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Abstract

Steganography is a technique that hides secret messages in-
to a public multimedia object without raising suspicion from
third parties. However, most existing works cannot provide
good robustness against lossy JPEG compression while main-
taining a relatively large embedding capacity. This paper
presents an end-to-end robust steganography system based on
the invertible neural network (INN). Instead of hiding in the s-
patial domain, our method directly hides secret messages into
the discrete cosine transform (DCT) coefficients of the cover
image, which significantly improves the robustness and anti-
steganalysis security. A mutual information loss is first pro-
posed to constrain the flow of information in INN. Besides,
a two-way fusion module (TWFM) is implemented, utilizing
spatial and DCT domain features as auxiliary information to
facilitate message extraction. These two designs aid in recov-
ering secret messages from the DCT coefficients losslessly.
Experimental results demonstrate that our method yields sig-
nificantly lower error rates than other existing hiding method-
s. For example, our method achieves reliable extraction with
0 error rate for 1 bit per pixel (bpp) embedding payload; and
under the JPEG compression with quality factor QF = 10,
the error rate of our method is about 22% lower than the state-
of-the-art robust image hiding methods, which demonstrates
remarkable robustness against JPEG compression.

Introduction
A safe and robust image steganography system attempt-
s to hide the secret messages within the cover image, and
the generated stego image is more inclined to evade mali-
cious distortion and detection. Figure 1 shows the universal
pipeline of robust image steganography. In real-world ap-
plications, the stego image inevitably encounters distortions
during transmission on social networks, such as JPEG com-
pression, which dramatically complicates extracting mes-
sages. As modifying the different pixel positions of the im-
age has different embedding effects, traditional steganogra-
phy algorithms combine the Syndrome Trellis Codes (Filler,
Judas, and Fridrich 2011) and the additive distortion cost
functions (Holub, Fridrich, and Denemark 2014; Li et al.
2014; Pevnỳ, Filler, and Bas 2010) to minimize the stegano-
graphic framework overall distortion. However, to evade sta-
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Figure 1: The universal pipeline of robust image steganog-
raphy. Our model has robustness against JPEG compression
with different quality factors.

tistical steganalysis detection, these traditional methods on-
ly have a low embedding payload. Encouraged by the repre-
sentational power of convolutional networks, learning-based
steganography methods achieve higher embedding capacity.
Work (Hayes and Danezis 2017) proposes the first genera-
tive adversarial network (GAN) based steganography frame-
work by simultaneously training both a steganographic gen-
erator and a steganalyzer. SteganoGAN (Zhang et al. 2019a)
proposes a flexible image steganography method that ex-
pands the binary secret information into a three-dimensional
tensor, significantly increasing the embedding capacity. AB-
DH (Yu 2020) utilizes a spatial attention mechanism to im-
prove the visual quality of generated stego images, which
embeds the secret messages into locations that are not sensi-
tive to human vision. CHAT-GAN (Tan et al. 2021) designs
a channel attention module to promote the network to con-
centrate on the critical channel features. However, most of
these methods are vulnerable to malicious JPEG compres-
sion when transmitting stego images on lossy channels. That
is, a slight disturbance usually results in a poor secret mes-
sage revealing. This substantial drop in performance makes
them not applicable in practical scenarios.

This paper proposes an end-to-end robust steganography
system in which the concealing and revealing of secret mes-
sages are realized by INN’s forward and backward process-
es. Instead of choosing spatial image pixels, our method u-
tilize the DCT coefficients for message embedding. As the
quantization and rounding operations in JPEG compression
directly act on the DCT coefficients, the modification of DC-
T coefficients by JPEG compression is intuitive and easier to
model than in spatial domain or wavelet domain. However,
one DCT coefficient of a block is calculated by all pixel val-
ues of the block in the spatial domain, which indicates that
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modifications in pixel values may significantly affect cor-
responding DCT coefficients. This complex statistical char-
acteristic of DCT coefficients incurs the difficulty of robust
steganography in the DCT domain. Our proposed method
efficiently achieves JPEG robustness under any quality fac-
tors, and it meets low error rate requirements for the robust
steganography algorithm. The main contributions are sum-
marized as follows:

• We introduce an end-to-end robust steganography system
based on INN, which directly hides/extracts secret mes-
sages in the DCT coefficients. Our method ensures ar-
tifact imperceptibility of the generated stego image and
robustness against JPEG compression.
• We propose a mutual information loss in the concealing

process and devise a two-way fusion module (TWFM)
used in the revealing process. These two designs mini-
mize the lost information and utilize the reserved crucial
features to reveal the secret messages as much as possi-
ble.
• Experimental results demonstrate the superior robustness

of our steganography system in lossless or distorted con-
ditions. Specifically, our method can reliably achieve a
0 error for message extraction at an embedding payload
of 1 bpp. Moreover, even with an aggressive JPEG com-
pression of a very low quality factor, such as QF = 10,
the error rate does not exceed 3%.

