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Abstract
The use of counterfactual explanations (CFXs) is an increas-
ingly popular explanation strategy for machine learning mod-
els. However, recent studies have shown that these explana-
tions may not be robust to changes in the underlying model
(e.g., following retraining), which raises questions about their
reliability in real-world applications. Existing attempts to-
wards solving this problem are heuristic, and the robustness to
model changes of the resulting CFXs is evaluated with only a
small number of retrained models, failing to provide exhaus-
tive guarantees. To remedy this, we propose ∆-robustness,
the first notion to formally and deterministically assess the
robustness (to model changes) of CFXs for neural networks.
We introduce an abstraction framework based on interval
neural networks to verify the ∆-robustness of CFXs against
a possibly infinite set of changes to the model parameters,
i.e., weights and biases. We then demonstrate the utility of
this approach in two distinct ways. First, we analyse the ∆-
robustness of a number of CFX generation methods from the
literature and show that they unanimously host significant de-
ficiencies in this regard. Second, we demonstrate how embed-
ding ∆-robustness within existing methods can provide CFXs
which are provably robust.

1 Introduction
Ensuring that machine learning models are explainable has
become a dominant goal in recent years, giving rise to
the field of explainable AI (XAI). One of the most popu-
lar strategies for XAI is the use of counterfactual expla-
nations (CFXs) (see (Stepin et al. 2021) for an overview),
favoured for a number of reasons including their intelligi-
bility (Byrne 2019), appeal to users (Barocas, Selbst, and
Raghavan 2020), information capacity (Kenny and Keane
2021) and alignment with human reasoning (Miller 2019).
A CFX for a given input to a model is defined as an altered
input for which the model gives a different output to that of
the original input. Consider the classic illustration of a loan
application, with features unemployed status, 25 years of age
and low credit rating, being classified by a bank’s model as
rejected. A CFX for the rejection could be an altered input
where a medium credit rating (with the other features un-
changed) would result in the loan being accepted, thus giv-

∗These authors contributed equally.
Copyright c© 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ing the applicant an idea of what is required to change the
output. Such correctness of the modified output in attaining
an alternative value is the basic property of CFXs, referred
to as validity, and is one of a whole host of metrics around
which CFXs are designed (e.g., see (Guidotti 2022)).

Our main focus in this paper is the metric of robustness.
This is most often defined as robustness to input pertur-
bations, i.e., the validity of CFXs when perturbations are
applied to inputs (Sharma, Henderson, and Ghosh 2020).
While this notion is useful, e.g., for protecting against ma-
nipulation (Slack et al. 2021), other forms of robustness can
be equally important in ensuring that CFXs are safe and can
be trusted. Robustness to model changes, i.e., the validity
of CFXs when model parameters are altered, has thus far
received little attention but is arguably one of the most com-
monly required forms of robustness, given that model pa-
rameters change every time retraining occurs (Rawal, Ka-
mar, and Lakkaraju 2020). Indeed, if a CFX is invalidated
with just a slight change of the training settings as in,
e.g., (Dutta et al. 2022), we may question its quality in terms
of real-world meaning. Consider the loan example: if, after
retraining, the loan applicant changing their credit rating to
medium no longer changes the output to accepted (thus in-
validating the CFX), the CFX was not robust to the model
changes induced during retraining. In this case, it might be
argued that the bank should have a policy to guarantee that
this CFX remains valid regardless, but this may have un-
favourable consequences for the bank. Therefore, it is desir-
able that the CFXs account for such robustness.

Though some have targeted robustness to model
changes1, e.g., (Upadhyay, Joshi, and Lakkaraju 2021;
Dutta et al. 2022), these approaches are heuristic, and may
fail to provide strong robustness guarantees. Formal meth-
ods for assessing CFXs along this metric are lacking. In-
deed, there are calls for both formal explanations for non-
linear models such as neural networks (Marques-Silva and
Ignatiev 2022) and for standardised benchmarking in evalu-
ating CFXs (Kenny and Keane 2021), voids we help to fill.

