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Abstract
We introduce a novel method based on semidefinite program
(SDP) for the tight and efficient verification of neural net-
works. The proposed SDP relaxation advances the present
SoA in SDP-based neural network verification by adding a
set of linear constraints based on eigenvectors. We extend
this novel SDP relaxation by combining it with a branch-and-
bound method that can provably close the relaxation gap up to
zero. We show formally that the proposed approach leads to a
provably tighter solution than the present state of the art. We
report experimental results showing that the proposed method
outperforms baselines in terms of verified accuracy while re-
taining an acceptable computational overhead.

Introduction
Neural networks (NNs) are susceptible to adversarial at-
tacks (Goodfellow, Shlens, and Szegedy 2014). Verifying a
NNs involves establishing whether a NN satisfies a given
specification such as robustness to an ℓp-norm perturbation
on a given input (Li et al. 2020; Liu et al. 2020). If a NN is
verified to be robust, then no adversarial attack exists for the
model, input and perturbation under analysis. This makes
NN verification valuable for safety-critical systems (Tran
et al. 2020; Julian and Kochenderfer 2021; Kouvaros et al.
2021; Manzanas Lopez et al. 2021).

Existing NN verification methods are often categorised as
either complete or incomplete. Complete methods guarantee
that no false negatives or positives are generated. However,
this often comes at a high computational cost, hindering
their scalability to large NNs. Incomplete methods are based
on over-approximations of nonlinear activation functions,
possibly leading to spurious counterexamples (Henriksen
and Lomuscio 2020, 2021; Wang et al. 2021; Hashemi, Kou-
varos, and Lomuscio 2021), or inability to provide an an-
swer to the verification query. Incomplete methods tend to
be computationally lighter and thus have the comparative
advantage of scaling up to larger NNs. The tightness of the
approximations plays a key role in the success of incomplete
methods, as a looser approximation results in more verifica-
tion queries remaining unsolved. Hence, the design of in-
complete methods with tight convex approximations and ac-
ceptable computational cost remains of interest.
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Existing complete approaches to NN verification are
based on either mixed-integer linear programming (MILP)
formulations solved via branch-and-bound (BaB) algo-
rithms (Bastani et al. 2016; Lomuscio and Maganti
2017; Tjeng, Xiao, and Tedrake 2019; Anderson et al.
2020; Botoeva et al. 2020; Bunel et al. 2020), or satis-
fiability modulo theories (Ehlers 2017; Katz et al. 2021).
Normally incomplete approaches can be rendered com-
plete by combining symbolic interval propagation with in-
put refinement; see, e.g., ReluVal (Wang et al. 2018c)
Neurify (Wang et al. 2018a), VeriNet (Henriksen and
Lomuscio 2020), DEEPSPLIT (Henriksen and Lomuscio
2021), β-CROWN (Wang et al. 2021) and OSIP (Hashemi,
Kouvaros, and Lomuscio 2021), but usually require a very
large number of refinements. Incomplete approaches built
on convex relaxations (Xu et al. 2020) or Lagrangian relax-
ations (Dvijotham et al. 2018; Wong and Kolter 2018; Chen
et al. 2021) do not guarantee completeness.

This work focuses on NNs equipped with Rectified Lin-
ear Unit (ReLU) activations. The standard convex approxi-
mation for ReLU, also known as the triangle relaxation, was
introduced by (Ehlers 2017). Incomplete bound propagation
methods based on triangle relaxation solve polynomial-time
solvable linear program (LP) problems and achieve state-
of-the-art (SoA) performance (Weng et al. 2018; Singh et al.
2019a; Tjandraatmadja et al. 2020; Müller et al. 2021). How-
ever, their efficacy is fundamentally limited by the tightness
of convex relaxations, an issue known as the “convex re-
laxation barrier” (Salman et al. 2019). Hence, even when
the optimal convex relaxation is used for each single neu-
ron, the approximation computed for the overall model may
still be too loose to certify certain properties. One way to
overcome this barrier is applying convex relaxations to mul-
tiple neurons; see for example the DeepPoly (Singh et al.
2019a), kPoly (Singh et al. 2019b), OptC2V (Tjandraat-
madja et al. 2020), and PRIMA (Müller et al. 2021) methods.
Another solution is using stronger relaxations beyond LPs,
such as semidefinite program (SDP) relaxations (Raghu-
nathan, Steinhardt, and Liang 2018; Fazlyab, Morari, and
Pappas 2022; Batten et al. 2021).

Since the ReLU activation function can be equivalently
represented by a set of linear/quadratic constraints, the ro-
bustness verification problem of ReLU NNs is well-suited
to be solved via SDP methods. SDP methods are applica-
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ble for any feed-forward NN whose activation functions can
be represented as quadratic constraints, e.g., convolutional
NNs with ReLU activations (Dathathri et al. 2020). SDP be-
comes useful when the over-approximations due to linear
relaxations make the queries not solvable by LP methods.
SDP also has the advantage of being able to verify nonlinear
specifications such as quadratic input/output specifications
(Qin et al. 2019; ul Abdeen et al. 2022).

