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Abstract
It is now well known that neural networks can be wrong with
high confidence in their predictions, leading to poor calibra-
tion. The most common post-hoc approach to compensate for
this is to perform temperature scaling, which adjusts the con-
fidences of the predictions on any input by scaling the log-
its by a fixed value. Whilst this approach typically improves
the average calibration across the whole test dataset, this im-
provement typically reduces the individual confidences of
the predictions irrespective of whether the classification of
a given input is correct or incorrect. With this insight, we
base our method on the observation that different samples
contribute to the calibration error by varying amounts, with
some needing to increase their confidence and others needing
to decrease it. Therefore, for each input, we propose to pre-
dict a different temperature value, allowing us to adjust the
mismatch between confidence and accuracy at a finer gran-
ularity. Our method is applied post-hoc, enabling it to be
very fast with a negligible memory footprint and is applied
to off-the-shelf pre-trained classifiers. We test our method
on the ResNet50 and WideResNet28-10 architectures using
the CIFAR10/100 and Tiny-ImageNet datasets, showing that
producing per-data-point temperatures improves the expected
calibration error across the whole test set.

1 Introduction
For neural networks (NNs) to be employed in real-world
safety-critical applications, we do not only require them to
produce correct predictions, but also provide reliable confi-
dence estimates in their predictions (i.e. they are calibrated).
Limiting our scope to neural classifiers, using the maxi-
mum probability of the predictive distribution as a confi-
dence measure, literature has established that a mismatch
exists between such notion of confidence and the expected
accuracy. Indeed, such models generally suffer from being
on average overconfident over the test set.

A simple approach to rectify this issue is to perform tem-
perature scaling (Guo et al. 2017), a post-hoc method which
scales the logits by a single scalar value, obtained through
cross validation. This approach improves the classifier’s per-
formance on standard calibration metrics across a test set.
However, from a per-sample point of view there are signif-
icant issues. Since the temperature is found by minimising
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the calibration error (in expectation) over the entire valida-
tion set, and since neural networks are overconfident on av-
erage, practically speaking, the effect of temperature scaling
is to reduce the confidence for every prediction. However,
as we will discuss, different samples contribute by varying
amounts to the calibration error.

This issue can be seen in Fig. 1, which shows the his-
togram of the individual contributions to the calibration er-
rors; i.e. the distribution of p(y|pi) − pi, where p(y|pi) is
the accuracy and pi is the softmax probability for the data
point i, the calibration error can be obtained by taking the
weighted average over all the values.1 Here the mismatch be-
tween per data-point confidence and accuracy is not constant
across all the data-points, and hence miscalibration cannot
be fixed by scaling the logits by a single fixed value, a key
assumption in vanilla temperature scaling. The calibration
error varies significantly, with a small (but not insignificant)
number of samples on which the network is overconfident.
Consequently, scaling the predictions with a single tempera-
ture value will adjust all of the errors in the same way. Typ-
ically, the temperature values obtained are greater than 1,
resulting in a reduction of confidence of all predictions, re-
gardless of whether they are correct with low confidence or
incorrect with high confidence.

To combat this, we propose a method which produces per-
data-point predictions of the temperature, permitting an ade-
quate decrease in the confidence on samples which the clas-
sifier is likely to get wrong, and an increase in the confidence
on predictions it is likely to get correct. As a result, we ob-
tain better test Expected Calibration Error (ECE)(Guo et al.
2017) both on in-distribution sets (i.e. the test set is i.i.d.
with respect to the training set) and under covariate-shifted
sets (i.e. the test set shares the same set of labels of the train-
ing set, but the inputs are not i.i.d. with respect to the training
set).

Like temperature scaling, our method is applied post-
hoc and is very fast to train and test. We extensively test
the calibration of ResNet50 (He et al. 2016) and WideRes-
Net28 (Zagoruyko and Komodakis 2016) when using our
method on CIFAR10/CIFAR100 and TinyImageNet, in-

1Here p(y|pi) is obtained through histogram binning and rep-
resents the accuracy of each bin, and the weights are proportional
to the number of samples in each bin.
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cluding results under data-shift (Hendrycks and Dietterich
2019).

