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Abstract

Detecting out-of-distribution (OOD) samples is crucial to the
safe deployment of a classifier in the real world. However,
deep neural networks are known to be overconfident for ab-
normal data. Existing works directly design score function
by mining the inconsistency from classifier for in-distribution
(ID) and OOD. In this paper, we further complement this in-
consistency with reconstruction error, based on the assump-
tion that an autoencoder trained on ID data can not recon-
struct OOD as well as ID. We propose a novel method,
READ (Reconstruction Error Aggregated Detector), to unify
inconsistencies from classifier and autoencoder. Specifically,
the reconstruction error of raw pixels is transformed to la-
tent space of classifier. We show that the transformed recon-
struction error bridges the semantic gap and inherits detec-
tion performance from the original. Moreover, we propose an
adjustment strategy to alleviate the overconfidence problem
of autoencoder according to a fine-grained characterization
of OOD data. Under two scenarios of pre-training and re-
training, we respectively present two variants of our method,
namely READ-MD (Mahalanobis Distance) only based on
pre-trained classifier and READ-ED (Euclidean Distance)
which retrains the classifier. Our methods do not require ac-
cess to test time OOD data for fine-tuning hyperparameters.
Finally, we demonstrate the effectiveness of the proposed
methods through extensive comparisons with state-of-the-
art OOD detection algorithms. On a CIFAR-10 pre-trained
WideResNet, our method reduces the average FPR@95TPR
by up to 9.8% compared with previous state-of-the-art.

Introduction
Deep neural networks (DNNs) have attained high accu-
racy in image classification task (Zagoruyko and Komodakis
2016). However, the classifier often fails silently by pro-
viding overconfident prediction for input that belongs to a
distribution different from the in-distribution (ID) of train-
ing data. Therefore, it is necessary to detect those out-of-
distribution (OOD) samples for the deployment of classifier
in safety-critical applications, such as autonomous driving
and medical diagnosis.

For detecting OOD samples, the baseline method
(Hendrycks and Gimpel 2016) utilizes the maximum value
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of posterior distribution from the pre-trained softmax classi-
fier. They find that ID data tends to have greater prediction
probabilities than OOD data. By temperature scaling and in-
put perturbation, ODIN (Liang, Li, and Srikant 2017) im-
proves the baseline method. However, it has been observed
that softmax classifier can produce high confidence predic-
tion for inputs far away from the training data (Hendrycks
and Gimpel 2016; Nguyen, Yosinski, and Clune 2015). The
rationale is that the softmax classifier can have a label-
overfitted output space (Lee et al. 2018; Liu et al. 2020). In-
stead of using the softmax outputs for OOD detection, Maha
(Lee et al. 2018) assumes that pre-trained features of test
data can be fitted well by a class-conditional Gaussian dis-
tribution and defines the confidence score using the Maha-
lanobis distance with respect to the closest class-conditional
distribution in feature spaces. From probabilistic perspective
of decomposing confidence, G-ODIN (Hsu et al. 2020) uses
a dividend/divisor structure for classifier. Then, the distance
of input to the closest class is calculated with penultimate
layer output of classifier to detect OOD samples.

The above methods are based on the observation that
OOD data should be relatively far away from the ID classes.
In this paper, we further complement the discrepancy of dis-
tance to the closest class in latent space. Based on the as-
sumption that test data from the distribution same as training
data can be better reconstructed than other distributions, we
propose a reconstruction error aggregated detector (READ).
The extracted representations by autoencoder are enforced
to contain important regularities of the ID data. However,
OOD inputs are poorly reconstructed from the resulting rep-
resentations due to the irregular patterns. Our high-level idea
is to mine the discrepancy of ID and OOD from classifier
and autoencoder. To unify both discrepancies, i.e., the dis-
tance to the closest class and reconstruction error, we trans-
form raw pixels reconstruction error to the latent space of
classifier. Overall, the transformed reconstruction error ex-
hibits competitive OOD detection performance compared
with the raw pixels. Based on the same reconstruction er-
ror assumption, Gong et al. (Gong et al. 2019) and Zhang et
al. (Zhang et al. 2021) incorporate memory module to au-
toencoder and directly use raw pixels reconstruction error to
detect OOD samples. However, they find that this assump-
tion does not always hold and the autoencoder can recon-
struct specific OOD data well with low reconstruction error.
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Similar overconfident phenomenon for flow-based deep gen-
erative models is reported in (Choi, Jang, and Alemi 2018;
Nalisnick et al. 2018). For transformed reconstruction er-
ror, we observe that the same overconfidence problem. In
order to alleviate this problem, we further propose a fine-
grained characterization of OOD based on (Hsu et al. 2020).
Then, we introduce a coefficient to adjust transformed re-
construction error according to the data types. Empirical re-
sult shows that adjustment coefficient alleviates the overcon-
fidence problem. Under two scenarios of pre-training and
retraining, we propose corresponding variants of READ,
namely READ-MD (Mahalanobis Distance) only based on
pre-trained classifier and READ-ED (Euclidean Distance)
which retrains the modified classifier.