In this work we propose the novel notion of ∆-robustness
for assessing the robustness of CFXs for neural networks in
a formal, deterministic manner. We introduce an abstraction
framework based on interval neural networks (Prabhakar

1Referred to simply as robustness, unless otherwise specified.
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and Afzal 2019) to verify the robustness of CFXs against a
possibly infinite set of changes to the model parameters, i.e.,
weights and biases. This abstraction allows for a set of pa-
rameterisable shifts, ∆, in the model parameters, permitting
users to tailor the strictness of robustness (depending on the
application). For illustration, consider the loan example once
more: the bank knows the scale of typical changes in their
models and could encode this into ∆. The bank would then
be able to provide only ∆-robust CFXs such that they are
valid under any expected model shift during retraining (and
if a model shift exceeds ∆, they would have been alerted
to this fact). It can be seen, even from this simple example,
that ∆-robustness can provide priceless guarantees in high-
stakes or sensitive situations.

After covering related work (2) and the necessary prelim-
inaries (3), we make the following contributions.

• We introduce a novel notion of ∆-robustness of CFXs for
neural networks and propose an abstraction framework
based on interval neural networks to reason about it (4).
• We analyse the ∆-robustness of a number of CFX ap-

proaches in the literature, demonstrating the utility of the
notion and the lack of robustness in these methods (5.2).
• We demonstrate how the verification of ∆-robustness

can be embedded in existing methods to generate CFXs
which are provably robust (5.3).

We then conclude and look ahead to the various avenues
of future work highlighted by our approach (6). In sum-
mary, this work presents the first approach to formally rea-
son about and deterministically quantify CFXs’ robustness
to model changes in neural networks.2

2 Related Work
2.1 Approaches to CFX Generation
The seminal work of Wachter, Mittelstadt, and Russell
(2017) casts the problem of finding CFXs for neural net-
works as gradient-based optimisation against the input vec-
tor using a single loss function to address the validity of
counterfactual instances, as well as their closeness to the
input instances measured by some distance metric (proxim-
ity), while that of Tolomei et al. (2017) defines CFXs for
tree ensembles. Following these works, Mothilal, Sharma,
and Tan (2020) include stochastic point processes and novel
loss terms to generate a diverse set of CFXs. Poyiadzi et al.
(2020) formulate the problem in graph-theoretic terms and
apply shortest path algorithms to find CFXs that lie in
the data manifold of the dataset. Van Looveren and Klaise
(2021) address the same problem using class prototypes
found by variational auto-encoders or k-d trees. Moham-
madi et al. (2021) model the generation of CFXs as a con-
strained optimisation problem where a neural network is
encoded using Mixed-Integer Linear Programming (MILP).
Other methods that are able to generate CFXs for neural net-
works include that of Karimi et al. (2020), which reduces

2The code for the implementations and experiments is publicly
available at https://github.com/junqi-jiang/robust-ce-inn. The full
version of the paper including proofs and experimental details can
be found at https://arxiv.org/pdf/2208.14878.pdf.

CFX generation to a satisfiability problem, and that of Dandl
et al. (2020), which formulates the search for CFXs as a
multi-objective optimisation problem. Orthogonal to these
studies, ongoing works try to embed causal constraints when
finding CFXs (Mahajan, Tan, and Sharma 2019; Karimi,
Schölkopf, and Valera 2021; Kanamori et al. 2021). Finally,
there are a number of methods for generating CFXs for lin-
ear or Bayesian models, e.g., (Ustun, Spangher, and Liu
2019; Albini et al. 2020; Kanamori et al. 2020), but we omit
their details here since our focus is on neural networks.