Figure 1: Histogram of per sample contribution to calibra-
tion error, positive numbers indicate overconfidence. Here
we can see that the samples contribute by different amounts
to the overall calibration error. Predictions are for CIFAR-
10.

2 Problem Formulation
Network Overconfidence and Temperature Scaling
Given an input x, a standard K-class neural classifier first
extracts a feature embedding Φ(x) before computing the
logits s = f(Φ(x)) ∈ RK and finally applying the softmax
operator p = σ(s) = exp (s)∑

i exp (si)
to obtain the class proba-

bilities for the categorical distribution, the prediction is then
given as ŷ = argmaxk pk, where p = {pk}K . A classifier is
said to be calibrated if the confidence in its prediction (usu-
ally taken to be maxk pk) matches its accuracy on expecta-
tion, i.e. if a classifier makes predictions with a confidence
of 80% for a certain set of points, then the accuracy should
be 80% on the set of points. Typically, neural networks are
overconfident as the confidence of the predictions are higher
than their expected accuracy (Guo et al. 2017).

Temperature scaling (Guo et al. 2017) consists of re-
scaling the logits by a constant factor T ∈ R+ before apply-
ing the softmax, i.e. p′ = σ( s

T ). The value of T can drasti-
cally affect the entropy of the predicted distribution, which
is demonstrated in Fig. 2, where a value of T > 1 leads to a
higher entropy distribution (the higher T , the higher the en-
tropy); a value of T < 1 leads to a lower entropy distribution
(the lower T , the more “peaky” the distribution).

The temperature T is usually found by minimising the
ECE or the Negative Log-Likelihood (NLL) using a vali-
dation set. Typical optimal values for T are usually greater
than 1 (Mukhoti et al. 2020), indicating that, on average, op-
timising the ECE or NLL across the validation set leads to
a higher entropy of the predictions. However, this approach
decreases the confidences of all the predictions without con-
sidering that the miscalibration error can vary widely on a
data-point basis. For correct predictions, temperature scaling
will make the predictions more under-confident, whilst for
incorrect predictions, the temperature may not be the right

value to bring the confidences down to a level which will
make it calibrated.

Figure 2: Example plots of Softmax distribution with differ-
ent temperature values for fixed logits. Left to right: T = 1.0
and T = 10.0.

Loosely speaking, this suggests that further improvements
in calibration can be achieved by using a variable tempera-
ture T , predicted on a per data-point basis (i.e. T = g(x)),
permitting T > 1 for samples which are correctly classified,
and T < 1 for the incorrect ones. This enables the model to
have a greater flexibility when compensating for miscalibra-
tion, as it respects the individual contributions each sample
makes to the ECE. Moreover, this approach can be applied
without affecting a classifiers accuracy.

3 Issues with Jointly Learning Temperature
Alongside the Network Weights

One might suggest introducing the temperature as one of
the outputs of the network and jointly learning it as part of
the training process. Here we outline why this approach of
learning to predict the temperature values T and the predic-
tive probabilities p might result in suboptimal performance.
Consider the last layer of a NN with parameters w ∈ RD×K

for a feature space of size D and the cross entropy loss
L : RK → R. The gradient for the layer is given as

∂L
∂w̄

=
∂s

∂w̄
(σ(s)− y), (1)

where y denotes the one-hot ground-truth label and σ(s) −
y = {σ(sj)− yj : j ∈ {1 . . .K}}, w̄ indicates the network
weights are flattened to column vector form. Inspecting the
gradients indicates that the gradient starts to vanish when
sk → ∞ and s\k → −∞, where k is the correct class. Or
to put it simply, the optimisation does not converge until the
network produces one-hot logits.

This forces the magnification of the network weights
(Mukhoti et al. 2020), which subsequently leads to an over-
confident network and hence miscalibrated predictions. A
mechanism to achieve the desired one-hot prediction with-
out magnifying the weights could be instead to naı̈vely learn
the temperature alongside the logits, assuming the model is
trainable and converges. In this case, gradient updates would
decrease the value of T , resulting in a lower-entropy distri-
bution that is more “peaky”. We now discuss why this ap-
proach might not work well in practice.