The complete illustration of our method is presented in
Figure 1. Through extensive and comprehensive evalua-
tions on common OOD detection benchmarks, both of our
methods, READ-MD and READ-ED, achieve state-of-the-
art performance compared with previously best methods un-
der corresponding scenarios. In ablation studies, we also
demonstrate the effectiveness of the proposed transformed
reconstruction error and adjustment coefficient. Note that
the choice of hyperparameters does not rely on test time
OOD data and no auxiliary OOD samples are provided
at training time.

Our main contributions are summarized as follows:
• We propose a novel reconstruction error aggregated de-

tector (READ) and its two variants, READ-MD and
READ-ED, which combine the distance to the closest
class and reconstruction error in the latent space of clas-
sifier.

• Against the overconfidence of transformed reconstruc-
tion error, we explain and alleviate this problem by a
fine-grained characterization of OOD data and an image
complexity based adjustment coefficient.

• We conduct comprehensive analysis with experiments
under both scenarios to demonstrate the effectiveness of
the proposed methods.

Related Work
Out-of-distribution Detection for Discriminative Models.
Given pre-trained classifier, a baseline method (Hendrycks
and Gimpel 2016) utilizing maximum softmax probability
(MSP) is proposed based on the observation that ID sam-
ples tend to have greater prediction probabilities than OOD
samples. However, the MSP score for OOD input is proven
to be arbitrarily high for neural networks with ReLU activa-
tion (Hein, Andriushchenko, and Bitterwolf 2019). Liang et
al. (Liang, Li, and Srikant 2017) improve the baseline with
temperature scaling and input perturbation techniques, and
further enlarge the gap between ID and OOD data. Instead of
deriving score function from label-overfitted output space,
Lee et al. (Lee et al. 2018) and Sastry et al. (Sastry and Oore
2020) design confidence score in feature spaces of the pre-
trained classifier. Liu et al. (Liu et al. 2020) propose energy
score which can be easily derived from the logit output of the
pre-trained classifier and demonstrate superiority over soft-
max score both empirically and theoretically. Sun et al. (Sun,

Guo, and Li 2021) show that a simple activation rectification
strategy termed ReAct can significantly improve OOD de-
tection performance. Recent work by Huang et al. (Huang,
Geng, and Li 2021) proposes a score function named Grad-
Norm from the gradient space. GradNorm utilizes the vector
norm of gradients, backpropogated from the KL divergence
between the softmax output and a uniform probability dis-
tribution.

Loosening the restriction on retraining, G-ODIN (Hsu
et al. 2020) modifies the classifying head with a dividend/-
divisor structure for decomposing confidence of predicted
class probabilities. Moreover, a modified input perturbation
strategy is proposed to remove the unrealistic requirement
of previous methods (Liang, Li, and Srikant 2017; Lee et al.
2018) that the choice of hyperparameters depends on test
time OOD data. In (Tack et al. 2020; Sehwag, Chiang, and
Mittal 2021), self-supervised learning is used to learn better
visual representations for OOD detection. In our work, we
further complement the discrepancy of ID and OOD from
discriminative models with reconstruction error.

Out-of-distribution Detection for Generative Models.
There are several works that detect OOD samples with gen-
erative models. The input data is defined as OOD if it lies in
the low-density regions. However, as shown in (Choi, Jang,
and Alemi 2018; Nalisnick et al. 2018), flow-based genera-
tive models (Kingma and Welling 2013; Van den Oord et al.
2016; Rezende, Mohamed, and Wierstra 2014) can assign
a high likelihood to OOD data. This problem is addressed
by considering a likelihood ratio (Ren et al. 2019), taking
the input complexity into account (Serrà et al. 2019), and
likelihood regret (Xiao, Yan, and Amit 2020). For autoen-
coder, the specific OOD inputs can be reconstructed well
demonstrated by (Denouden et al. 2018; Gong et al. 2019;
Zhang et al. 2021). In contrast, we transform the reconstruc-
tion error to latent space of classifier as a supplement and
propose an adjustment coefficient to alleviate the overconfi-
dence problem.