Related Work
Robust Image Hiding
Robust image steganography methods have been develope-
d to meet the application requirements of covert communi-
cation in lossy channels, in which the model is resistant to
distortions. HiDDeN (Zhu et al. 2018) proposes an end-to-
end framework incorporating typical digital attacks into the
encoder-decoder structure to simulate distortions. ReDMark
(Ahmadi et al. 2020) presents a deep diffusion framework to
improve the robustness. However, these two simple network
structures provide poor universality to different distortion-
s. Work (Wengrowski and Dana 2019) focuses on particu-
lar robustness in the light field messaging (LFM): encod-
ed image displayed on a screen and captured by a camera.
StegaStamp (Tancik, Mildenhall, and Ng 2020) uses a set
of differentiable image augmentations to simulate the print-
shooting process and hides hyperlinks in a physical photo-
graph. To model the non-differentiable distortion, work (Liu
et al. 2019) designs a two-stage separable framework, which
jointly trains the encoder and decoder without noise in the
first stage, and then presents noise attacks in the second
stage but restricts the loss to only propagate back through the
decoder. Later, work (Jia, Fang, and Zhang 2021) random-
ly chooses one of simulated JPEG, real JPEG, and noise-
free layer as the noise layer for each mini-batch to enhance
the robustness against JPEG compression. Besides, work
(Zhang et al. 2021) uses a forward attack simulation lay-
er to make the pipeline compatible with non-differentiable
distortion. As for adaptive steganography algorithms in the
frequency domain, works (Zhang et al. 2019b; Zhu et al.

2021) hide secret messages into compressed DCT coeffi-
cients. These works achieve promising robustness and se-
curity with small embedding capacity.

Invertible Neural Network
The affine coupling layer (Kingma and Dhariwal 2018) is
the fundamental building block of the invertible neural net-
work (INN) (Dinh, Krueger, and Bengio 2014). The encod-
ing and decoding process shares the same parameters, mak-
ing the model lightweight. Since the reversible network is in-
formation lossless in theory, it can preserve details of the in-
put as much as possible. Due to these exceptional properties,
many works with invertible architecture gain more satisfac-
tory performance than traditional autoencoder frameworks,
especially for image-related tasks with inherent invertibil-
ity. Work (Van der Ouderaa and Worrall 2019) applies a
reversible network as the central workhorse to the image-
to-image translation task, which reduces memory consump-
tion and generates images with high fidelity. For the image
rescaling task, work (Xiao et al. 2020) utilizes INN to dis-
cover a bijective mapping between high-resolution and low-
resolution images, which alleviates the ill-posed problem of
image upscaling reconstruction.

The image steganography composed of concealing and re-
vealing processes can be considered inverse problems. Work
(Lu et al. 2021) utilizes the INN to conduct high-capacity s-
patial image steganography, in which multiple secret images
can be hidden into one cover image. HiNet (Jing et al. 2021)
attempts to hide the secret image in the wavelet domain us-
ing INN for high invisibility. It presents a low-frequency
loss to confine hiding messages into high-frequency wavelet
subbands. Work (Xu et al. 2022) achieves a certain degree
of robustness under various distortions using an invertible
structure. Despite managing a large number of bits, all of
the above INN methods incur high error rates for the recov-
ered messages. So applying them straightly for the scenario
with zero tolerance of even a single incorrectly recovered bit
is impractical.