SDP-based NN verification was first introduced
in (Raghunathan, Steinhardt, and Liang 2018) and em-
pirically shown to be considerably tighter than the standard
LP relaxations. (Zhang 2020) provides a theoretical proof
that SDP relaxations can be exact for a single hidden layer,
but become loose for multiple hidden layers. It has further
been shown that adding linear cuts (Batten et al. 2021), non-
convex cuts (Ma and Sojoudi 2020) or complete positivity
constraints (Brown et al. 2022) can tighten the standard SDP
relaxation. The standard SDP approaches (Raghunathan,
Steinhardt, and Liang 2018; Zhang 2020; Ma and Sojoudi
2020; Brown et al. 2022) improve the relaxation tightness
but also considerably increase the computational burden,
leading to poor scalability for larger NNs. To reduce the
computational demand, a memory-efficient SDP relaxation
was introduced in (Dathathri et al. 2020) and layer SDP
relaxations were used in (Batten et al. 2021; Newton and
Papachristodoulou 2021) by exploiting the cascaded struc-
tures of NNs. At present, the LayerSDP method (Batten
et al. 2021) provides the tightest solution to the problem by
combining an SDP relaxation with linear cuts. However,
LayerSDP still remains considerably loose in large net-
works, as observed in (Batten et al. 2021). This gap leads
to an increased number of unsolved verification queries as
the NN size grows and thus limits the applicability of the
LayerSDP method.

In this contribution we advance SDP-based NN verifica-
tion through a new layer SDP relaxation and a BaB algo-
rithm. The proposed relaxation combines the LayerSDP
method (Batten et al. 2021) with a set of eigenvector-based
linear constraints, offering a provably tighter solution than
the SoA SDP methods. We further develop a BaB algorithm
to reduce the SDP relaxation gaps. We show that the solution
returned by the BaB algorithm at any iteration is provably
tighter than the SoA SDP methods, and can, in principle,
converge to the exact solution of the verification problem.
Our experimental results on various standard benchmarks
confirm that the proposed layer SDP-based BaB method out-
performs the present state of the art, whilst retaining compet-
itive efficiency.

Verification Problem and Convex Relaxations
Notation. We use the symbol Rn to denote the n-
dimensional Euclidean space. We use diag(X) to stack the
main diagonals of the matrix X as a column and use X •Y
to represent trace(X⊤Y ). We use ⊙ to denote the element-
wise product, and I[a,b] to denote a sequence of non-negative
integers from a to b. We use 0n×m to denote an n×m zero
matrix and 1n to denote a n×1 vector of ones. We use ∥·∥∞
to refer to the standard ℓ∞ norm of a vector in Rn. The sym-
bol Pi[z] represents the elements of matrix Pi corresponding

to the vector or matrix z. s.t. is short for subject to.

Neural Networks (NNs) and Verification Problem. We
consider the feed-forward fully-connected ReLU network
f : Rn0 → RnL+1 with L hidden layers, n0 inputs and
nL+1 outputs. The network output is f(x0) = WLxL +
bL, with the input x0, the post-activation vectors xi+1 =
ReLU(x̂i+1) and pre-activation vectors x̂i+1 = Wixi + bi,
i ∈ I[0,L−1], where Wi ∈ Rni+1×ni and bi ∈ Rni+1 ,
i ∈ I[0,L], are the weights and biases, respectively. We fo-
cus on NNs for image classification whereby a given input
x0 is said to be class j⋆ if the corresponding output has the
highest value: j⋆ = argmaxj∈I[1,nL+1]

f(x0)j .
We study the local robustness verification problem. Given

a network f , an input x̄ and an ℓ∞-norm perturbation ϵ, the
local robustness problem concerns determining whether f is
robust on x̄, i.e., whether f(x0)j⋆−f(x0)j > 0, for all ∥x0−
x̄∥∞ ≤ ϵ and j ∈ I[1,nL+1] with j ̸= j⋆. The verification
problem can be formulated and solved as an optimisation
problem (Batten et al. 2021) as follows:

γ∗ := min
{xi}L

i=0

cTxL + c0

s.t. xi+1=ReLU(Wixi + bi), i ∈ I[0,L−1], (1a)

∥x0 − x̄∥∞ ≤ ϵ, (1b)
li+1 ≤ xi+1 ≤ ui+1, i ∈ I[0,L−1], (1c)

where cT = WL(j
⋆, :)−WL(j, :) and c0 = bL(j

⋆)− bL(j).
li+1 and ui+1 are the lower and upper post-activation bounds
that can be computed (before solving the optimisation prob-
lem) using bound propagation methods (Wang et al. 2018b;
Henriksen and Lomuscio 2020). The problem (1) is solved
for every potential adversarial target j ∈ I[1,nL+1] with
j ̸= j⋆. If γ∗ > 0 in all the cases, the NN is verified to
be robust on x̄ under the perturbation ϵ.

SoA Convex Relaxations. Due to the presence of the non-
linear ReLU constraint (1a), the optimisation problem (1) is
non-convex and generally hard to solve. A common strategy
for overcoming this issue is to consider a convex relaxation
of the original problem which can then be efficiently solved.
Solving the convex relaxation yields an optimal objective
value γ∗

cvx as a valid lower bound to γ∗, i.e., γ∗ ≥ γ∗
cvx.

When γ∗
cvx > 0, we know that γ∗ > 0 always holds and the

network is verified to be robust for the given specification.
However, when γ∗

cvx ≤ 0, no conclusion about the robust-
ness of the network for the given case can be drawn. It could
either be the case that a valid adversarial example exists,
or that the relaxation considered was too loose. Clearly, a
tighter convex relaxation with a smaller gap γ∗−γ∗

cvx can in-
crease the number of verification queries solved. Therefore,
tightness is the core design objective of a convex relaxation
method as long as its computational cost remains acceptable.