If we consider the gradient of the temperature, which is
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given as

∂L
∂T

=
∑
k

yk
T 2

(
sk

∑
i\k

exp
(si
T

)
−
∑
j\k

sj exp
(sj
T

))
,

(2)

which decreases the value of T for a correct prediction
(k̃ = argmaxk sk), leading to more confident predictions.
Typically, the train accuracy will approach 100%, meaning
that gradient updates to T cause it to decrease without any
moderation, preventing the network from learning how to
predict T appropriately. In short, there is essentially only
data for correct predictions, preventing crucial information
on how the network should behave when it’s wrong being in-
corporated in the learning process. Consequently, learning
T naı̈vely is not a feasible option as the network just learns
to be confident everywhere.

Learning to Calibrate
Our approach involves a new temperature prediction module
(a small neural network) that operates on each input sample
independently and whose objective is to extract information
from the trained model itself in order to calibrate the confi-
dences of each prediction. We call this learning to calibrate.

Doing so requires learning a temperature prediction
module on a data-set consisting of data-points Xcal =
{xn}N ,Xtrain ∩ Xcal = Ø, neural network predictions
Pcal = {pn}N and labels Ycal = {yn}N , y ∈ {, . . . ,K}
for K classes. It is important to note that the objective here
is to learn to assign low confidences to data points which are
likely to be incorrect and high confidences to those which
are likely to be correct.

Specifically for a given data-point x ∈ Xcal, we propose
to optimise the temperature prediction module over T by
maximising the log probability of the label y under the Cate-
gorical probability distribution parametrised by the T -scaled
logits s, i.e. T ∗ = argmaxT logCat(y; softmax(s/T ))2.
Here we do not optmise s but keep it fixed; we are only op-
timising w.r.t to T .

In situations where y = argmaxk pk (i.e. correct predic-
tion), the target function is maximised when T → 0, as we
want the predicted probabilities to match the one-hot logits,
e.g. see T = 0.1 in Fig. 2. This is equivalent to minimising
the entropy of the predictive distribution by only manipulat-
ing T , which is the desired outcome for a correct prediction.

In situations where the prediction is incorrect, y ̸=
argmaxk pk, to maximise the target function we need to
maximise py and minimise pk̃, where k̃ = argmaxk pk. As
the temperature prediction module cannot change the pre-
dicted label, the optimzation accepts the incorrect prediction
and maximise the target function by flattening the Softmax
outputs with T >> 1, which is equivalent to maximising
the entropy of the predictive distribution. This effect can be
seen by considering the case where predicting class 2 in Fig.
2 is the incorrect prediction; among the three cases shown,
T = 10 maximises Cat(y ̸= 2; softmax(s/T )).

2Which is equivalent to the cross entropy loss.

4 Adaptive Temperature Scaling
We are now ready to outline the specifics of our proposed
temperature prediction module. Given a data-set Xcal, we
want to learn which samples the classifier should be confi-
dent about and which it should not. Rather than acting on the
image space, we instead use the feature extractor of the clas-
sifier, as it has already learnt how to extract the information
needed for class prediction and also contains a notion of the
associated confidence. This has been demonstrated in (Guo
et al. 2017), where working only on the feature space has al-
ready provided highly promising results in calibrating mod-
els for a variety of tasks; suggesting that the feature space
already contains sufficient information for calibration. What
we now need is a method to extract this confidence informa-
tion from the feature space and leverage it appropriately to
calibrate the predictions.

Representing Uncertainty with the Variational Au-
toencoder variational autoencoders (VAEs) (Kingma and
Welling 2013) act as an efficient model to obtain representa-
tions of data; the representations encapsulate the generative
factors in a lower-dimensional subspace and are rich enough
to reconstruct the data sample. In the specification of the
generative model, the user has to specify a prior over the la-
tent variables (typically an isotropic Gaussian) where the KL
distance between the prior and approximate posterior is min-
imised during training. Unlike a standard autoencoder (Hin-
ton and Zemel 1994), there is now a mechanism to obtain
a likelihood on the latent codes. In reality this value forms
part of the importance weight and can be used as a proxy
to the true likelihood but avoids issues associated with deep
generative models (Nalisnick et al. 2019).

