(|D|) neurons.

A Complete Decision Procedure for QNN
Verification

In the previous section, we presented a quantization-aware
training procedure for QNNs with robustness guarantees
which was achieved by extending IBP to quantized neural
network interpretations. We now show that IBP can also be
used towards designing a complete verification procedure for
already trained feed-forward QNNs. By completeness, we
mean that the procedure is guaranteed to return either that
the QNN is robust or to produce an adversarial attack.

There are two important novel aspects of the verification
procedure that we present in this section. First, to the best
of our knowledge this is the first complete robustness veri-
fication procedure for QNNs that is applicable to networks
with non-piecewise linear activation functions. Existing con-
straint solving based methods that reduce verification to SMT-
solving are complete but they only support piecewise linear
activation fucntions such as ReLU (Krizhevsky and Hinton
2010). These could in theory be extended to more general
activation functions by considering more expressive satisfi-
ability modulo theories (Clark and Cesare 2018), however
this would lead to inefficient verification procedures and our
experimental results in the following section already demon-
strate the significant gain in scalability of our IBP-based
methods as opposed to SMT-solving based methods for ReLU
networks. Second, we note that while our IBP-based verifica-
tion procedure is complete for QNNs, in general it is known
that existing IBP-based verification procedures for real arith-
metic neural networks are not complete (Mirman, Baader,
and Vechev 2021a). Thus, our result leads to an interesting
contrast in IBP-based robustness verification procedures for
QNNs and for real arithmetic neural networks.

Verification procedure We now describe our robustness
verification procedure for QNNs. Its pseudocode is shown
in Algorithm 1. Since verifying ϵ-robustness of a QNN with
respect to some finite dataset D and ϵ > 0 is equivalent
to verifying ϵ-robustness of the QNN at each datapoint in
D, Algorithm 1 only takes as inputs a QNN JfθKint-k that
operates over bit-vectors of bit-width k, a single datapoint
x ∈ [Z]nk and a robustness radius ϵ > 0. It then returns either
ROBUST if JfθKint-k is verified to be ϵ-robust at x ∈ [Z]nk , or
VULNERABLE if an adversarial attack ||x′ − x||∞< ϵ with
class(x′) = class(x) is found.

The algorithm proceeds by initializing a stack D of abstract
intervals to contain a single element {(x− ϵ · 1, x+ ϵ · 1)},
where 1 ∈ [Z]nk is a unit bit-vector of bit-width k. Intuitively,
D contains all abstract intervals that may contain concrete
adversarial examples but have not yet been processed by the
algorithm. The algorithm then iterates through a loop which
in each loop iteration processes the top element of the stack.
Once the stack is empty and the last loop iteration terminates,
Algorithm 1 returns ROBUST.

In each loop iteration, Algorithm 1 pops an abstract inter-
val (x, x) from D and processes it as follows. First, it uses
IBP for QNNs that we introduced before to propagate (x, x)
in order to compute an abstract interval (y, y) that overap-
proximates the set of all possible outputs for a concrete input
point in (x, x). The algorithm then considers three cases.
First, if (y, y) does not violate Equation (11) which charac-
terizes violation of robustness by a propagated abstract inter-
val, Algorithm 1 concludes that the abstract interval (x, x)
does not contain an adversarial example and it proceeds to
processing the next element of D. Second, if (y, y) violates
Equation (11), the algorithm uses projected gradient descent
restricted to (x, x) to search for an adversarial example and
returns VULNERABLE if found. Note that the adversarial
attack is generated with respect to the quantization-aware
representation of the network, thus ensuring that the input
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Algorithm 1: QNN robustness verification procedure

1: Input QNN JfθKint-k, datapoint x ∈ [Z]nk , robustness
radius ϵ > 0

2: Output ROBUST or VULNERABLE
3: D ← {(x− ϵ · 1, x+ ϵ · 1)}
4: while D ̸= {} do
5: (x, x)← pop item from D

6: (y, y) ← JfθKint-k(x, x), JfθKint-k(x, x) propa-
gated via IBP

7: if (y, y) violates Equation (11) then
8: Try to generate adversarial example using pro-

jected gradient descent restricted to (x, x)
9: if adversarial example found then