Characterization of Out-of-distribution Data. Accord-
ing to (Hsu et al. 2020), OOD data can be described from co-
variate shift and semantic shift perspectives. Works in OOD
detection task focus on detection of semantic shift OOD in-
puts. We further characterize the semantic shift OOD data
based on image complexity (Lin, Roy, and Li 2021; Serrà
et al. 2019) for explaining and alleviating the varying de-
tection performance of autoencoder. Some works propose
a fine-grained characteization of covariate shift OOD data
(Hendrycks and Dietterich 2019; Ovadia et al. 2019) for
evaluation of model, including corruption-shift for robust-
ness and domain-shift for domain generalization perfor-
mance. Note that our work is dedicated to finding new con-
cepts at inference time.

Method
Our method is illustrated in Figure 1. In this section, we first
formalize the out-of-distribution detection problem. Sec-
ondly, we present the overall concept of our algorithm. Then,
we detail the actual training process. To avoid confusion, the
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Figure 1: Illustration of the proposed reconstruction error aggregated detector (READ). Top: Architecture of the proposed de-
tector and preparatory phase (training and reconstruction). Bottom: Overview of the OOD detection and classification procedure
at detection phase (detection and classification).

score function is illustrated separately under both scenarios.
We explain the reconstruction error adjustment coefficient
based on image complexity. Finally, we present the OOD
detection and classification procedure at inference time.

Problem Statement
In this paper, we consider the OOD detection problem under
setting of multi-category image classification. Let X = Rd

denote the input space and Y = {1, ...,K} denote the corre-
sponding label space. We have access to the labeled training
set Dtrain

in = {(xi, yi)}ni=1, drawn i.i.d from the joint data
distribution PX×Y . Let fθ : X 7→ R|Y| denote a neural net-
work for the classification task, which predicts the label of
an input sample. Furthermore, we denote the marginal prob-
ability distribution on X by Pin

X , which represents the distri-
bution of in-distribution data. At inference time, the classi-
fier f will encounter a different distribution PX out over X of
out-of-distribution data. Out-of-distribution detection aims
to design a binary function estimator,

g(x) =

{
1, if x ∼ Pin

X
0, if x ∼ Pout

X

that classifies whether a test-time sample x ∈ X is generated
from Pin

X or Pout
X . In practice, the Pout

X is often defined by
an irrelevant distribution with non-overlapping labels with
regard to in-distribution data. Hence, the classifier f should
not predict OOD data.

Overall Concept
Based on the reconstruction error assumption, we introduce
autoencoder into out-of-distribution detection. As shown in
the Training part of Figure 1, the network architecture of our
method consists of two components: (a) a classifier (CLF)
containing feature extractor ffe for learning latent represen-
tations z with parameters θfe and classifying head fch with
parameters θch which takes z and classify them to known
classes. The notation p(y|x) denotes the prediction poste-
rior distribution for input x. (b) an autoencoder (AE), includ-
ing encoder fenc to compress high-dimensional data features
with parameters θenc and deconder fdec recreating x de-
noted by x̂ from the latent representation z with parame-
ters θdec. Different from works (Oza and Patel 2019; Zhang
et al. 2021) integrating classifier and autoencoder in one hy-
brid model simultaneously and utilizing raw pixels recon-
struction error as score function, the CLF and AE modules
in our method are independent of each other. Furthermore,
we transform the reconstruction error to CLF latent space in-
stead of pixels space for further aggregation. For one thing,
the transformed reconstruction error bridges the semantic
gap, and for another, we empirically show its superior de-
tection performance. Lee at el. (Lee et al. 2018) also remark
that OOD samples can be characterized better by latent em-
beddings of CLF, rather than the “label-overfitted” output
space. These take us to transform reconstruction error to the
latent space of CLF.

After transforming the reconstruction error, we combine
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it with the distance of the input x to the closest category
Ci in the latent space of CLF since the OOD inputs should
be relatively far away from the ID classes. We illustrate our
idea in latent space part of Figure 1. Obviously, the combina-
tion of transformed reconstruction error and distance to the
closest class in latent space brings better separability of ID
and OOD samples. We proceed with detailing the training
procedure, OOD detection and classification procedures.