From a mechanistic point of view, we expect samples
which are much more common to be placed in the centre of
the prior. Here we leverage this idea and use the latent like-
lihoods as a basis to predict the temperature value. Indeed,
we find empirically that this approach works well in prac-
tice. Rather than using an isotropic Guassian as the prior, we
instead introduce a Gaussian mixture prior, with component
for each class specified by the learnable parameters λk =
{µk, σk} ∈ RDz , such that pλ(z) = 1

K

∑
y pλy

(z | y).
This allows for an individual unimodal prior for each class;
preventing any issue with clusters for individual classes be-
ing placed in lower likelihood regions of the latent space,
as would be the case if an isotropic prior is used. With this
mixture prior, the evidence lower bound is given as

log p(Φ(x), y) ≥ ELBO[Φ(x), y] = (3)

Eqφ(z|Φ(x)) log
pϑ(Φ(x)|z)pλy

(z | y)
qφ(z|Φ(x))

,

where qφ(z|Φ(x)), pϑ(Φ(x)|z) and pλy (z | y) represent the
encoder, decoder and mixture prior component, the parame-
ters of the VAE are given as Θ = {ϑ, φ, λ1, . . . , λK}. The
parameters of the mixture prior are learnt alongside the pa-
rameters of the encoder and decoder(Tomczak and Welling
2018). The use of this mixture prior forces the aggregate
posterior for each class to match a Gaussian distribution,
i.e.

∑
x∈Xk

q(z|Φ(x)) ≈ N (z;µk, σk). This encourages the
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Figure 3: t-SNE plot for classes cat, colour indicates per
data-point contribution to ECE, pink indicates no contribu-
tion to ECE, yellow is positive contribution, purple is neg-
ative. Generally, samples with little contribution to calibra-
tion error (pink) are placed around the centre of the cluster,
unlike samples with a high contribution (yellow and pur-
ple) which are placed near the edges. Furthermore, incorrect
samples (black cross) are placed significantly far away from
the cluster centre.

representations for each class to cluster around a known dis-
tribution pλy

(z | y), which we will use to obtain a pseudo
likelihood to predict the temperature value. The choice of the
VAE was in part down to the motivation that samples which
contribute significantly to the ECE will have lower latent-
likelihood but also because empirically we found it worked
well in practice. Before outlining the details of the approach
in the next two subsections, we first provide evidence of this
empirical motivation to use a VAE.

We now perform a preliminary experiment, which serves
to investigate which samples in the latent representation con-
tribute the most to the calibration error. Specifically, we con-
struct a t-SNE plot for each class of CIFAR-10 but colour
code the points depending on their per-data-point contribu-
tions to the calibration error. This provides a visual method
for us to inspect where samples which harm calibration are
placed, which can be seen in Fig. 3. Here we can see that
data-points which do not contribute to the calibration error
tend to be placed near the centre of the cluster, and ones
which do, or are incorrect, indicated by a black cross, are
placed far from the centre. This highlights that the VAE is
able, to some extent, to provide a basis to predict the temper-
ature, we then utilise this representation to predict T through
a simple Multi Layer Perceptron.

Temperature Prediction Network
Given that the VAE structures the latent in space in a way
which makes it amendable to confidence prediction, we
learn a very simple MLP parameterised by θ, which pre-
dicts the temperature based on the latent embeddings, using
the cross entropy loss as an objective. Rather than using the
latent samples as input to the MLP, given the observations

in Fig. 3, we choose to predict the temperature as a func-
tion of the vector of log-likelihoods on all of the conditional
priors, specifically T = gθ(q̃) where g : RK → R is the
MLP which predicts the temperature and q̃ = {log pλy

(z |
y)|∀y}, i.e each element q̃i contains the log-likelihood of z
on the corresponding conditional prior pλy

(z | y). Evalu-
ating log pλy

(z | y) can be viewed as a pseudo likelihood
of x, consequently the module predicts the temperature as a
non-linear transform of a pseudo-likelihood of the sample.
It is also important to point out that due to the use of feature
space as the input, we are able to use small architectures,
making this approach very fast during training and at test
time. We represent a high level overview and the graphical
model in Fig. 4.

Figure 4: High level architecture. The off shelf neural-
network is represented by the red box, where the parameters
are left unchanged, the learnable VAE encoder is indicated
by q(z|Φ(x)), with the gθ(q̃) as the MLP predicting T .