10: return VULNERABLE
11: else
12: (x′, x′), (x′′, x′′) ← partition of (x, x) into

two abstract subintervals
13: D ← D ∪ {(x′, x′), (x′′, x′′)}
14: end if
15: end if
16: end while
17: return ROBUST

space corresponds to valid quantized inputs. Third, if (y, y)
violates Equation (11) but the adversarial attack could not
be found by projected gradient descent, the algorithm refines
the abstract interval (x, x) by splitting it into two smaller
subintervals. This is done by identifying

i∗ = argmax1≤i≤n(x[i]− x[i])

and splitting the abstract interval (x, x) along the i∗-th dimen-
sion into two abstract subintervals (x′, x′), (x′′, x′′), which
are both added to the stack D.

Correctness, termination and completeness The follow-
ing theorem establishes that Algorithm 1 is complete, that it
terminates on every input and that it is a complete robustness
verification procedure. The proof is provided in the extended
version of the paper (Lechner et al. 2022).

Theorem 2. If Algorithm 1 returns ROBUST then JfθKint-k
is ϵ-robust at x ∈ [Z]nk . On the other hand, if Algorithm 1
returns VULNERABLE then there exists an adversarial at-
tack ||x′ − x||∞< ϵ with class(x′) ̸= class(x). Therefore,
Algorithm 1 is correct. Furthermore, Algorithm 1 terminates
and is guaranteed to return an output on any input. Since
Algorithm 1 is correct and it terminates, we conclude that it
is also complete.

Experiments
We perform an experimental evaluation to assess the effective-
ness of our quantization-aware interval bound propagation
(QA-IBP). In particular, we first use our training procedure to
train two QNNs. We then use our complete verification pro-
cedure to verify robustness of trained QNNs and we compare
our method to the existing verification methods for QNNs of
(Giacobbe, Henzinger, and Lechner 2020) and (Henzinger,

Lechner, and Žikelić 2021). Our full experimental setup and
code can be found on GitHub 1.

We train two CNNs with QA-IBP using an 8-bit quantiza-
tion scheme for both weights and activations on the MNIST
(LeCun et al. 1998) and Fashion-MNIST (Xiao, Rasul, and
Vollgraf 2017) datasets. We quantize all layers; however, we
note that our approach is also compatible with mixing quan-
tized and non-quantized layers. Our MNIST network consists
of five convolutional layers, followed by two fully-connected
layers. Our Fashion-MNIST network contains three convo-
lutional layers and two fully-connected layers. We apply a
fixed pre-defined fixed-point format on both weights and ac-
tivations. Further details on the network architectures can be
found in the extended version of the paper (Lechner et al.
2022). We use the Adam optimizer (Kingma and Ba 2015)
with a learning rate of 10−4 with decoupled weight decay
of 10−4 (Loshchilov and Hutter 2019) and a batch size of
512. We train our networks for a total of 5,000,000 gradient
steps on a single GPU. We linearly scale the value of ϵ during
the QA-IBP training from 0 to 4 and apply the elision of
the last layer optimization as reported in (Gowal et al. 2019).
We pre-train our networks for 5000 steps in their non-IBP
representation with a learning rate of 5 · 10−4.

After training, we certify all test samples using Algorithm
1 with a timeout of 20s per sample. We certify for L∞-
robustness with radii 1 and 4 to match the experimental setup
of (Henzinger, Lechner, and Žikelić 2021). We report and
compare the certified robust accuracy of the trained networks
to the values reported in (Henzinger, Lechner, and Žikelić
2021).

The results in Table 1 demonstrate that our QA-IBP signif-
icantly improves the certified robust accuracy for QNNs on
both datasets.

Regarding the runtime of the verification step, both (Gia-
cobbe, Henzinger, and Lechner 2020) and (Henzinger, Lech-
ner, and Žikelić 2021) certified a smaller model compared
to our evaluation. In particular, (Giacobbe, Henzinger, and
Lechner 2020) report a mean runtime of their 8-bit model
to be over 3 hours, and (Henzinger, Lechner, and Žikelić
2021) report the mean runtime of their 6-bit model to be 90
and 49 seconds for MNIST/Fashion-MNIST, respectively.
Conversely, our method was evaluated with a timeout of 20
seconds and tested on larger networks than the two existing
approaches, showing the efficiency of our approach.