Proposed Method
Overview of the Framework
The traditional neural network utilizes two independent en-
coder and decoder to model the mappings among secret mes-
sage M, cover image C, and stego image S, which can be de-
noted as: (M,C) → S and S → (M,C), respectively. This
separate encoder-decoder structure will result in inaccurate
bijective mapping and may accumulate the error of one map-
ping into the other. In our proposed method, we attemp-
t to find an invertible and bijective network that can hide
and extract the secret message simultaneously, denoted as:
(M,C)↔ S. In Figure 2, the framework of our method con-
sists of several components: INN, JPEG compression lay-
er, discriminator, and two-way fusion module. We employ
the affine coupling layers to structure the concealing and re-
vealing blocks. There are 12 such reversible blocks for both
the concealing and revealing process of the INN. These two
processes share parameters during training, which drive the
model more effectively than the traditional encoder-decoder
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Figure 2: Overview of the proposed steganography architecture.

architecture. The JPEG compression layer is a simulator to
simulate the non-differentiable JPEG compression in a dif-
ferentiable and approximate form, which is then introduced
to the end-to-end network to alleviate the distortion influ-
ence and efficiently improve the robustness. The adversarial
discriminator is utilized to distinguish whether the generat-
ed stego image is similar to the original cover image, which
takes advantage of adversarial learning to improve the visu-
al fidelity and steganographic security of the generated stego
image. The TWFM is designed delicately to combine spatial
and DCT domain features fully to recover the messages.

Invertible Concealing/Revealing Process
We denote the cover image with c channels and h × w size
as C ∈ {0, ..., 255}c×h×w, where c = 3, h = 256, and
w = 256 in our work. The secret message is denoted as
m ∈ {0, 1}l of length l. To ensure that the two inputs of
INN are the same size, we manage the secret message in-
put as a three-dimensional volume by padding each bit with
the same values into 8×8 small block if the payload is less
than 1 bpp. The shaped secret message is represented as
M ∈ {0, 1}c

′×h×w, where c′ is the number of channel. In
the forward concealing process, the cover image is convert-
ed by DCT transform to form a three-dimensional DCT co-
efficient cube, the same size as the spatial image. Then we
utilize concealing blocks to embed secret messages M into
DCT coefficients of cover image Cdct. Considering the i-th
concealing block in Figure 2, we input Ci

dct and Mi, and
output Ci+1

dct and Mi+1, which can be formulated as:

Ci+1
dct = Ci

dct + ϕ(Mi)

Mi+1 = Mi � exp(ρ(Ci+1
dct )) + η(Ci+1

dct )),
(1)

where � indicates the Hadamard product operation, and

ϕ(·), ρ(·), and η(·) denote the arbitrary functions but do not
require to be invertible. Here, we employ the 5-layer Dense-
block (Wang et al. 2018) to represent these three functions
for satisfactory performance in image processing. Note that
after a series of concealing blocks, the model outputs the
DCT coefficients of stego image Sdct and the lost informa-
tion matrix L. To obtain the corresponding stego image S,
the IDCT module receives the frequency features Sdct and
transforms them back to the spatial domain.

In the backward revealing process, the DCT module re-
ceives attacked stego image Sa and converts it into DCT fea-
tures Sdct a. Since only the stego image can be transmitted
on the communication channel, we hold the attacked stego
image Sa at the start of the revealing process. Therefore, to
substitute the lost information matrix L and refine essen-
tial information for the revealing, the TWFM incorporates
the attacked stego image Sa and its frequency coefficients
Sdct a to generate the auxiliary variable matrix Z. The de-
tailed structure of TWFM will be introduced next. It is not-
ed that the concealing blocks and the revealing blocks are
almost identical, except that the information flowing direc-
tion is opposite. For the i-th revealing block, the inputs are
Si+1
dct a and Zi+1, and obtains Si

dct a and Zi as the outputs
according to the following formula:

Zi = (Zi+1 − η(Si+1
dct a))� exp(ρ(Si+1

dct a))

Si
dct a = Si+1

dct a − ϕ(Z
i),

(2)

where � denotes the matrix division operation. The last re-
vealing block outputs the recovered DCT coefficients of cov-
er image C′dct and the recovered message M′. Eventually,
C′dct goes through the IDCT module to transform into the
recovered cover image C′, and M′ reshapes and maps back
to binary messages m′.
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The Two-Way Fusion Module (TWFM)
When hiding secret messages into the cover image, high-
capacity embedding will inevitably damage the carrier. Be-
sides, to avoid the visual distortion of the generated stego
image, it is difficult to embed the secret message into the
carrier entirely. Thus, the above two information losses con-
stitute the lost information matrix L. Work (Jing et al. 2021)
randomly samples from a Gaussian distribution to make up
the auxiliary variable matrix Z. Then every sampled Z is
trained to ensure that the INN can recover the secret mes-
sage. However, this approach does not fully consider that
the L contains valid information from input features, which
should be utilized as much as possible in the revealing pro-
cess. That is, discarding the L will result in accuracy degra-
dation for the secret message recovery.