The LP relaxation (Ehlers 2017), based on a triangle over-
approximation of each ReLU constraint, is a widely used
convex relaxation method for NN verification. The LP relax-
ation is computationally light to solve, but results in a large
relaxation gap. This motivates us to develop a tighter convex
relaxation method to improve the precision of the verifica-
tion approach. Convex relaxations based on SDP (Raghu-
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nathan, Steinhardt, and Liang 2018; Batten et al. 2021) have
recently been shown to be tighter than LP relaxations for
verification. The SDP relaxation is based on a reformulation
of the ReLU constraint (1a) as a set of linear and quadratic
constraints:

xi+1 ≥ 0, xi+1 ≥ Wixi + bi,

xi+1 ⊙ (xi+1 −Wixi − bi) = 0, i ∈ I[0,L−1].
(2)

The input and post-activation constraints in (1b) and (1c) are
rewritten as the quadratic constraints:

xi ⊙ xi − (li + ui)⊙ xi + li ⊙ ui ≤ 0, i ∈ I[0,L], (3)

where l0 = x̄ − ϵ1n0
and u0 = x̄ + ϵ1n0

. Replacing (1a)-
(1c) with (2) and (3) yields an equivalent quadratically con-
strained quadratic programming (QCQP) problem:

γ∗ :=
{
min cTxL + c0 | (2), (3)

}
. (4)

This QCQP problem is still non-convex due to the quadratic
constraints. The techniques of polynomial lifting (Parrilo
2000; Lasserre 2009) can be used to reformulate them as lin-
ear constraints, resulting in a convex SDP relaxation to the
QCQP problem. SDP-based relaxations were first utilised
for NN verification in (Raghunathan, Steinhardt, and Liang
2018) where a single positive semidefinite (PSD) matrix P
is used to couple all the ReLU constraints of the network to-
gether. This approach leads to a global SDP relaxation to
the non-convex optimisation problem (1) with potentially
smaller relaxation gaps than the LP relaxation. The global
SDP relaxation is computationally demanding for large NNs
as P is high-dimensional, thus limiting its applicability.

Thanks to the inherent cascading structure of feed-
forward NNs, the activation vector of layer i + 1 depends
only on its preceding layer i for all i ≥ 0. This cascading
structure is exploited in (Batten et al. 2021) to derive a layer-
based SDP relaxation with a set of PSD matrices defined as:

Pi = xix
T
i , i ∈ I[0,L−1], (5)

where xi = [1, xT
i , x

T
i+1]

T ∈ Rn̄i and n̄i = 1 + ni + ni+1.
By using (5), the constraints (2) and (3) are reformulated

as a set of linear constraints on the elements of Pi:

Pi[xi+1] ≥ 0, Pi[xi+1] ≥ WiPi[xi] + bi, i ∈ I[0,L−1], (6a)

diag(Pi[xi+1x
T
i+1]−WiPi[xix

T
i+1])− bi ⊙ Pi[xi+1] = 0,

i ∈ I[0,L−1], (6b)

diag(Pi[xix
T
i ])− (li + ui)⊙ Pi[xi] + li ⊙ ui ≤ 0,

i ∈ I[0,L−1], (6c)

diag(PL−1[xLx
T
L])− (lL + uL)⊙ PL−1[xL]

+ lL ⊙ uL ≤ 0, (6d)

Pi[x̄i+1x̄
T
i+1] = Pi+1[x̄i+1x̄

T
i+1], i ∈ I[0,L−2], (6e)

Pi[1] = 1, Pi ⪰ 0, rank(Pi) = 1, i ∈ I[0,L−1], (6f)

where x̄i+1 = [1, xT
i+1]

T. The constraint (6e) ensures the
input-output consistency (Batten et al. 2021) and (6f) is
equivalent to (5) as shown in (Horn and Johnson 2012).

By replacing (2) and (3) with (6) and dropping the non-
convex rank constraint rank(Pi) = 1, the QCQP problem,

and equivalently the original verification problem (1), is re-
laxed to a convex layer SDP (Batten et al. 2021):

γ∗
LayerSDP := min

{Pi}L−1
i=0

cTPL−1[xL] + c0

s.t. (6a), (6b), (6c), (6d), (6e), (7a)
Pi[1] = 1, Pi ⪰ 0, i ∈ I[0,L−1], (7b)

Pi[xi+1] ≤ AiPi[xi] +Bi, i ∈ I[0,L−1], (7c)

where (7c) is reformulated from the triangle relax-
ation (Ehlers 2017) with Ai = ki ⊙ Wi, Bi = ki ⊙
(bi − l̂i+1) + ReLU(l̂i+1), and ki = (ReLU(ûi+1) −
ReLU(l̂i+1))/(ûi+1 − l̂i+1). The vectors ûi+1 and l̂i+1 are
the upper and lower bounds of x̂i+1, respectively. These
bounds can be computed together with the post-activation
bounds li+1 and ui+1 using bound propagation methods.

It is shown in (Batten et al. 2021) that the layer SDP re-
laxation (7), using a set of PSD matrices Pi, i ∈ I[0,L−1],
with much smaller sizes, is equivalent to the global SDP
relaxation (Raghunathan, Steinhardt, and Liang 2018) but
more computationally efficient. Also, by introducing the lin-
ear cuts in (7c), the layer SDP relaxation is tighter, i.e.,
γ∗

GlobalSDP ≤ γ∗
LayerSDP ≤ γ∗. However, due to the fact that

the rank-one constraint has been removed, the relaxation gap
of the layer SDP is still considerable in large NNs, as em-
pirically shown in (Batten et al. 2021), thereby limiting the
scalability and applicability of the approach. We address this
issue by proposing a novel SDP relaxation in the next sec-
tion which produces a tighter solution than the layer SDP.

A New Layer SDP Relaxation
In this section we develop a new, enhanced SDP relaxation
to the non-convex problem (1) by adding eigenvector-based
constraints to a reformulated problem of the layer SDP (7).