Ablation Analysis
In this section, we assess the effectiveness of Algorithm 1 for
certifying robustness compared to an incomplete verification
based on the QA-IBP output bounds alone. In particular, we
perform an ablation and compare Algorithm 1 to an incom-
plete verification baseline. Our baseline consists of checking
the bounds obtained by QA-IBP as an incomplete verifier
combined with projected gradient descent (PGD) as an incom-
plete falsifier, i.e., we try to certify robustness via QA-IBP
and simultaneously try to generate an adversarial attack using
PGD. In particular, this baseline resembles a version of Algo-
rithm 1 without any branching into subdomains. We carry our

1https://github.com/mlech26l/quantization_aware_ibp
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Method MNIST Fashion-MNIST
ϵ = 0 ϵ = 1 ϵ = 4 ϵ = 0 ϵ = 1 ϵ = 4

QF_BV SMT (Giacobbe, Henzinger, and Lechner 2020) 97.1% 92% 0% 85.6% 44% 0%
QF_BV SMT (Henzinger, Lechner, and Žikelić 2021) 97.1% 99%∗ 53% 85.6% 76% 36%
QA-IBP (ours) 99.2% 98.8% 95.6% 86.3% 80.0% 59.8%

Table 1: Certified robust accuracy of a convolutional neural network trained with QA-IBP compared to existing methods for
certifying L∞-robustness of quantized neural networks reported in the literature. ∗ Note that (Henzinger, Lechner, and Žikelić
2021) certified only a subset of the test set due to a high per-sample runtime of their approach. Due to this choice they reported a
higher ϵ = 1 robust accuracy than clean accuracy.

CIFAR-10
Weight decay ϵ = 0 ϵ = 1 ϵ = 4

1 · 10−4 30.0% 28.4% 22.4%
5 · 10−5 39.6% 34.1% 20.6%
1 · 10−5 83.1% 0% 0%

Table 2: Robust accuracy of our convolutional neural net-
work trained with QA-IBP on the CIFAR-10 dataset with
various values for the weight decay. The results express the
robustness-accuracy tradeoff (Tsipras et al. 2018), i.e., the
empirical observation made for non-quantized neural net-
works that we can have a high robustness or a high accuracy
but not both at the same time.

ablation analysis on the two networks of our first experiment.
We report the number of samples where the verification ap-
proach could not determine whether the network is robust on
the sample or not. We use a timeout of 20s per instance when
running our algorithm.

The results shown in Table 3 indicate that our algorithm
is indeed improving on the number of samples for which
robustness could be decided. However, the improvement is
relatively small, suggesting that the QA-IBP training stems
from most of the observed gains.

Limitations
In this section, we aim to scale our QA-IBP beyond the two
gray-scale image classification tasks studied before to the
CIFAR-10 dataset (Krizhevsky and Hinton 2010). Our setup
consists of the same convolutional neural network as used
for the Fasion-MNIST. We run our setup with several values
for the weight decay rate. Similar to above, we linearly scale
ϵ from 0 to 4 during training and report the certified robust
accuracy obtained by QA-IBP with an ϵ of 1 and 4 and the
clean accuracy.

The results in Table 2 express the robustness-accuracy
tradeoff, i.e., the observed antagonistic relation between clean
accuracy and robustness, which has been extensively studied
in non-quantized neural networks (Zhang et al. 2019; Bubeck
and Sellke 2021). Depending on the weight decay value,
different points on the trade-off were observed. In particular,
our training procedure either obtains a network that has an
acceptable accuracy but no robustness or a certifiable robust
network with a significantly reduced clean accuracy.

We also trained larger models on all datasets (MNIST,
Fashion-MNIST, and CIFAR-10), but observed the same
behavior of having a high accuracy but no robustness when
training, i.e., as in row with 1 · 10−5 in Table 2.

We found the underlying reason for this behavior to be
activations of internal neurons that clamp to the minimum
and maximum value of the quantization range in their QA-
IBP representation but not in their standard representation.
Consequently, the activation gradients become zero during
QA-IBP due to falling in the constant region of the activation
function. This effect is specific to quantized neural networks
due to the upper bound on the representative range of values.
Our observation hints that future research needs to look into
developing dynamic quantization ranges or weight decay
schedules that can adapt to both the standard and the QA-IBP
representation of a QNN.