Motivated by the self-attention mechanism (Vaswani et al.
2017) that maps the input into several different patches to
capture the internal correlation of the features, TWFM aims
at effectively extracting and fusing spatial domain and fre-
quency domain features to improve the accuracy of secret
message recovery. The architecture of TWFM is shown in
Figure 3. The inputs are the attacked stego image Sa and its
frequency features Sdct a. The attention weight map assigns
the weights between 0 and 1 to the corresponding features
in the spatial and frequency domains through an element-
wise product. It selects meaningful features from the Sa and
Sdct a while suppressing some irrelevant details. The overall
process can be depicted as follows:

W = σ[δ(fc(Sa), fc(Sdct a))⊗ δ(fc(Sdct a), fc(Sa))],

Z = fc(W ⊗ Sa +W ⊗ Sdct a)
(3)

where ⊗ is an element-wise product operation, and σ(·),
δ(·), and fc(·) denote the softmax function, the concat oper-
ation, and the convolution respectively. The attention weight
map W indicates the importance of the regional information
obtained from the input feature matrix, where more atten-
tion needs to be paid to the high-weight elements. Note that
TWFM is plug-and-play, that is, it can be trained end-to-end
jointly with the INN.

Design of the JPEG Compression Layer
The JPEG compression process contains a non-
differentiable step: the rounding function is a piecewise
step function that truncates the gradient propagation. Thus,
JPEG is not appropriate for direct end-to-end training
optimization. To solve this problem, we adopt a smooth
rounding function R (x) in work (Shin and Song 2017) to
simulate the rounding step, which can be formulated as:

R(x) = [x] + (x− [x])3, (4)
where [x] is the rounding operation on x, and R(x) repre-
sents the quantized and simulated rounded DCT coefficien-
t. The simulated rounding function R(x) is approximately
continuous, which indicates that the derivative is nonzero.
Through this way, the non-differentiable JPEG compression
can be simulated in a differentiable form to keep gradient
propagation in the training process.

Figure 3: The architecture of the two-way fusion module.

Design of the Discriminator
The discriminator evaluates the difference between cover
and stego images and provides feedback on generator per-
formance, which further stimulates the generated instances
to be closer to the data from the original class. In our pro-
posed method, the discriminator module is composed of 6
groups. From group 1 to group 5, each group consists of a
convolutional layer (kernel size = 3, stride = 2, padding = 1),
a BN layer, and a LeakyReLU activation function. Group 6
contains a global average pooling (GAP) and a linear layer
to output the classification probability. Benefited from the
basic principle of adversarial learning, the generated stego
images have higher visual fidelity and steganographic secu-
rity against statistical detection.

Loss Function
To generate stego images with high fidelity and recover mes-
sages with low error, the overall optimization object is:

Ltotal = λcLc + λrLr − λdLd + λmLm. (5)
where λc, λr, λd and λm are the weight factors to balance
different loss terms.

Concealing loss Lc. Concealing loss Lc indicates the d-
ifference between cover image C and stego image S. The
concealing loss needs to be managed at a decent level to
obtain good imperceptibility. We employ mean square error
(MSE) to measure the difference between them, which can
be defined as:

Lc =MSE(C, S) =
1

c× h× w
‖C− S‖22, (6)

Revealing loss Lr. Revealing loss Lr states the difference
between the recovered message M′ and the original secret
message M. A low revealing loss is desired to obtain a high
accuracy in message recovery, which can be expressed as:

Lr =MSE(M,M′) =
1

c′ × h× w
‖M−M′‖22, (7)

Discrimination loss Ld. The discrimination loss is adopt-
ed to enhance the visual fidelity of the generated stego image
and the anti-steganalysis ability of the network, where as de-
scribed in the following cross-entropy loss function:

Ld =
1

N

∑
i

− [yi · log (pi) + (1− yi) · log (1− pi)] ,

(8)
where yi refers to the ground truth label (the cover as 0 and
stego as 1). The pi represents the classification probability
of the discriminator.
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Methods Cover/Stego Secret/Recovery
PSNR(dB)/SSIM BER(%)

HiDDeN 36.61/0.922 24.72
Hayes 35.54/0.914 26.29

SteganoGAN 40.47/0.971 1.43
ABDH 42.38/0.988 1.95
HiNet 47.43/0.993 0.47
Ours 48.41/0.996 0

Table 1: Comparison between our proposed method and oth-
er steganography methods with 1 bpp embedding payload.