Training
As described above, our architecture contains two indepen-
dent components: CLF and AE. In training stage, we need to
train CLF to classify ID samples correctly and train AE to
reconstruct original inputs. Specifically, our CLF is trained
to optimize parameters θfe and θch by minimizing the fol-
lowing cross-entropy loss function:

LCLF = E(x,y)∼Dtrain
in

[− logFy(x)] (1)

where Fy(x) is the softmax output of CLF. For the AE, the
parameters θenc and θdec are updated. The training mean-
squared error loss function is as follows:

LAE = Ex∼X train
in

[∥x− x̂∥22] (2)

where x̂ is the reconstruction output of AE and X train
in is

the ID training data without labels. The complete training
procedures are illustrated in Training part of Figure 1.

Transformed Reconstruction Error
To measure the distance of test input x to the closest cat-
egory Ci and reconstruction error in latent space Z , we
first need to model classes by ID training data. Consider-
ing the limitations of CLF retraining in practical problems,
we adopt two different class modeling strategies with cor-
responding distance metrics, namely Mahalanobis distance
and Euclidean distance.

Pre-training Scenario. Given the pre-trained CLF with-
out subsequent retraining, we use the same class modeling
method as (Lee et al. 2018). We define K class-conditional
distributions with a tied covariance Σ: p(ffe(x)|y = i) =
N (ffe(x)|µi,Σ), where µi is the mean of multivariate
Gaussian distribution of class i ∈ {1, ...K}, assuming that
the class-conditional distribution of CLF latent representa-
tions follows multivariate Gaussian distribution. Then, the
empirical class mean and covariance of training data are
computed to estimate the parameters of the class-conditional
distribution as follows:

µ̂i = Ex∼X train
in ,y=i[ffe(x)] (3)

Σ̂ = E(x,y)∼Dtrain
in

[(ffe(x)− µ̂y)(ffe(x)− µ̂y)
T] (4)

After modeling the ID classes with multivariate Gaussian
distributions, we measure distance between test input x and
the closest class-conditional distribution by Mahalanobis
distance, i.e.,

Scorecla = −min
i
(ffe(x)− µ̂i)

TΣ̂−1(ffe(x)− µ̂i)) (5)

Accordingly, the definition of reconstruction error between
original data x and reconstructed data x̂ in latent space of
CLF is presented below:

Scorerec = −((ffe(x)− ffe(x̂))
TΣ̂−1(ffe(x)− ffe(x̂))

(6)

Retraining Scenario. Loosening restriction on the re-
training of CLF, Hsu at el. (Hsu et al. 2020) change the orig-
inal CLF’s fch from fully connected layer to a dividend/di-
visor structure with a novel perspective of decomposed con-
fidence. Inspired by this, we modify the fch based on their
work as follows:

fchi
(z) =

hi(z)

g(z)
=

−∥z − ωi∥22
σ(BN(ωgz + bg))

(7)

where z is the output of ffe and BN denotes the batch nor-
malization layer. In proportion, the ID class centers are fit-
ted by learnable parameters of classifier, i.e., wi. Moreover,
the distance of input x to the closest class center and trans-
formed reconstruction error in latent space of CLF are de-
fined using Euclidean distance as follows:

Scorecla = −min
i
(∥z − ωi∥22) (8)

Scorerec = −(∥z − ẑ∥22) (9)

where ẑ is the output of ffe when the input is x̂. Note that
we do not use auxiliary OOD training data in both scenarios.

Adjustment Coefficient
Although the transformed reconstruction error brings su-
perior discrimination, we observe that the detection per-
formance is inconsistent across various OOD datasets, as
shown in Figure 2. Under different metrics, we find the same
three distribution patterns of OODs when CIFAR-10 is taken
as ID reference. Specifically, the distribution is skewed to the
smaller reconstruction error for “easy” OODs which contain
simple objects or constant pixels since simpler representa-
tions are required for their description. For “medium” OODs
which have the covariate same as ID, the distributions are
similar, i.e., it is indistinguishable of inputs by reconstruc-
tion error. In general, the fact that AE trained on ID data
can reconstruct the “easy” and “medium” OOD data
well with low reconstruction error poses a challenge to
OOD detection. Explaining from the multi-category learn-
ing process of AE, the diversity of training data increases the
difficulty of ID reconstruction compared to the single class.
Similarly, the overconfident phenomenon is also reported in
(Choi, Jang, and Alemi 2018; Denouden et al. 2018; Gong
et al. 2019; Nalisnick et al. 2018; Zhang et al. 2021). Lastly,
the reconstruction error distribution of “hard” OODs which
contain richer contents and diverse pixels compared to ID is
skewed to the right side as expected, and this is consistent
with the reconstruction error assumption. The rationale is
that the learned representations by AE are enforced to learn
important regularities of the ID data to minimize reconstruc-
tion errors. Hence, OOD data are poorly reconstructed from
the resulting representations.