Conclusion
In this paper, we introduced quantization-aware interval
bound propagation (QA-IBP), the first method for training
certifiably robust QNNs. We also present a theoretical result
on the existence and upper bounds on the needed size of a
robust QNN for a given dataset of 1-dimensional datapoints.
Moreover, based on our interval bound propagation method,
we developed the first complete verification algorithm for
QNNs that may be run on GPUs. We experimentally showed
that our training scheme and verification procedure advance
the state-of-the-art on certifying L∞-robustness of QNNs.

We also demonstrated the limitations of our method re-
garding training stability and convergence. Particularly, we
found that the boundedness of the representable value range
of QNNs compared to standard networks leads to truncation
of the abstract domains, which in turn leads to gradients be-
coming zero. Our results suggest that dynamic quantization
schemes that adapt their quantization range to the abstract
domains instead of the concrete activation values of exist-
ing quantization schemes may further improve the certified
robust accuracy of quantized neural networks.

Nonetheless, our work serves as a new baseline for future
research. Promising directions on how to improve upon QA-
IBP and potentially overcome its numerical challenges is to
adopt advanced quantization-aware training techniques. For
instance, dynamical quantization ranges (Choi et al. 2018;
Jacob et al. 2018), mixed-precision layers (Zhou et al. 2016;
Yao et al. 2021), and automated architecture search (Tan and
Le 2019) have shown promising results for standard training

14970



Method MNIST Fashion-MNIST
ϵ = 1 ϵ = 4 ϵ = 1 ϵ = 4

IBP + Projected gradient descent 0.35% 3.51% 3.96% 19.23%
Algorithm 1 0.35% 3.47% 3.93% 18.51%

Table 3: Percentage of samples where the robustness of the network can be determined, i.e., certified or falsified, by the method
(lower is better). Algorithm timeout was set to 20s per instance.

QNNs and might enhance QA-IBP-based training procedures
as well. Moreover, further improvements may be feasible by
adapting recent advances in IBP-based training methods for
non-quantized neural networks (Müller et al. 2022) to our
quantized IBP variant.
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able Verification of Quantized Neural Networks. In AAAI
Conference on Artificial Intelligence (AAAI).
Howard, A.; Sandler, M.; Chu, G.; Chen, L.-C.; Chen, B.;
Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al.
2019. Searching for mobilenetv3. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

14971



Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; and
Bengio, Y. 2016. Binarized neural networks. In Conference
on Neural Information Processing Systems (NeurIPS).
Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; and
Bengio, Y. 2017. Quantized Neural Networks: Training Neu-
ral Networks with Low Precision Weights and Activations.
The Journal of Machine Learning Research (JMLR).
Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard,
A.; Adam, H.; and Kalenichenko, D. 2018. Quantization and
Training of Neural Networks for Efficient Integer-Arithmetic-
Only Inference. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).
Jia, K.; and Rinard, M. 2020. Efficient exact verification of
binarized neural networks. In Conference on Neural Infor-
mation Processing Systems (NeurIPS).
Kahan, W. 1996. IEEE Standard 754 for Binary Floating-
Point Arithmetic. Lecture Notes on the Status of IEEE.
Katz, G.; Barrett, C.; Dill, D. L.; Julian, K.; and Kochenderfer,
M. J. 2017. Reluplex: An Efficient SMT Solver for Verify-
ing Deep Neural Networks. In International Conference on
Computer Aided Verification (CAV).
Kingma, D. P.; and Ba, J. 2015. Adam: A Method for Stochas-
tic Optimization. In International Conference on Learning
Representations (ICLR).
Krishnamoorthi, R. 2018. Quantizing deep convolutional
networks for efficient inference: A whitepaper. arXiv preprint
arXiv:1806.08342.
Krizhevsky, A.; and Hinton, G. 2010. Convolutional Deep Be-
lief Networks on CIFAR-10. University of Toronto Preprint.
Lazarus, C.; and Kochenderfer, M. J. 2022. A mixed integer
programming approach for verifying properties of binarized
neural networks. arXiv preprint arXiv:2203.07078.
Lechner, M.; Hasani, R. M.; Grosu, R.; Rus, D.; and Hen-
zinger, T. A. 2021. Adversarial Training is Not Ready
for Robot Learning. In IEEE International Conference on
Robotics and Automation (ICRA).
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