2.2 Robustness of Models and Explanations

Robustness has been advocated in a number of ways in
AI, including by requiring that outputs of neural networks
should be robust to perturbations in inputs (Carlini and Wag-
ner 2017; Weng et al. 2018) or in model parameters (Tsai
et al. 2021). A number of works have drawn attention to
the links between adversarial examples and CFXs, given
that they solve a similar optimisation problem (Pawelczyk
et al. 2022; Freiesleben 2022). The protection which robust-
ness to input perturbations provides against manipulation
has been shown to be important also as concerns explana-
tions for models’ outputs (Slack et al. 2021) and a range of
methods for producing explanations which are robust to in-
put perturbations have been proposed, e.g., (Alvarez-Melis
and Jaakkola 2018; Sharma, Henderson, and Ghosh 2020;
Huai et al. 2022). Meanwhile, Qiu et al. (2022) use input
perturbations to ensure that explanations are robust to out-
of-distribution data, applying this technique to a range of
XAI methods for producing saliency maps. A causal view is
taken by Hancox-Li (2020) in discussing the importance of
robustness to input perturbations in explanations for models’
outputs. Here, it is argued that explanations should be robust
to different models, not only changes within the model (as
we target), if real patterns in the world are of interest. En-
suring that CFXs fall on the data manifold has been found
to increase this robustness to multiplicity of models (Pawel-
czyk et al. 2022). However, our focus is on formal approach
to robustness when changing the model parameters, rather
than the model itself. Notwithstanding the findings of re-
cent works demonstrating the significant effects of changes
to model parameters on the validity of CFXs (Rawal, Kamar,
and Lakkaraju 2020; Dutta et al. 2022), we are aware of only
two works which target the same form of robustness we con-
sider. Upadhyay, Joshi, and Lakkaraju (2021) design a novel
objective for CFXs which incorporates the model shift, i.e.,
the change in a model’s parameters which may be, for exam-
ple, weights or gradients. However, their approach is heuris-
tic and may fail to generate valid robust CFXs (we will dis-
cuss other limitations of this approach later in 5.2). Dutta
et al. (2022) define the metric of counterfactual stability, i.e.,
robustness to model changes induced during retraining, be-
fore introducing an approach which refines any base method
for finding CFXs in tree-based classifiers, rather than the
neural networks we target. In addition, both works evalu-
ate CFXs’ robustness by demonstrating CFXs’ validity on a
small number of retrained models and cannot exhaustively
prove the validity for other model changes.
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3 Preliminaries
Notation. Given an integer k, let [k] denote the set
{1, . . . , k}. Given a set S, let |S| denote its cardinality.
Given a vector x ∈ Rn we use x[i] to denote its i-th compo-
nent; similarly, for a matrix w ∈ Rn×Rm, we use w[i, j] to
denote element i, j. Finally, we use I(R) to denote the set of
all closed intervals over R.

Feed-forward neural networks. A feed-forward neural
network (FFNN) is a directed acyclic graph whose nodes
are structured in layers. Formally, we describe FFNNs and
the computations they perform as follows.

Definition 1. A fully-connected feed-forward neural net-
work (FFNN) is a tupleM = (k,N,E,B,Ω) where:

• k≥ 0 is the depth ofM;
• (N,E) is a directed graph;
• N =

⊔k+1
i=0 Ni is the disjoint union of sets of nodes Ni;

we call N0 the input layer, Nk+1 the output layer and Ni

hidden layers for i ∈ [k];
• E=

⋃k+1
i=1 (Ni−1×Ni) is the set of edges between layers;

• B:(N\N0)→R assigns bias to nodes in non-input layers;
• Ω:E → R assigns a weight to each edge.

In the following, unless specified otherwise, we assume
as given an FFNN M = (k,N,E,B,Ω), and we use Bi

to denote the vector of biases assigned to layer Ni and Wi

to denote the matrix of weights assigned to edges between
nodes in subsequent layers Ni−1, Ni, for i ∈ [k + 1].

Definition 2. Given an input x ∈ R|N0|, an FFNNM com-
putes an outputM(x) defined as follows. Let:

• V0 = x;
• Vi = σ(Wi · Vi−1 + Bi) for i ∈ [k], where σ is

an activation function applied element-wise. For Vi =
[vi,1, . . . , vi,|Ni|], vi,j is the value of the j-th node in
layer Ni.

Then,M(x) = Vk+1 = Wk+1 · Vk +Bk+1.

The Rectified Linear Unit (ReLU) activation, defined as
σ(x) =∆ max(0, x), is perhaps the most common choice
for hidden layers. We will therefore focus on FFNNs using
ReLU activations in this paper.