14913



Figure 2: The reconstruction error distributions in different forms (CIFAR-10 as ID).

To sum up, the reconstruction error assumption does not
always hold for different kinds of OOD data and this con-
clusion is applicable to different reconstruction error forms.

In order to alleviate the above issue, we firstly propose a
fine-grained characterization of OODs based on (Hsu et al.
2020) to deal with different kinds of reconstruction error dis-
tribution patterns. Concretely, we adopt a complexity score
as a proxy measurement to quantify the “easiness” of OODs
by off-the-shelf lossless image compression algorithm (Lin,
Roy, and Li 2021; Serrà et al. 2019). As shown in Coeffi-
cient part of Figure 1, considering the essence of OOD de-
tection is to find novel concepts at inference time, we further
characterize semantic shift OOD to three kinds by the lower
and upper complexity bound of ID training data removing
extreme samples, i.e., the easiest and hardest top 5%. For
example, the SVHN test images which have smaller com-
plexities than lower complexity bound are categorized to
easy OOD. Note that the test images whose complexities lie
within the range of lower and upper complexity bound can
be medium OOD or ID. Then, according to the type of in-
puts, we adjust and re-scale transformed reconstruction error
with coefficient λ. We simply set λ to 0.5 for ID and keep
the original reconstruction error for easy and hard OODs.
Hence, the gap between easy, hard OODs and ID is enlarged.
Besides, the finer characterization of OODs can serve as a
principle to design equitable benchmark protocol. We notice
that the experimental setup of dividing a multi-class dataset
into ID and OOD adopted by (Ahmed and Courville 2020)
and many OSR works is inadequate to evaluate OOD detec-
tor because they only consider medium OODs.

Inference
At inference time, an input image x and corresponding re-
construction x̂ are forward propagated through ffe. For clas-
sification, the latent representation z is further propagated
through fch. For OOD detection, we use two metrics un-
der both scenarios to compute Scorecla and Scorerec in
latent space, i.e., Mahalanobis distance and Euclidean dis-
tance. We call the two variants of our method READ-MD
and READ-ED. Then, the Scorerec is adjusted by coefficient
λ based on image complexity. The final score is as follows:

Score = −Scorecla − λ ∗ Scorerec (10)
When the Score is above a detection threshold τ , we assign
the test input x as an ID sample. The above procedure is
illustrated in the lower part of Figure 1.

Additionally, we adopt input perturbation strategy pro-
posed in (Liang, Li, and Srikant 2017). They find that in-
put perturbation brings larger gain on Score for ID samples.
We modify original strategy by perturbing over Scorecla +
Scorerec. In detail, the perturbation of input x is given by:

x̃ = x− ϵ ∗ sign(−∇x(Scorecla(x) + Scorerec(x, x̂)))
(11)

Then, Score is recalculated with x̃ and x̂ as described
previously. Considering that test time OOD data is un-
available, the choice of hyperparameters depends on met-
ric FPR@TPR95 of ID and synthesized OOD data from
(Hendrycks, Mazeika, and Dietterich 2018), including uni-
form noise and 7 kinds corrupted ID samples, i.e., arithmetic
mean, geometric mean, jigsaw, speckle noised, pixel, RGB
ghosted, and inverted.

Experiments
In this section, we describe our experimental setup
and demonstrate the effectiveness of our proposed
method on various benchmark setups. Also, we con-
duct extensive ablation studies to explore different as-
pects of our algorithm. Code is publicly available at:
https://github.com/lygjwy/READ.

Setup
In-distribution Datasets. CIFAR-10 (contains 10 classes)
(Krizhevsky and Hinton 2009), and CIFAR-100 (contains
100 classes) (Krizhevsky and Hinton 2009) datasets are used
as in-distribution data. We use the standard split, training set
for training deep neural networks for image classification
and reconstruction, and test set for evaluation.