Mutual information lossLm. Mutual information reflect-
s the correlation between two variables: the amount of infor-
mation contained in one variable about the other variable. In
Figure 2, the forward concealing process has the secret mes-
sage M as the input and the lost information matrix L as the
output. Ideally, when the mutual information between them
is close to 0, it can be assumed that the distribution of L is
independent of the distribution of the input M. In this case,
we can discard L without rendering information loss for re-
vealing. Thus, to preserve valid information in embedding,
a mutual information loss Lm is proposed to constrain the
direction of information flow. It can be defined as follows:

Lm = H (M) +H (L)−H (M,L) , (9)

where H (M) and H (L) represent information entropy, and
H (M,L) represents the joint entropy of the M and L. The
information entropy and joint entropy are calculated as:

H(M) = −
N−1∑
i=0

Pi logPi, (10)

H(M, L) = −
∑
i,j

PML(i, j) · logPML(i, j), (11)

where N is the number of distinct pixel values in the matrix,
Pi denotes the probability that the pixel with value i appears
in the matrix. PML(i, j) is the probability that the pixel at
the same position has a value of i in matrix M and a value
of j in matrix L.

Experimental Results
Datasets and implemental details. The dataset for train-
ing and testing is MSCOCO (Lin et al. 2014). We randomly
select 5000 images as cover images for training and 1000
images for testing, respectively. The cover images used for
training or testing above do not overlap and are all cropped
at resolution 256 × 256 using the center-cropping strate-
gy with MATLAB. The Adam optimizer (Kingma and Ba
2014) with standard parameters is adopted to optimize our
network. The initial learning rate is set as 0.0001 and batch
size as 2 to adapt our devices. The whole training process in-
cludes 120 epochs. The whole framework is implemented by
PyTorch and executed on NVIDIA GeForce RTX 2080 Ti.
At the end of the training, the model has already converged
sufficiently. The weight factors λc, λr, λd and λm are set to
1.0, 15.0, 3.0, and 5.0, respectively.

Figure 4: Visual comparison of our proposed method and
other steganography methods: (a)/(c) the generated stego
images, (b)/(d) the differences between the cover and stego
images (magnified 10 times).

Figure 5: The visual effect of our proposed method under
JPEG compression with different quality factors: (a) the gen-
erated stego images, (b) the difference between the cover and
compressed stego images (magnified 5 times).

Evaluation metrics. We evaluate the performance from
the following several aspects. The peak signal-to-noise ra-
tio (PSNR) (Welstead 1999) and structural similarity index
measure (SSIM) (Wang et al. 2004) are adopted as the im-
age quality assessment. The bit error rate (BER) is utilized
to measure the robustness, and a lower BER means the re-
covered message m′ is closer to the original message m.
Since the recovered message m′ are floating numbers, we
map the bits in m′ greater than 0.5 to 1, and the rest to 0. As
for steganographic security, the detection error indicates that
the steganalysis network is unable to distinguish cover/stego
images yielded by a specific steganography method.

Performances Analysis
Steganographic imperceptibility. From the perspective
of quantitative results, Table 1 shows the significant supe-
riority of our method compared with HiDDeN (Zhu et al.
2018), Hayes (Hayes and Danezis 2017), SteganoGAN
(Zhang et al. 2019a), ABDH (Yu 2020), and HiNet (Jing
et al. 2021). The framework of ABDH and HiNet are mainly
designed to hide a color image in one carrier image. To make
it available at capacity with 1 bpp, we finetuned the networks
for hiding message bits. For cover/stego image pairs, the av-
erage PSNR and SSIM for our generated stego image are
distinctly higher than the comparison methods. Notably, for
secret/recovery pairs, our method achieves 100% recovery
accuracy, which can be applied to the scenario to extract the
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Metrics Identity JPEG 100 JPEG 90 JPEG 70 JPEG 50 JPEG 30 JPEG 10
BER(%) 0 0.19 0.31 0.66 0.92 1.47 2.92

PSNR(dB)/SSIM 48.41/0.996 45.54/0.992 44.13/0.985 41.39/0.977 37.08/0.967 36.27/0.955 34.58/0.948

Table 2: The average metric values of our method for cover/stego pairs and secret/recovery pairs with the payload of 1 bpp. The
QFs chosen for training and testing are the same.