Definition 3. Consider an input x ∈ R|N0| and an FFNN
M. We say thatM classifies x as c, denoted (with an abuse
of notation)M(x) = c, if c ∈ arg maxi∈[|Nk+1|]M(x)[i].

For ease of exposition, 4 will focus on FFNNs used for
binary classification tasks with |Nk+1| = 2. The same ideas
also apply to other settings, e.g., multiclass classification or
binary classification using a single output node with sigmoid
activation, which we use in our experiments in 5.

Counterfactual explanations. Consider an FFNN M
trained to solve a binary classification problem. AssumeM
produces a classification outcome M(x) = c for input x.
Intuitively, a CFX is a new input x′ which is similar to x
and for whichM(x′) = 1 − c. Formally, existing literature
characterises CFXs in terms of the solution space of a Con-
strained Optimisation Problem (COP) as follows.

Definition 4. Consider an input x ∈ R|N0| and a binary
classifier M s.t. M(x) = c. Given a distance metric d :
R|N0| × R|N0| → R, a CFX is any x′ such that:

arg min
x′

d(x, x′) (1a)

subject to M(x′) = 1− c, x′ ∈ R|N0| (1b)

A CFX thus corresponds to the closest input x′ (Eq. 1a)
belonging to the original input space that makes the clas-
sification flip (Eq. 1b). A common choice for the distance
metric d is the normalised L1 distance (Wachter, Mittel-
stadt, and Russell 2017). Under this choice, CFX generation
for FFNNs with ReLU activations can be solved exactly via
MILP – see, e.g., (Mohammadi et al. 2021). Finally, we
mention that the optimisation problem can also be extended
to account for additional CFX properties mentioned in 2.1.

We conclude with an example which summarises the main
concepts presented in this section.
Example 1. Consider the FFNN M below where weights
are as indicated in the diagram, biases are zero and R
denotes ReLU activations. The network receives a two-
dimensional input x = [x0, x1] and produces a two-
dimensional output y = [y0, y1].

x0

x1

R

R

y0

y1

1

−1

−1

1

1

0

0

1

The symbolic expressions for the output components are
y0 = max(0, x0 − x1) and y1 = max(0, x1 − x0). Given
a concrete input x = [1, 2], we haveM(x) = 1. A possible
CFX may be x′ = [2.1, 2], withM(x′) = 0.

4 ∆-Robustness via Interval Abstraction
The COP formulation of CFXs presented in Definition 4
focuses on finding CFXs that are as close as possible to
the original input. The rationale behind this choice is that
changes in input features suggested by minimally distant
CFXs likely require less effort, thus making them more eas-
ily attainable by users in real-world settings. However, it has
been shown (Rawal, Kamar, and Lakkaraju 2020; Dutta et al.
2022) that slight changes applied to the classifier, e.g., fol-
lowing retraining, may impact the validity of CFXs, particu-
larly those which are minimally distant from the original in-
put. This fragility of CFXs can have troubling implications,
both for the users of explanations, and for those who gener-
ate them, as discussed in 1.

This state of affairs motivates the primary objective of
this work: can we generate useful CFXs for FFNNs that are
provably robust to model changes?

In the following we formalise the notion of robustness we
target and introduce an abstraction-based framework to rea-
son about this notion in CFXs for FFNNs. To this end, we
begin by defining a notion of distance between FFNNs.
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Definition 5. Consider two FFNNs M = (k,N,E,B,Ω)
and M′ = (k′, N ′, E′, B′,Ω′). We say that M and M′
have identical topology if k = k′ and (N,E) = (N ′, E′).

Definition 6. Let M = (k,N,E,B,Ω) and M′ =
(k,N,E,B′,Ω′) be two FFNNs with identical topology. For
0≤p≤∞, the p-distance betweenM andM′ is:

‖M−M′‖p =

k+1∑
i=1

|Ni|∑
j=1

|Ni−1|∑
l=1

|Wi[j, l]−W ′i [j, l]|p
 1

p

Intuitively p-distance compares the weight matrices ofM
andM′ and computes their distance as the p-norm of their
difference. Biases have been omitted from Definition 6 for
readability; the definition can be readily extended to include
biases too, as is the case in our implementation. Using this
notion we can characterise a model shift as follows.
Definition 7. Given 0≤p≤∞, a model shift is a function S
mapping an FFNNM into anotherM′=S(M) such that:

• M andM′ have identical topology;
• ‖M−M′‖p > 0.