Calibrated Training Details
The overall post-hoc learning algorithm is very simple and
the module can be trained in under a minute on an 8Gb Ti-
tan Xp for most datasets, depending on the validation set and
feature space size, we give an overview of the procedure in
Alg. 1. We combine learning the VAE and the temperature
prediction network into one objective. Specifically, we max-
imise the following objective

L(x, y) = ELBO[Φ(x)] + logCat(y | softmax(s/gθ(q̃))
(4)

with q̃ = {log pλy
(z | y)|∀y} z ∼ qϕ(z | x) and using

Normal distributions for z; Laplace distribution over Φ(x)
(L1 loss); and a Categorical over y. To train the VAE, we use
a held-out dataset from training the network, i.e. Xtrain ∩
Xcal = Ø. We used the Adam optimiser with a learning
rate of 0.001 and trained for 50 epochs. This is an additional
benefit of training the VAE on the Φ(x), as the feature space
has a lower dimensionallity and simpler structure than the
image space, leading to much faster training and the ability
to use simpler networks.

Calibration at Test Time During test time, the features
of the data point Φ(x) and predicted logits are computed
using the classifier s = f(Φ(x)), the temperature can then
be predicted through T = gθ(q̃), where q̃ = {log pλy

(z |
y)|∀y} with z = qϕ(z | x). The calibrated predictions are
then computed as p = σ(s/T ).
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Algorithm 1: Learning Adaptive Temperature

Require: Xcal,Ycal,Pcal

1: while not converged do
2: x,y← Random batch
3: ∇V AE ← ∇ELBO[Φ(x)]
4: q̃ = {log pλy (z | y)|∀y}} z ∼ q(z|Φ(x))
5: ∇T ← ∇ logCat(y; softmax(s/gθ(q̃))
6: {Θ, θ}t+1 ← {Θ, θ}t − α(∇V AE +∇T )
7: end while

5 Results
Before evaluating the model, we define the hypothesis we
are trying to test. Specifically, we want to evaluate if pre-
dicting the temperature on a per-data-point basis leads to
improved calibration over vanilla temperature scaling. Sec-
ondly, we wish to investigate how adaptive temperature per-
forms under dataset shift.

We performed our experiments on the WideResNet28-
10 (Zagoruyko and Komodakis 2016) archi-
tecture3. We report calibration results on CI-
FAR10/CIFAR100 (Krizhevsky, Hinton et al. 2009)
and Tiny-ImageNet (Torralba, Fergus, and Freeman 2008).
We conducted distribution-shit experiments using the
variants CIFAR10-C/CIFAR100-C to test for domain
shift (Hendrycks and Dietterich 2019). We used the
following as models for our evaluation:
• Cross Entropy Loss, due to it’s popularity and wide adop-

tion.
• Brier Score (Brier et al. 1950), due to it’s ability to obtain

well calibrated predictions (Mukhoti et al. 2020).
• Deep Ensembles (Lakshminarayanan, Pritzel, and Blun-

dell 2016), as it achieves state of the art results.4

Results are obtained for multiple seeds for Cross Entropy
and Brier Score, but only one seed for Deep Ensembles due
to the number of models needed.

Calibration
Here we evaluate how adaptive temperature scaling affects
standard calibration metrics compared to vanilla tempera-
ture scaling. We report results using the ECE, which divides
the probability into equally sized bins and then computes
the absolute difference between confidence and accuracy for
each bin before taking the average. However, the ECE is
known to be a biased estimator (Ding et al. 2020), with its
performance depending on the binning size and on the distri-
bution of samples in each bin. For this reason, the reliability
of the ECE as a miscalibration metric is being questioned
and several alternatives have been proposed (e.g. (Nixon
et al. 2019; Roelofs et al. 2022; Mukhoti et al. 2020)).
Among these, we choose to also use the AdaECE (Mukhoti
et al. 2020), which uses adaptive bin sizes to ensure each bin
contains the same number of samples.

3Results on ResNet50 (He et al. 2016) are in the Appendix.
4Applying adaptive temperature scaling to deep ensembles does

not necessarily preseve accuracy, however as we show in our exper-
iments the difference is negligible.