Out-of-distribution Datasets. Considering the fine-
grained characterization of OOD datasets, we use ten
common benchmarks used in (Liang, Li, and Srikant 2017;
Liu et al. 2020; Tack et al. 2020) for the comprehensiveness
and fairness of evaluation as OOD test datasets: SVHN
(Netzer et al. 2011), CIFAR-10, CIFAR-100, Textures
(Cimpoi et al. 2014), Places365 (Zhou et al. 2017), Tiny-
ImageNet (crop) (Deng et al. 2009), TinyImageNet (resize)
(Deng et al. 2009), LSUN (crop) (Yu et al. 2015), LSUN
(resize) (Yu et al. 2015), and iSUN (Xu et al. 2015). In
order to avoid overlapping with OOD validation data, we
do not adopt uniform noise data. TinyImageNet (crop),
TinyImageNet (resize), LSUN (crop), LSUN (resize), and

14914



ID OOD FPR@95TPR ↓ AUROC ↑
MSP / ODIN / Maha / Energy / READ-MD (ours)

C
IF

A
R

-1
0

SVHN 48.3 / 33.2 / 15.3 / 35.4 / 12.0 91.9 / 92.0 / 97.0 / 91.1 / 97.5
LSUN (c) 42.4 / 29.7 / 31.6 / 19.1 / 28.3 93.6 / 92.8 / 94.1 / 96.0 / 94.9
Textures 59.5 / 49.5 / 18.0 / 52.5 / 10.3 88.4 / 84.7 / 96.3 / 85.4 / 98.0

Places365 60.5 / 57.7 / 74.2 / 40.9 / 75.5 88.1 / 84.3 / 80.3 / 89.7 / 80.7
CIFAR-100 62.9 / 60.7 / 71.8 / 50.5 / 76.5 87.8 / 82.7 / 79.7 / 87.1 / 79.2

TIN (c) 54.3 / 37.3 / 37.7 / 38.3 / 19.9 90.5 / 91.6 / 92.9 / 91.5 / 96.5
LSUN (r) 52.0 / 26.5 / 34.1 / 27.9 / 9.4 91.5 / 94.6 / 94.2 / 94.1 / 98.3
TIN (r) 60.8 / 39.1 / 34.1 / 46.5 / 12.3 88.2 / 91.3 / 93.5 / 89.0 / 97.7
iSUN 56.4 / 32.4 / 33.5 / 33.9 / 12.5 89.9 / 93.4 / 93.9 / 92.6 / 97.6

average 55.2 / 40.7 / 38.9 / 38.3 / 28.5 90.0 / 89.7 / 91.3 / 90.7 / 93.4

C
IF

A
R

-1
00

SVHN 85.0 / 82.1 / 58.0 / 92.2 / 67.9 70.3 / 69.1 / 85.3 / 73.6 / 81.8
LSUN (c) 79.0 / 66.8 / 63.5 / 75.4 / 61.7 77.6 / 81.2 / 82.0 / 83.1 / 83.1
Textures 83.1 / 78.8 / 36.9 / 78.0 / 35.6 73.4 / 72.9 / 90.9 / 76.0 / 92.1

Places365 82.9 / 88.4 / 90.6 / 81.3 / 91.7 73.4 / 70.5 / 64.5 / 75.4 / 63.3
CIFAR-10 81.8 / 89.2 / 93.9 / 82.4 / 95.0 75.1 / 70.1 / 61.9 / 77.2 / 69.3

TIN (c) 78.5 / 74.4 / 41.5 / 63.1 / 29.8 76.5 / 80.0 / 91.0 / 81.2 / 93.6
LSUN (r) 82.5 / 73.9 / 22.7 / 62.0 / 10.9 74.5 / 80.3 / 95.7 / 79.1 / 97.6
TIN (r) 82.3 / 71.6 / 25.3 / 63.5 / 14.7 73.7 / 80.2 / 94.8 / 77.5 / 97.0
iSUN 83.1 / 70.6 / 26.2 / 62.3 / 15.5 75.0 / 81.4 / 94.3 / 78.9 / 96.3

average 82.0 / 77.3 / 51.0 / 73.4 / 47.0 74.4 / 76.2 / 84.5 / 78.0 / 84.9

Table 1: Comparison with post-hoc methods. ↑ (↓) indicates larger (smaller) values are better. Bold numbers are superior.

iSUN are provided as a part of (Liang, Li, and Srikant 2017)
code release.1 Note that we preprocess cropped datasets
with center clipping to remove the black border. We adopt
officially original versions of the remaining datasets. For
Places365, we use the same sampling as (Chen et al. 2021)
for experimental results reproduction. The sampling list
is publicly available at their code release.2 All images are
down-sampled to 32 × 32.