Reformulated Convex Layer SDP. We reformulate the
QCQP problem (4) into a more compact convex layer SDP
relaxation to easily analyse when the relaxation becomes
tight. This modified form also makes it easy to derive ad-
ditional constraints for tightening the relaxation. We start by
rewriting the constraints (6b), (6c) and (6d) respectively as:

xT
i Q

1
i,jxi + c1i,jxi = 0, j ∈ I[1,ni+1], i ∈ I[0,L−1], (8a)

xT
0Q

2
jx0 + c2jx0 + d2j ≤ 0, j ∈ I[1,n0], (8b)

xT
i Q

3
i,jxi+c3i,jxi+d3i,j≤0, j ∈ I[1,ni+1], i ∈ I[0,L−1], (8c)

where Q1
i,j = 0n̄i×n̄i

, Q1
i,j(1 + ni + j, 1 + ni + j) = 1,

Q1
i,j(1 + ni + j, 2 : 1 + ni) = −Wi(j, :)/2, Q1

i,j(2 : 1 +

ni, 1 + ni + j) = −Wi(j, :)
T/2, c1i,j = 01×n̄i , c

1
i,j(1 +

ni + j) = −bi(j); Q2
j = 0n̄0×n̄0

, Q2
j (1 + j, 1 + j) = 1,

c2j = 01×n̄0
, c2j (1+j) = −(l0(j)+u0(j)), d2j = l0(j)u0(j);

Q3
i,j = 0n̄i×n̄i

, Q3
i,j(1 + ni + j, 1 + ni + j) = 1, c3i,j =

01×n̄i
, c3i,j(1 + ni + j)=−(li+1(j) + ui+1(j)) and d3i,j =

li+1(j)ui+1(j).
The matrices Q2

j and Q3
i,j are always PSD as they have

only the non-zero element 1 on the main diagonals. How-
ever, Proposition 1 shows that this is not the case for Q1

i,j .
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Proposition 1. The matrix Q1
i,j is not necessarily positive

semidefinite but it has at most one negative eigenvalue.

Proof. We represent Q1
i,j as a symmetric block matrix

Q1
i,j =

[
H1

i,j 0(ni+1−j)×1

01×(ni+1−j) 0(ni+1−j)×(ni+1−j)

]
, where H1

i,j =[
D z
zT α

]
, D = 0(ni+j)×(ni+j), α = 1 and z =[

0, −Wi(j, :)
T/2, 0(j−1)×1

]
. The eigenvalues of Q1

i,j in-
clude those of the symmetric arrowhead matrix H1

i,j and the
(ni+1 − j) zero eigenvalues. Let the eigenvalues of H1

i,j be
λ1 ≤ · · · ≤ λni+1−j . By Cauchy’s interlacing theorem, the
eigenvalues of H1

i,j interlace the eigenvalues of the matrix
formed by deleting the last row and column of H1

i,j (O’leary
and Stewart 1990). Hence, we know that λ1 ≤ d1 ≤ λ2 ≤
· · · ≤ dni+j ≤ λni+1−j , where d1, · · · , dni+j are the di-
agonal elements of D. Since D is a zero matrix, the above
relation implies that λ1 ≤ 0 = λ2 = · · · = λni+1−j . There-
fore, the matrix Q1

i,j may not be positive semidefinite and it
has at most one negative eigenvalue λ1.

Under the constraints in (6f), we know Pi = xix
T
i , i ∈

I[0,L−1]. Hence, the following equations hold:

xT
i Q

1
i,jxi = Q1

i,j•(xix
T
i ) = Q1

i,j•Pi,

xT
0Q

2
jx0 = Q2

j •(x0x
T
0 ) = Q2

j •P0,

xT
i Q

3
i,jxi = Q3

i,j•(xix
T
i ) = Q3

i,j•Pi.

(9)

By substituting (8) with (9) into (6) and dropping the
rank-one constraint, it yields the new layer SDP relaxation:

γ∗
LayerSDP := min

{Pi}L−1
i=0

cTPL−1[xL] + c0

s.t. (6a), (6e), (7b), (7c), (10a)

Q1
i,j•Pi + c1i,jPi[xi]=0, j∈I[1,ni+1], i∈I[0,L−1], (10b)

Q2
j •P0 + c2jP0[x0] + d2j ≤ 0, j ∈ I[1,n0], (10c)

Q3
i,j•Pi + c3i,jPi[xi] + d3i,j ≤ 0, j ∈ I[1,ni+1],

i ∈ I[0,L−1]. (10d)

The only difference between the layer SDP relaxations (7)
and (10) is that the constraints (6b), (6c) and (6d) are re-
placed by (10b), (10c) and (10d), respectively. Due to drop-
ping the rank-one constraint, there generally exists a non-
zero gap between the QCQP (4) and (10). We show below
that the gap can be closed via adding extra constraints.

Enhanced Non-convex Layer SDP. Lemma 1 gives the
conditions when the SDP relaxation (10) becomes exact.
Lemma 1. Let Pi, i ∈ I[0,L−1], be the optimal solution to
the layer SDP relaxation (10) that satisfies the conditions:

Q1
i,j•Pi ≥ xT

i Q
1
i,jxi, j ∈ I[1,ni+1], i ∈ I[0,L−1], (11a)

Q2
j •P0 ≥ xT

0Q
2
jx0, j ∈ I[1,n0], (11b)

Q3
i,j•Pi ≥ xT

i Q
3
i,jxi, j ∈ I[1,ni+1], i ∈ I[0,L−1]. (11c)

Then Pi, i ∈ I[0,L−1], is the optimal solution for the QCQP
problem (4).