We report the results in Tab. 1 where it can be seen that
adaptive temperature scaling improves calibration compared
to standard temperate scaling. In all cases our method is
able to outperform vanilla temperature scaling, with large
improvements obtained when using the cross entropy loss,
e.g. 0.93 → 0.76 and 3.76 → 2.95 ECE for CIFAR10 and
CIFAR100 when using the WideResNet2810 Network5.

Model Scaling Accuracy ECE AdaECE

CIFAR10

CE - 95.52 ± 0.4 2.15 ± 0.1 2.13 ± 0.1
CE TS 95.52 ± 0.4 0.93 ± 0.2 0.98 ± 0.3
CE AdaTS 95.52 ± 0.4 0.76 ± 0.1 0.86 ± 0.2

Brier - 95.84 ± 0.1 0.92 ± 0.1 1.50 ± 0.1
Brier TS 95.84 ± 0.1 1.88 ± 0.2 1.94 ± 0.1
Brier AdaTS 95.84 ± 0.1 1.65 ± 0.1 1.61 ± 0.1

Ensm - 96.35 1.68 1.61
Ensm VTS 96.35 0.61 0.68
Ensm AdaTS 96.37 0.51 0.46

CIFAR100

CE - 80.71 ± 0.1 5.76 ± 0.1 5.70 ± 0.1
CE TS 80.71 ± 0.1 3.76 ± 0.2 3.68 ± 0.3
CE AdaTS 80.71 ± 0.1 2.95 ± 0.4 2.90 ± 0.4

Brier - 79.25 ± 0.1 4.19 ± 0.2 4.13 ± 0.2
Brier TS 79.25 ± 0.1 3.87 ± 0.6 3.90 ± 0.6
Brier AdaTS 79.25 ± 0.1 3.67 ± 0.8 3.64 ± 0.7

Ensm - 83.19 4.24 4.21
Ensm TS 83.18 3.71 3.55
Ensm AdaTS 83.22 2.95 2.66

Tiny-ImageNet

CE - 60.47 ± 0.1 7.54 ± 4.0 7.53 ± 4.0
CE TS 60.47 ± 1.1 6.28 ± 2.4 6.15 ± 2.4
CE AdaTS 60.04 ± 1.2 5.18 ± 1.4 5.17 ± 1.3

Brier - 50.23 ± 0.4 5.56 ± 0.6 5.52 ± 0.6
Brier TS 50.23 ± 0.4 4.55 ± 0.2 4.43 ± 0.6
Brier AdaTS 50.23 ± 0.4 4.43 ± 0.4 4.21 ± 0.5

Ensm - 66.16 6.21 6.19
Ensm TS 66.16 5.12 5.06
Ensm AdaTS 66.00 4.58 4.41

Table 1: Calibration results, here we can see that adaptive
temperate scaling is able to improve calibration on a variety
of models. Bold indicates the best result, or within one stan-
dard deviation of the best result.

Data-Shift A key hypothesis we want to test is how adap-
tive temperature scaling behaves under data-shift. Specifi-
cally, we use the widely used CIFAR10-C and CIFAR100-C
datasets, which are corrupted versions of the CIFAR10 and
CIFAR100 (Hendrycks and Dietterich 2019).

The dataset consists of standard CIFAR images which
have undergone 15 synthetic corruptions (e.g. noise, weather
conditions, image properties) at varying levels. Within this

5We include experiments for a standard autoencoder and MLP
in the appendix
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Figure 5: Left: How temperature varies when interpolat-
ing between class feature means on CIFAR-10. Right: His-
togram of temperature values for each image in CIFAR-10,
here we can see that typically objects have a lower tempera-
ture than animals, indicating they are easier to classify.

Figure 6: How AdaECE changes with varying levels of
motion-blur corruptions on CIFAR-10. Adaptive tempera-
ture consistently produces lower error rates.

scenario, the classifier should either be robust to such cor-
ruptions (retaining accuracy) or if the accuracy is compro-
mised, reduce the confidences accordingly. As such, we re-
port the test accuracy as well as ECE and AdaECE in Tab.
2, where adaptive temperature scaling shows improvements
over temperature scaling.