Networks and Training Details. We use WideResNet
(Zagoruyko and Komodakis 2016), with depth 40, width 2
and dropout rate 0.3 as the classifier backbone. For READ-
MD, we directly use the pre-trained classification model
provided by (Liu et al. 2020) at their code release.3 For
READ-ED, we follow training details of (Hsu et al. 2020),
the classifier is trained with batch size 128 for 200 epochs
with weight decay 0.0005. The optimizer is SGD with mo-
mentum 0.9, and the learning rate starts with 0.1 and de-
creases by factor 0.1 at 50% and 75% of the training epochs.
The weights in hi(x) of classifier are initialized with He-
initialization (He et al. 2015) and not applied with weight
decay. As for reconstruction model, we design an vanilla au-
toencoder with symmetrical structure, using ResNet18 (He
et al. 2016) as encoder to deal with complex multi-class
training data. The autoencoder is trained with batch size 128
for 2,000 epochs without weight decay. The optimizer is
Adam with learning rate 0.001, betas 0.9 and 0.999. Dur-
ing training, we augment our training data with random flip
and random cropping.

1https://github.com/facebookresearch/odin
2https://github.com/jfc43/informative-outlier-mining
3https://github.com/wetliu/energy ood

Evaluation Metrics. We measure the following metrics:
(1) the area under the receiver operating characteristic curve
(AUROC); and (2) the false positive rate of OOD examples
when true positive rate of ID data is at 95% (FPR@95TPR).

Results and Discussions
Main Results. The main results are reported in Table
1 and Table 2. For fair evaluation, we compare the pro-
posed methods with competitive OOD detection algorithms
which do not rely on auxiliary OOD training data. In Ta-
ble 1, we show the performance of our method and other
post-hoc methods based on discriminative models, includ-
ing MSP (Hendrycks and Gimpel 2016), ODIN (Liang, Li,
and Srikant 2017), Mahalanobis (Lee et al. 2018), and En-
ergy (Liu et al. 2020). Over a total of 18 combinations
of ID and OOD datasets, the proposed READ-MD algo-
rithm outperforms the previous competing methods in 12 of
them and gives second highest results on 2 of them.4 More-
over, we show that using READ-MD reduces the average
FPR@95TPR by 9.8% compared to the second best Energy
score when CIFAR-10 is ID, and 4.0% compared to the sec-
ond best Mahalanobis score when CIFAR-100 is ID. With-
out pre-training constraint, we present comparison results
of the proposed READ-ED with three variants of G-OIDN
(Hsu et al. 2020) in Table 2, i.e., G-ODIN-I, G-ODIN-C, and
G-ODIN-E. Our method reduces the average FPR@95TPR
by 1.5% on ID CIFAR-10 compared to G-ODIN. The im-
provement is enlarged to 2.3% on complex ID CIFAR-100.
In particular, both of our methods decrease the FPR@95TPR
metric for hard OODs by a large margin. It is worth not-

4This is based on the FPR@95TPR value; AUROC result is
comparable.
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ID OOD FPR@95TPR ↓ AUROC ↑
G-ODIN-I / G-ODIN-C / G-ODIN-E / READ-ED (ours)

C
IF

A
R

-1
0

SVHN 11.1 / 9.7 / 8.3 / 10.3 98.0 / 98.1 / 98.2 / 97.9
LSUN (c) 6.1 / 11.0 / 3.1 / 2.8 98.9 / 97.9 / 99.3 / 99.4
Textures 26.6 / 22.0 / 19.3 / 14.9 94.9 / 96.0 / 96.7 / 97.4

Places365 42.0 / 34.1 / 25.8 / 25.7 91.4 / 92.6 / 94.6 / 94.6
CIFAR-100 53.7 / 45.2 / 45.1 / 44.7 88.3 / 89.9 / 90.7 / 90.8