Proof. Under the given conditions, we know the relations:

xT
i Q

1
i,jxi + c1i,jxi ≤ Q1

i,j•Pi + c1i,jPi[xi] = 0,

j ∈ I[1,ni+1], i ∈ I[0,L−1];

xT
0Q

2
jx0 + c2jx0 + d2j ≤ Q2

j •P0 + c2jP0[x0] + d2j ≤0,

j ∈ I[1,n0];

xT
i Q

3
i,jxi + c3i,jxi + d3i,j≤Q3

i,j•Pi + c3i,jPi[xi] + d3i,j

≤ 0, j ∈ I[1,ni+1], i ∈ I[0,L−1].

Since xT
i Q

1
i,jxi + c1i,jxi ≥ 0, the above relations imply that

the optimal solution Pi, i ∈ I[0,L−1], to the layer SDP re-
laxation (10) satisfies the original nonlinear constraints (2)
and (3). Therefore, the solution Pi, i ∈ I[0,L−1], is also the
optimal solution for the QCQP problem.

If the matrices Q1
i,j , Q2

j and Q3
i,j are PSD, then (11) holds

automatically under Pi ⪰ 0. According to (8), Q2
j and Q3

i,j
are PSD and thus (11b) and (11c) hold automatically. How-
ever, since Q1

i,j may be indefinite, it would be necessary to
impose extra constraints enforcing condition (11a) to ensure
exactness of the layer SDP relaxation (10). To construct the
extra constraints, we perform a spectral decomposition (Lu
et al. 2019) of the matrix Q1

i,j and get

Q1
i,j =

∑
r1∈Pi,j

λr1
i,jV

r1 −
∑

r2∈Ni,j

λr2
i,jV

r2 , (12)

where V r1 = vr1i,j(v
r1
i,j)

T and V r2 = vr2i,j(v
r2
i,j)

T. Pi,j and
Ni,j are the index sets of all positive eigenvalues λr1

i,j and
negative eigenvalues −λr2

i,j of Q1
i,j , respectively.

By applying (12), (11a) is equivalently represented as

(
∑

r1∈Pi,j

λr1
i,jV

r1 −
∑

r2∈Ni,j

λr2
i,jV

r2)•
(
Pi − xix

T
i

)
≥ 0.

(13)

Let x̃i = [xT
i , x

T
i+1]

T and X̃i = x̃ix̃
T
i . The PSD constraint

Pi ⪰ 0 is equivalent to X̃i ⪰ x̃ix̃
T
i by using the Schur com-

plement, and further equivalent to Pi ⪰ xix
T
i as Pi[1] = 1

and Pi[x̃i] = x̃i. This implies that (
∑

r1∈Pi,j
λr1
i,jV

r1) •(
Pi − xix

T
i

)
≥ 0. Therefore, we can ensure (13), i.e., the

condition (11a), via enforcing the constraint

(
∑

r2∈Ni,j

λr2
i,jV

r2)•
(
Pi − xix

T
i

)
= 0. (14)

The above analysis motivates us to add the eigenvector-
based constraint (14) into (10) to obtain the new layer SDP:

γ∗
QCQP2 := min

{Pi}L−1
i=0

cTPL−1[xL] + c0

s.t. (10a), (10b), (10c), (10d), (15a)(
vri,j(v

r
i,j)

T
)
•Pi =

(
(vri,j)

TPi[xi]
)2

,

r ∈ Ni,j , j ∈ I[1,ni+1], i ∈ I[0,L−1]. (15b)

In view of Lemma 1, we have the results in Theorem 1
showing that with the extra constraints in (15b), the new
non-convex layer SDP (15) is equivalent to the QCQP (4).
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Figure 1: P[lri,j ,u
r
i,j ]

(the shaded area) when lri,j = −1 and
ur
i,j=2.

Theorem 1. The optimal solution Pi, i ∈ I[0,L−1], of (15)
is also optimal to (4), i.e., γ∗

LayerSDP ≤ γ∗
QCQP2 = γ∗.

The extra constraints in (15b) result in a tighter layer SDP,
but they are nonlinear, making (15) non-convex and harder
to solve than the original layer SDP relaxation (7). To ad-
dress this issue, we derive a convex relaxation of (15) below.

Enhanced Convex Layer SDP Relaxation. We can
rewrite the constraint (15b) as sri,j = (tri,j)

2, with sri,j =(
vri,j(v

r
i,j)

T
)
•Pi and tri,j = (vri,j)

TPi[xi]. Since we know
the bounds of the vector xi, i ∈ I[0,L−1], we can com-
pute the lower bound lri,j and upper bound ur

i,j of tri,j ,
r ∈ Ni,j , j ∈ I[1,ni+1], i ∈ I[0,L−1] as lri,j = min (vri,j)

Txi

and ur
i,j = max (vri,j)

Txi. The non-convex constraint
sri,j = (tri,j)

2 over lri,j ≤ tri,j ≤ ur
i,j can be relaxed by

constructing the convex hull of the original feasible set as
P[lri,j ,u

r
i,j ]

:= Conv{(tri,j , sri,j) | sri,j = (tri,j)
2, lri,j ≤ tri,j ≤

ur
i,j}. The convex set P[lri,j ,u

r
i,j ]

contains the two points
(lri,j , (l

r
i,j)

2) and (ur
i,j , (u

r
i,j)

2). The line connecting the two
end points of the parabola is sri,j = (lri,j+ur

i,j)t
r
i,j−lri,ju

r
i,j .