We also expect to see adaptive temperature scaling pro-
vide improvement over temperature scaling as the intensity
of corruptions are increased for CIFAR-10-C. We gener-
ate plots highlighting the AdaECE calibration metric as the
level of the corruption intensity is increased; the plot for
motion-blur is displayed in Fig. 6. Here despite a gen-
eral increase in error for all methods adaptive temperature
scaling consistently produces lower error rates than vanilla
temperature scaling (orange) and vanilla predictions (blue).
More examples are provided in the Appendix.

Behaviour of the Temperature Prediction Module

Can the temperature module predict high temperature in
uncertain regions? If yes, then we should see a change in

Model Scaling Accuracy ECE AdaECE

CIFAR10-C

CE - 75.07 ± 1.4 15.70 ± 1.1 15.68 ± 1.1
CE TS 75.07 ± 1.4 12.19 ± 0.9 12.17 ± 0.9
CE AdaTS 75.07 ± 1.4 12.03 ± 1.3 12.02 ± 1.3

Brier - 75.27 ± 0.7 16.21 ± 0.8 16.45 ± 0.7
Brier TS 75.27 ± 0.7 15.87 ± 0.4 15.86 ± 0.4
Brier AdaTS 75.27 ± 0.7 14.84 ± 0.8 14.81 ± 0.9

Ensm - 77.28 13.45 13.43
Ensm TS 77.28 10.12 10.09
Ensm AdaTS 77.21 9.29 9.25

CIFAR100-C

CE - 51.74 ± 0.4 18.63 ± 0.7 18.58 ± 0.7
CE TS 51.74 ± 0.4 12.28 ± 1.1 12.25 ± 1.1
CE AdaTS 51.74 ± 0.4 12.17 ± 0.1 12.15 ± 0.1

Brier - 50.58 ± 0.2 15.04 ± 1.3 15.02 ± 1.3
Brier TS 50.58 ± 0.2 9.81 ± 0.8 9.81 ± 0.8
Brier AdaTS 50.58 ± 0.2 9.56 ± 0.8 9.64 ± 0.7

Ensm - 54.61 14.81 14.78
Ensm TS 54.61 12.66 12.62
Ensm AdaTS 54.61 12.02 12.00

Table 2: Corrupted calibration results. Here we can see that
adaptive temperate scaling is able to improve calibration on
a variety of models. Bold indicates best results, or within
one standard deviation of best results.

the temperature as we traverse the feature the space6. To
conduct this experiment, inspired by the analysis provided
in (Pinto et al. 2021, 2022), we obtain the average fea-
ture representation for each class ϕk = 1

|Xk|
∑

x∈Xk
Φ(x)

and measure the temperature when interpolating between
two classes. i.e. we predict the temperature for the features
{αϕk(i) + (1 − α)ϕk(j)} α ∈ [0, 1]. We plot the interpo-
lation results in Fig. 5 (Left) for the classes in CIFAR-10,
where the horizontal axis represent α and the vertical axis
represents the temperature. For some classes we see a signif-
icant rise in the temperature as we interpolate between two
classes, e.g. automobile and bird. This highlights the
temperature prediction models ability to assign a low tem-
perature in regions that the classifier is certain about, e.g.
around the mean and a higher temperature in less certain re-
gions, e.g. heavily interpolated regions.

Interestingly, this feature is not present for all class pairs;
for some, e.g. cat and dog, where the temperature remains
high between classes. We hypothesise that this is due to an
interpolation between these classes being a plausible reali-
sation of an image, unlike for automobile and bird.

Misclassification Rejection
Calibrated uncertainty estimates should render that the mod-
els are able to reject samples in order to preserve the ac-
curacy. In this setting we report results for AURRA, which

6assuming features of clean and corrupted inputs are not
mapped exactly to the same point in the embedding space
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Methods AURRA-C AURRA-DS AURRA-E

CIFAR-100

None 93.07 ± 4.28 91.84 ± 5.24 92.95 ± 4.23
Vanilla TS 92.97 ± 4.25 91.70 ± 5.40 92.67 ± 4.41

Adaptive TS 93.20 ± 4.25 92.00 ± 5.39 92.99 ± 4.35

Tiny-ImageNet

None 84.21 ± 1.09 81.83 ± 0.64 83.69 ± 1.16
Vanilla TS 84.05 ± 1.09 81.63 ± 0.64 83.31 ± 1.11

Adaptive TS 84.68 ± 0.18 81.93 ± 0.28 84.09 ± 0.20

Table 3: AURRA scores for based on: confidence (AURRA-
C), Demster-Schafer (Sensoy, Kaplan, and Kandemir 2018)
(AURRA-DS) and entropy (AURRA-E). Unlike tempera-
ture scaling, adaptive temperature scaling does not suffer a
reduction in rejection ability. Higher is better.