TIN (c) 8.1 / 20.9 / 8.1 / 4.2 98.5 / 96.2 / 98.5 / 99.1
LSUN (r) 3.0 / 13.4 / 2.7 / 1.3 99.3 / 97.4 / 99.3 / 99.7
TIN (r) 6.2 / 24.0 / 8.6 / 4.5 98.8 / 95.6 / 98.3 / 99.1
iSUN 2.8 / 16.1 / 2.7 / 1.5 99.3 / 97.0 / 99.3 / 99.6

average 17.7 / 21.8 / 13.7 / 12.2 96.4 / 95.6 / 97.2 / 97.5

C
IF

A
R

-1
00

SVHN 65.6 / 78.2 / 36.6 / 63.9 85.2 / 83.6 / 94.0 / 89.5
LSUN (c) 35.3 / 46.2 / 25.4 / 31.1 93.3 / 90.4 / 95.4 / 94.6
Textures 80.0 / 40.7 / 21.7 / 17.9 77.2 / 91.7 / 95.5 / 96.3

Places365 79.5 / 76.6 / 81.4 / 83.3 76.8 / 77.5 / 76.4 / 75.7
CIFAR-10 83.6 / 84.1 / 87.1 / 90.5 71.2 / 75.0 / 70.5 / 69.3

TIN (c) 63.1 / 51.0 / 25.9 / 14.5 87.1 / 90.1 / 95.3 / 97.5
LSUN (r) 75.6 / 56.7 / 22.9 / 6.5 85.2 / 88.6 / 95.7 / 98.7
TIN (r) 73.5 / 51.0 / 20.6 / 7.9 84.6 / 89.8 / 96.0 / 98.5
iSUN 78.6 / 57.0 / 24.7 / 10.5 83.8 / 88.7 / 95.2 / 97.9

average 69.5 / 60.1 / 38.5 / 36.2 82.7 / 86.1 / 90.4 / 90.9

Table 2: Comparison with retraining methods. ↑ (↓) indicates larger (smaller) values are better. Bold numbers are superior.

ing that retraining classifier slightly deteriorate the classifi-
cation performance, from 94.85% to 94.62% for CIFAR-10
and 75.83% to 75.08% for CIFAR-100.

Combination Study. To investigate how the performance
of OOD detection changes when combining Scorecla and
Scorerec, we present detailed results for separated and ag-
gregated OOD score in Table 3. Empirically, the combina-
tion brings lower FPR@95TPR and higher AUROC for most
OOD datasets across our methods. The rationale is that the
two scores represent the discrepancy of ID and OOD data
from different perspectives and achieve an effect of comple-
mentation.

−Scorecla /−Scorerec /−(Scorecla + Scorerec)
Method FPR@95TPR ↓ AUROC ↑

READ-MD 46.3 / 55.3 / 37.6 90.2 / 75.4 / 90.8
READ-ED 13.7 / 78.7 / 12.4 97.2 / 59.1 / 97.5

Table 3: OOD detection results for combination study. ↑ (↓)
indicates larger (smaller) values are better. The results are
averaged on nine OOD test datasets. Bold numbers are su-
perior results.

Ablation Study. Table 4 validates the contributions of re-
construction error adjustment coefficient and input pertur-
bation techniques. We report the average detection perfor-
mance over 9 OOD datasets when CIFAR-10 is used as ID.
After gradually applying techniques to our score function,
one can note that reconstruction error adjustment decreases
FPR@95TPR by 5.6% for READ-MD. We do not present
the ablation study result for READ-ED since the perturba-
tion magnitude ϵ searched by ID and synthetic OOD data

Method Adj Pert FPR@95TPR ↓ AUROC ↑

READ-MD

- - 37.6 90.8
- ✓ 29.9 92.7
✓ - 33.3 92.3
✓ ✓ 28.5 93.4

Table 4: OOD detection results for ablation study. ↑ (↓) in-
dicates larger (smaller) values are better. Bold numbers are
superior results. Adj and Pert mean adjustment and pertur-
bation respectively.

equals to 0. It is clear that the overconfidence problem for
easy OOD of AE is alleviated. Therefore, the proposed ad-
justment coefficient is an indispensable part that strengthens
our methods.

Conclusion
In this work, we propose READ for out-of-distribution de-
tection. The key idea is to unify distance to the closest
class and reconstruction error in the latent space of clas-
sifier. We show that the combination of transformed re-
construction error exhibits superior detection performance.
Against the overconfidence issue of autoencoder, we adjust
the transformed reconstruction error with an image com-
plexity based coefficient. As a result, the variants of READ,
namely READ-MD and READ-ED, both achieve state-of-
the-art performance in the corresponding scenario. Exten-
sive ablations provide further understandings of our meth-
ods. We hope future work will pay more attention to mining
and combining the inconsistencies of ID and OOD from dif-
ferent models.
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