Hence, the set P[lri,j ,u
r
i,j ]

can be represented by P[lri,j ,u
r
i,j ]

=

{(tri,j , sri,j) | sri,j ≥ (tri,j)
2, sri,j ≤ (lri,j+ur

i,j)t
r
i,j−lri,ju

r
i,j}.

An illustration of this set is provided in Figure 1.
Under the PSD constraint Pi ⪰ 0, i ∈ I[0,L−1], the

relation Pi ⪰ xix
T
i is satisfied automatically and so is

sri,j ≥ (tri,j)
2. By removing this redundant part, the non-

convex layer SDP (15) is relaxed to the following problem:

γ∗
LayerSDP2 := min

{Pi}L−1
i=0

cTPL−1[xL] + c0

s.t. (10a), (10b), (10c), (10d), (16a)

sri,j =
(
vri,j(v

r
i,j)

T
)
•Pi, t

r
i,j = (vri,j)

TPi[xi],

sri,j ≤ (lri,j + ur
i,j)t

r
i,j − lri,ju

r
i,j ,

r ∈ Ni,j , j ∈ I[1,ni+1], i ∈ I[0,L−1]. (16b)

Figure 2: An illustration of BaB step reducing the over-
approximation introduced by P[lri,j ,u

r
i,j ]

by splitting the in-
terval tri,j ∈ [lri,j ,u

r
i,j ] into two equal halves when lri,j = −1

and ur
i,j = 2. The branching step significantly reduces the

total area of P[lri,j ,u
r
i,j ]

by removing the shaded area. After
the split, only the two green areas are part of the feasible set.

We show the properties of the problem (16) in Theorem 2.

Theorem 2. The relation γ∗
LayerSDP ≤ γ∗

LayerSDP2 ≤
γ∗

QCQP2 = γ∗ holds. If an optimal solution of (16) satisfies
sri,j = (tri,j)

2, ∀r ∈ Ni,j , j ∈ I[1,ni+1], i ∈ I[0,L−1], then it
is also optimal to QCQP (4) and γ∗

LayerSDP2 = γ∗
QCQP2 = γ∗.

Proof. We prove the first part from three aspects:
1) γ∗

LayerSDP ≤ γ∗
LayerSDP2: Compared to the existing layer

SDP (7), our new layer SDP (16) has extra constraints (16b),
making its solution at least as tight as that of (7).

2) γ∗
LayerSDP2 ≤ γ∗

QCQP2: This holds because we linearise
the non-convex constraints (15b) to be (16b).

3) γ∗
QCQP2 = γ∗: Theorem 1 shows that the non-convex

layer SDP (15) is shown to be equivalent to the QCQP (4).
If an optimal solution of (16) satisfies sri,j = (tri,j)

2,
∀r ∈ Ni,j , j ∈ I[1,ni+1], i ∈ I[0,L−1], then (16b) is an exact
relaxation of the non-convex constraints (15b). Hence, this
optimal solution is also optimal to (15) and (4). We thus have
γ∗

LayerSDP2=γ∗
QCQP2 and subsequently γ∗

LayerSDP2=γ∗.

Theorem 2 shows that the new layer SDP relaxation (16)
provides a tighter lower bound to the original verification
problem when compared with the existing layer SDP relax-
ation (7). The lower bound can be further tightened by using
the BaB method to be developed below.

A BaB Method for Solving the New Layer SDP
In this section we present a BaB method to compute the opti-
mal solution of the non-convex layer SDP (15). As shown in
Theorem 2, the relaxation (16) is exact when sri,j = (tri,j)

2,
∀r ∈ Ni,j , j ∈ I[1,ni+1], i ∈ I[0,L−1]. If sri,j > (tri,j)

2 for
some r ∈ Ni,j , j ∈ I[1,ni+1], i ∈ I[0,L−1], then we can
split the interval tri,j ∈ [lri,j ,u

r
i,j ] into two smaller intervals
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tri,j ∈ [lri,j , (l
r
i,j + ur

i,j)/2] and tri,j ∈ [(lri,j + ur
i,j)/2,u

r
i,j ]

to construct two new problems, so that the convex relax-
ation of sri,j = (tri,j)

2 can be tighter over these smaller in-
tervals. We illustrate this through the example in Figure 2.
We choose to split the interval tri,j ∈ [lri,j ,u

r
i,j ] at its mid-

dle point (lri,j + ur
i,j)/2, because this produces the tightest

relaxation, as shown in (Deng et al. 2018, Lemma 3.1).
The overall BaB method is presented in Algorithm 1. As

shown in Line 15 of the algorithm, we choose to branch the
interval with the largest distance dri,j = |λr

i,j(s
r
i,j − (tri,j)

2)|.
This choice of interval is inspired by the intuition that the
violation of the equality constraint is largest in this direction
and thus the splitting is (locally) optimal. Note that a (glob-
ally) optimal strategy of choosing the neurons to split is of
independent research interest in the area of NN verification,
and it is not the focus of this work. The tightness of the solu-
tion obtained by Algorithm 1 is characterised in Theorem 3.

Theorem 3. Algorithm 1 returns the objective value γbab
satisfying: γ∗

LayerSDP ≤ γ∗
LayerSDP2 ≤ γbab ≤ γ∗

QCQP2 = γ∗.

Proof. We perform each branching step by splitting the in-
terval tri,j ∈ [lri,j ,u

r
i,j ] into two equal halves. Solving the

two problems associated with the smaller intervals gives a
lower bound (objective value) that is not worse than the one
before branching. Since the branch and bound is initialised
using the optimal solution to the layer SDP relaxation (16),
we have γ∗

LayerSDP2 ≤ γbab. According to Theorem 2, we also
have γ∗

LayerSDP ≤ γ∗
LayerSDP2 ≤ γbab ≤ γ∗

QCQP2 = γ∗.