Methods Payload (bit) Identity JPEG 90 JPEG 70 JPEG 50 JPEG 30 JPEG 10
HiDDeN 120 37.41 38.18 38.83 38.11 44.58 49.01

TSR 30 9.29 15.12 29.21 34.64 39.88 46.59
MBRS 256 0 0.00063 0.0098 1.35 8.58 33.17
Ours 256×4 0.0022 0.0072 0.081 0.74 3.47 10.93

Table 3: Comparison for the BER of secret message restoration. We chose JPEG compression with quality factor 50 in training,
then tested with different quality factors. The PSNR value of the stego image is adjusted to about 33.5 dB for fair.

Methods Detection Error(%)
XuNet SRNet WISERNet

HiDDeN 0.22 0 2.55
Hayes 0.04 0 1.13

SteganoGAN 2.35 0 1.67
ABDH 10.11 2.86 4.89
Ours 19.27 5.14 9.37

Table 4: Comparison on detection error using three steganal-
ysis networks with the embedding payload of 1 bpp.

hidden message without error. Figure 4 compares the stego
images of our method with the other four methods. The d-
ifference between cover and stego images shows the extent
of damage to the cover image after embedding secret mes-
sages. We can see that the stego images generated by our
proposed method differ slightly from the cover images and
have no obvious text-copying artifacts or color distortion.
In contrast, the method HiDDeN, Hayes, and SteganoGAN
have apparent differences between cover and stego images,
especially in complex texture and edge regions. The above
comparison demonstrated the effectiveness of our proposed
method in generating stego images with pleasing visual fi-
delity and high reconstruction quality.

Robustness against JPEG compression. We analyze the
robustness of our proposed method with the embedding pay-
load of 1 bpp. We train the model using the simulated JPEG
compression with different quality factors (QFs) and test-
ing with the same QFs. Figure 5 shows the generated stego
images, and the difference between cover and stego images
after JPEG compression. The stego images yielded by our
method maintain high visible fidelity without block-blurring
artifacts, and the difference between cover and stego images
is nearly invisible. The quantitative results are displayed in
Table 2. The QFs chosen for training and testing are the
same, which means the testing is under a known channel.
Our method can reach satisfactory reconstruction results un-
der different QFs. In particular, our model achieves the BER
of less than 3% even subjected to a high-intensity JPEG
compression with a quality factor of 10, which indicates that

our method has strong resistance against severe JPEG com-
pression distortion. Due to such a low BER for extracting
messages, error correction codes can be utilized to achieve
100% extraction accuracy in practical applications.

To better illustrate the robustness of our method, we
compare the performance or our method with several ad-
vanced robust image hiding methods: HiDDeN (Zhu et al.
2018), TSR (Liu et al. 2019), and MBRS (Jia, Fang, and
Zhang 2021). All the methods apply JPEG compression with
QF = 50 to the training process, while different QFs vary
from 10 to 90 for testing. That is, the testing is under an un-
known channel. Note that there is a trade-off relationship be-
tween the message embedding and extracting. To make the
comparative experiment fair, we maintain the PSNR of the
stego images generated by the embedding process as 33.5 d-
B, then compare the BER of the recovered secret message. In
addition, the embedding payload of our method has reduced
to 256×4 bits to achieve better robust performance. As seen
in Table 3, although the embedding payload of our method
is 4 times that of MBRS, our method provides much better
BER performance, especially when JPEG compression QF
is decreased to 50 or even lower. As the intensity of JPEG
compression increases, the superiority of our method over
MBRS becomes more pronounced. The above experimen-
tal results demonstrated that our method provides outstand-
ing robustness for aggressive JPEG compression as low as
QF = 10, no matter the transmission channel is known or
unknown. Rather than holding reconstruction capability at a
specific compression factor, the robustness of our method is
more stable and general in practical applications.