Methods Accuracy (↑) ECE (↓) AdaECE (↓)
None 85.86 ± 2.48 8.35 ± 1.58 8.15 ± 1.68

Vanilla TS 85.86 ± 2.48 4.57 ± 0.32 4.24 ± 0.43
Adptive TS 85.86 ± 2.48 3.67 ± 1.41 3.35 ± 1.39

Table 4: CIFAR-10.1, here we see that adaptive temperature
scaling is able to provide slightly improved calibration on
the harder CIFAR-10.1 dataset.

computes the area under the rejection ratio curve (Nadeem,
Zucker, and Hanczar 2009). We display the results in Tab.
3, where we see that adaptive temperature scaling provides
a slight improvement over normal predictions and vanilla
temperature scaling. Furthermore, we would like to high-
light that even though vanilla temperature scaling improves
calibration, it does so at the expense of being able to reject
samples; unlike adaptive temperature scaling which is able
to provide the best of both worlds. It is important to stress
that this is a significant advantage, as we are able to pro-
vide better calibrated predictions whilst also increasing the
models ability to reject samples.

Evaluating Hardness
Given our models ability to predict the temperature, it should
naturally extract a notion of hardness, that is how difficult it
is to classify. One would expect hard samples to have a high
temperature and easy ones to have a low temperature. To
conduct this experiment, we utilise the CIFAR-10.1 (Recht
et al. 2018) datset, which contains “harder”, but statistically
similar images to CIFAR-10; conseqently this experiment is
not examining data-shift, but is instead measuring the perfor-
mance on challenging samples. We report the standard met-
rics: accuracy, ECE and AdaECE in Tab. 4, where we see
that adaptive temperature is able to obtain a lower calibra-
tion error than vanilla temperature scaling when the model
is trained using cross entropy loss.

A key hypothesis we wish to test is “does the model assign
higher temperatures to harder samples?”; harder samples
should naturally contain a greater amount of uncertainty in
their predictions. Consequently, we should see higher tem-

Figure 7: Histograms of temperature for correct predictions
for CIFAR-10 and CIFAR-10.1. Lower temperatures are typ-
ically assigned to correct (blue) samples from CIFAR-10 but
higher for incorrect samples (orange). We also see that hard
samples are assigned higher values, regardless of whether
they are correct or not (red and green) for CIFAR-10.1.

perature values assigned to harder samples (CIFAR-10.1)
than to easier ones (CIFAR-10). We test this hypothesis by
plotting the histogram of temperature values for CIFAR-10
and CIFAR-10.1, for both correct and incorrect predictions
in Fig. 7 (Right).

Here we see that generally, correct samples for CIFAR-
10 (blue) are assigned a lower temperature than for CIFAR-
10.1 (green), indicating that the adaptive temperature is able
to recognise harder samples and assign a higher temperature
increasing the uncertainty. We also see that adaptive temper-
ature predicts higher temperatures for incorrect predictions
on CIFAR-10 (orange), highlighting adaptive temperatures
ability to reduce the confidence of samples which are likely
to be incorrect. The same is not true for CIFAR-10.1, this is
due to the fact that the samples from CIFAR-10.1 are by de-
sign harder, adaptive temperature predicts higher values of
T than for the easier CIFAR10 counterpart.

6 Discussion

Here we have presented Adaptive Temperature Scaling
(AdaTS), a novel post-hoc method for predicting the temper-
ature on per-sample basis. Given a data-point, our method
can predict how confident the classifier should be about its
prediction, providing the critical flexibility to increase of de-
crease the confidence, leading to improved calibration error.
The adaptive temperature is also able to obtain better results
under distribution shifts. This is achieved by leveraging the
latent space of a VAE, which we found to naturally encap-
sulate and structure the information relating to confidence
appropriately. As the model is applied post-hoc, training is
very fast, requiring little computational overhead, further-
more it is very easy to implement.
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