We terminate Algorithm 1 whenever γbab > 0, because
any positive lower bound is sufficient to certify that the NN
is robust for an input under the perturbation ϵ. In principle,
we can keep branching and bounding until γbab reaches the
ground true optimal objective value γ∗. In this sense, the
proposed BaB algorithm is considered to be complete. In
practice, we may set a maximum number of iterations in
analogy with the timeout used in other BaB-based meth-
ods (Anderson et al. 2020; Kouvaros and Lomuscio 2021;
Wang et al. 2021; Bunel et al. 2020).

The proposed BaB algorithm achieves bounding via solv-
ing the layer SDP problem (16). Hence, computational com-
plexity of our approach depends on the number of layer SDP
problems to solve and the complexity of solving each prob-
lem. We solve the layer SDP using MOSEK (Andersen and
Andersen 2000) which implements an interior-point algo-
rithm. Before calling MOSEK, we formulate the SDP as the
widely-used conic optimisation form where all inequality
constraints are converted into equalities (Sturm 1999). Ac-
cording to (Nesterov 2003), solving a SDP at each iteration
of the interior-point algorithm requires O(n3m + n2m2 +
m3) time and O(n2 +m2) memory, where n is the dimen-
sion of the positive semidefinite matrix and m is the num-
ber of equality constraints. For the layer SDP problem (16),
n = 1 + maxi=0,...,L−1(n̄i + n̄i+1) is the largest dimen-
sion of all Pi with n̄i = ni − si being the number of neu-
rons at layer i after removing si inactive neurons, and m =

2L+4
∑L

i=1 n̄i+
∑L−1

i=0 (n̄i+gini+1)+
∑L−1

i=1 n̄i with gi be-
ing the number of eigenvector-based constraints associated
with Pi. The layer SDP (Batten et al. 2021) was also solved

using MOSEK with n = 1+maxi=0,...,L−1(n̄i+ n̄i+1) and
m = 2L + 4

∑L
i=1 n̄i +

∑L−1
i=0 n̄i +

∑L−1
i=1 n̄i. Hence, our

layer SDP problem (16) has slightly higher computational
cost than the one in (Batten et al. 2021), with

∑L−1
i=0 (gini+1)

more equality constraints.

Algorithm 1: Layer SDP-based BaB algorithm

Input: NN parameters, perturbation radius ϵ, test input
1: Compute the bounds {l̂i}Li=1, {ûi}Li=1, {li}Li=1 and

{ui}Li=1 using a bound propagation method.
2: Perform spectral decomposition of Q1

i,j , j ∈
I[1,ni+1], i ∈ I[0,L−1], and construct the sets of
negative eigenvalues N 0 = {E0, · · · ,EL−1} with
Ei = {λr

i,j}, and the corresponding eigenvectors
V0 = {V1, · · · ,VL−1} with Vi = {vri,j}, Pi indices
I0 = {I0, · · · , IL−1} with Ii = i × 11×r, and bounds
L0 = {L0, · · · ,LL−1} and U0 = {U0, · · · ,UL−1}
with Li = {lri,j} and Ui = {ur

i,j}, r ∈ Ni,j .
3: Solve Problem 0, (16) with the parameter set

(N 0,V0, I0,L0,U0), for the objective value γ0 and the
distance set D0 = {D0, · · · ,DL−1} with Di = {dri,j},
dri,j = |λr

i,j(s
r
i,j − (tri,j)

2)|, r ∈ Ni,j .
4: Set γbab = γ0, which is NaN when (16) is infeasible.
5: if (Problem 0 is infeasible) ∨(γ0 > 0)∨ (N 0 == ∅)

then Return γbab and stop algorithm.
6: end if
7: Set k = 0. Initialise P as the set of active problems by

adding the instance {N 0,V0, I0,L0,U0,D0, γ0} to P .
8: loop
9: Set k = k + 1.

10: if P == ∅ then Return γbab and stop algorithm.
11: end if
12: Choose and remove from P the instance with

the smallest objective value and denote it as Pk =
{N k,Vk, Ik,Lk,Uk,Dk, γk}. Set γbab = γk.

13: if γbab > 0 then Return γbab and stop algorithm.
14: end if
15: Set zi∗ = (Lk

i∗ +Uk
i∗)/2 with i∗ indexing the largest

element in Dk. Construct the parameter sets S1 :=
(N k,Vk, Ik,Lk, Ūk) and S2 := (N k,Vk, Ik, L̄k,Uk),
where Ūk

i∗ = zi∗ and L̄k
i∗ = zi∗ when i = i∗, and

Ūk
i = Uk

i and L̄k
i = Lk

i for all i ̸= i∗.
16: Solve Problem 1, (16) with S1, for the objective

value γ1 and distance set D1.
17: if Problem 1 is feasible then
18: Add instance{N k,Vk, Ik,Lk, Ūk,D1, γ1}to P .
19: end if
20: Solve Problem 2, (16) with S2, for the objective

value γ2 and distance set D2.
21: if Problem 2 is feasible then
22: Add instance{N k,Vk, Ik, L̄k,Uk,D2, γ2}to P .
23: end if
24: end loop
Output: γbab
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BaBSDP LayerSDP SDP-IP SDP-FO LP PRIMA β-CROWN OVAL