Security analysis. The steganography security is usually
evaluated by measuring the detection error of a certain ste-
ganalyzer to distinguish the images generated by a stegano-
graphic algorithm. Current research (Yang et al. 2019) has
demonstrated that the CNN-based steganalyzer is able to
reduce the detection error dramatically compared with the
conventional steganalyzer. To verify the security, we adopt
three advanced steganalysis networks XuNet (Xu, Wu, and
Shi 2016), SRNet (Boroumand, Chen, and Fridrich 2018),
and WISERNet (Zeng et al. 2019) to assess the stegano-
graphic security for different steganography methods with
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Discrete cosine transform Ld loss Lm loss + TWFM Cover/Stego Secret/Recovered Detection Error(%)PSNR(dB)/SSIM BER(%)
% % % 36.75/0.961 1.4 4.81
! % % 43.29/0.975 0.23 10.36
! ! % 48.13/0.988 0.39 19.01
! ! ! 48.41/0.996 0 19.27

Table 5: Ablation study on discrete cosine transform, discrimination loss Ld, mutual information loss Lm and TWFM.

Figure 6: Visual results of ablation study on DCT. The dif-
ferences are between the cover and compressed stego images
with QF = 50.

Figure 7: The total loss curve of ablation study on Lm loss
and TWFM. Note that when the training process reaches to
120 epochs, two models have converged.

the embedding payload of 1 bpp. We yield 5,000 cover/stego
image pairs for each method to re-train the steganalysis
networks. Table 4 presents the detection error using three
steganalysis networks for different methods. Our proposed
method increases the detection error by 9.16%, 2.28%, and
4.48% compared to the second best result, respectively. The
considerably higher detection error than other methods a-
gainst three steganalysis networks demonstrates that our
method has relatively better steganographic security.

Ablation Study
Effectiveness of discrete cosine transform. To conduct
this ablation, we embedded secret messages into spatial do-
main and DCT domain respectively. In Figure 6, under the
JPEG compression with QF = 50, the generated stego us-
ing spatial domain (without using DCT) shows visible block
artifacts. The difference between the cover and stego image
contains some apparent regions with color distortion. In con-
trast, the difference between the cover and stego image using

DCT domain is nearly invisible, which means embedding
into frequency domain coefficients will better adapt distor-
tion and maintain the detailed content of the cover image.
From the first and second rows in Table 5, the PSNR and
SSIM with DCT transform increase by 6.54 dB and 0.014,
respectively, and the detection error increases from 4.81%
to 10.36%. This ablation further demonstrates that the DC-
T transform is inherently robust to JPEG compression and
plays an indispensable role in the robust framework.

Effectiveness of Ld. The discriminator provides progres-
sive feedback to the generator, enabling it to enhance the im-
perceptibility and security of the generated stego images. As
shown in the second and third rows in Table 5, with the Ld

loss, the visual quality of the stego image can be improved
by 4.84 dB in terms of PSNR, by 0.013 in terms of SSIM.
In addition, the steganographic security of our method is en-
hanced, for which the detection error is increased by 8.65%.

Effectiveness of Lm and TWFM. The Lm can guide the
information flow in the INN to flow more to the branch that
yields the stego image, thereby preserving the valid informa-
tion for the revealing process. The TWFM makes full use of
this information to facilitate the recovery of secret messages.
The training loss curve with and withoutLm and TWFM has
shown in Figure 7. It can be seen that these two designs can
accelerate the convergence of the network in training and
decline the total loss of the entire network to a certain ex-
tent. From the third and fourth rows in Table 5, the BER in
secret/recovered pairs decreases, which also highlights the
contribution of Lm loss and TWFM.

Conclusion
This paper presents a robust end-to-end image steganogra-
phy system based on INN, which is resistant to lossy JPEG
compression. Unlike other works with INN, we are the first
to consider from the viewpoint of reducing the valid infor-
mation loss in the forward process and utilizing it in the
recovery process by designing mutual information loss and
TWFM module. Experiments demonstrate that our method
can yield high-fidelity stego images and achieve 0 error for
message extraction with 1 bpp embedding capacity. In addi-
tion, our method has robustness against JPEG compression
under the QFs of the transmission channel are known or un-
known, which shows the generalization performance. More-
over, compared with other advanced steganography method-
s, our method achieves the best security performance under
three deep learning-based steganalysis network detections.
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