Models PGD ver. t ver. t ver. t ver.† t∗ ver. t ver.† ver. t ver. t
MLP-Adv 94 92 2161 91 2036 82 12079 84 17230 7 2 – 88 8 11 1.8
MLP-LP 80 80 284 80 260 80 50733 78 21669 78 0.5 – 80 0.1 20 0.1
MLP-SDP 84 84 6800 84 6643 80 43156 64 22871 6 7 – 76 65 18 21
MLP-6×100 91 80 1379 75 1034 52 6760 ⋄ – 0 2.8 51.0 78 238 – –
MLP-9×100 86 47 625 35 446 22 2148 ⋄ – 1 4.4 42.8 69 461 – –
MLP-6×200 96 93 3875 92 3180 76 25850 ⋄ – 3 6.3 69 84 190 – –
CF-3× 20 20 18 5315 17 3663 16 7804 ⋄ – 0 0.3 – 17 0.3 – –

Table 1: Verified robustness (ver., in percentage) and runtime per image (t, in seconds) for a set of benchmarks with various
sizes. Dagger (†): these numbers are from the literature: SDP-FO from (Batten et al. 2021) for the same 100 images, and PRIMA
from (Müller et al. 2021) for 1000 images. Star (∗): the runtime is estimated by evaluating 3 images. Dash (–): previously
reported or re-implementation results are unavailable. Diamond (⋄): the methods fail to verify any instance.

Experimental Evaluation
We conducted experiments on a Linux machine running an
AMD Ryzen Threadripper 3970X 32-Core CPU with 256
GB RAM and a RTX 3090 GPU. The optimisation problems
were solved using the SDP solver MOSEK.

We evaluated the proposed method on several fully-
connected ReLU NNs (where “m × n” means a NN with
m− 1 hidden layers each having n neurons):
1) Three small size MNIST models MLP-Adv, MLP-LP,

and MLP-SDP are from (Raghunathan, Steinhardt, and
Liang 2018) and tested under ϵ = 0.1 as in (Raghu-
nathan, Steinhardt, and Liang 2018; Batten et al. 2021).

2) Three medium size MNIST models MLP-6×100, MLP-
9× 100 and MLP-6× 200 are from (Singh et al. 2019a)
and evaluated under the same ϵ = 0.026, 0.026, 0.015,
respectively, as in (Singh et al. 2019a; Müller et al. 2021;
Batten et al. 2021; Wang et al. 2021).

3) One CIFAR10 model CF-3 × 20 is from (Li et al. 2020)
and evaluated under ϵ = 2/255.

We compared the proposed layer SDP-based BaB method
(referred to as BaBSDP) against several SoA incomplete
methods for verification:
1) BaB-based methods: β-CROWN (Wang et al. 2021) and

OVAL (Bunel et al. 2020), both of which were shown to
be stronger BaB-based verifiers (β-CROWN is winner) in
the VNN-COMP 2021 (Bak, Liu, and Johnson 2021).

2) Linear relaxations: the standard linear program relax-
ation LP (Ehlers 2017) and its variant PRIMA (Müller
et al. 2021).

3) SDP relaxations: LayerSDP (Batten et al. 2021),
SDP-IP (i.e., the global SDP relaxation (Raghunathan,
Steinhardt, and Liang 2018)), and SDP-FO (Dathathri
et al. 2020).

We received permission to run VeriNet (Henriksen and
Lomuscio 2020) for obtaining input bounds. We manually
passed these to Matlab and used them as an input to run Al-
gorithm 1. All experiments were run on the first 100 images
of the MNIST/CIFAR10 datasets. The PGD upper bounds
of the MNIST models are taken from (Batten et al. 2021),
while that of the CIFAR10 model is from (Li et al. 2020).

We report the results in Table 1, where the verified robust-
ness represents the percentage of images that are verified to
be robust and the runtime represents the average MOSEK
solver time for verifying an image.

Our results show that BaBSDP is more precise than the
SoA SDP-based methods for the models MLP-6 × 100,
MLP-9 × 100 and CF-3 × 20. BaBSDP achieves the same
precision as LayerSDP for the other three benchmarks.
For the MLP-LP and MLP-SDP networks, both BaBSDP
and LayerSDP reach the PGD upper bounds. Compared
to the baselines that are based on linear relaxations (LP and
PRIMA) and BaB (OVAL), BaBSDP is more precise for all
the models. Compared to the SoA BaB method β-CROWN,
BaBSDP is only less precise for the model MLP-9 × 100.
As expected we found BaBSDP needs a larger amount
of runtime than LayerSDP, LP, OVAL and β-CROWN
(which used GPU support) across all the networks. How-
ever, BaBSDP resulted to be faster than SDP-IP for all the
networks. According to the results reported in (Batten et al.
2021), SDP-FO is less efficient than LayerSDP for MLP-
Adv and MLP-LP, and fails to verify MLP-6×100 and MLP-
9 × 100. These results confirm that our proposed BaBSDP
improves the verification precision, whilst retaining a com-
petitive computational efficiency.

Conclusions
A number of SDP relaxation-based incomplete methods
have been proposed in the literature to provide tight ap-
proximations of nonlinear activation functions for verify-
ing large NNs. However, the relaxation gaps for the present
SoA are still considerable, leading to many verification
queries remaining unsolved. In this paper, we proposed a
new SDP relaxation with improved tightness by integrat-
ing a set of eigenvector-based constraints to the layer SDP
relaxtion method. Building on this novel SDP relaxation,
we developed a BaB algorithm to further reduce the relax-
ation gaps. Our theoretical analysis showed that the method
yields tighter relaxations than the SoA SDP methods for NN
verification. The experimental results demonstrated that our
method achieved SoA performance on various commonly
used benchmarks. This work opens up further work into
combining BaB with SDP for NN verification.
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