Model shifts are typically observed in real-world appli-
cations when a model is regularly retrained to incorporate
new data. In such cases, models are likely to see only small
changes at each update. In the same spirit as (Upadhyay,
Joshi, and Lakkaraju 2021), we capture this as follows.
Definition 8. Given an FFNN M, δ ∈ R>0 and 0 ≤ p ≤
∞, the set of plausible model shifts is ∆ = {S | ‖M −
S(M)‖p ≤ δ}.

Plausibility implicitly bounds the magnitude of weight
and bias changes that can be effected by a model shift S,
as stated in the following.
Lemma 1. Consider an FFNN M and a set of plausible
model shifts ∆. LetM′ = S(M) for S ∈ ∆. The magnitude
of weight and bias changes inM′ is bounded.

In essence, it is possible to show that each weight (and
bias) can change up to a maximum of ±δ following the ap-
plication of a model shift S ∈ ∆.
Remark 1. In the following we use W ′i [j, l] =∆ Wi[j, l] − δ
and W ′i [j, l] =∆ Wi[j, l] + δ to denote, respectively, the min-
imum and maximum value each weight W ′i [j, l] can take in
M′= S(M) for any S ∈ ∆ and i ∈ [k + 1], j ∈ [|Ni|]
and l ∈ [|Ni−1]|. (Analogous notation is used for biases.)
These bounds are sound, but also conservative, i.e., they
may result in models that exceed the upper bound on the
p-distance for some choice of p. As an example, consider
what happens when W ′i [j, l] = W ′i [j, l] for each i ∈ [k+ 1],
j ∈ |Ni|, l ∈ |Ni−1|. These valuations satisfy Definition 8
when p =∞, but fail to do so for, e.g., p = 2.

Despite weight changes being bounded, several different
model shifts may satisfy the plausibility constraint. To guar-
antee robustness to model changes, one needs a way to rep-
resent and reason about the potentially infinite family of net-
works originated by applying each S ∈ ∆ toM compactly.

We introduce an abstraction framework that can be used to
this end. We begin by recalling the notion of interval neural
networks, as introduced in (Prabhakar and Afzal 2019).
Definition 9. An interval neural network (INN) is a tuple
I = (k,N,E,BI ,ΩI) where:
• k,N,E are as per Definition 1;
• BI : (N \N0)→ I(R) assigns interval-valued biases to

nodes in non-input layers;
• ΩI :E→I(R) assigns interval-valued weights to edges.

Example 2. The diagram below shows an example of an
INN. As we can observe, the INN differs from a standard
FFNN in that weights and biases are intervals.

x0

x1

R

R

y0

y1

[0.9.1.1]

[−1.1,−0.9]

[−1.1,−0.9]

[0.9, 1.1]

[0.9.1.1]

[−0.1, 0.1]

[−0.1, 0.1]

[0.9.1.1]

In the remainder, unless specified otherwise, when using
an INN we will assume its components are as in Definition 9.
We will use boldface notation to denote interval-valued bi-
ases Bi and weights Wi. The computation performed by an
INN differs from that of an FFNN as follows.
Definition 10. Given an input x ∈ R|N0|, an INN I com-
putes an output I(x) defined as follows. Let:
• V0 = [x, x];
• Vi = σ(Wi · Vi−1 + Bi) for i ∈ [k]. For Vi =

[vi,1, . . . ,vi,|Ni|], vi,j = [vli,j , v
u
i,j ] is the interval of val-

ues for the j-th node in layer Ni.
Then, I(x) = Vk+1 = Wk+1 ·Vk + Bk+1.

Thus, an INN computes an interval for each output node.
These intervals contain all possible values that each output
can take under the valuations induced by BI and ΩI . As a
result, the classification semantics of an INN is as follows.
Definition 11. Consider an input x ∈ R|N0|, a binary la-
bel c and an INN I. We say that I classifies x as c, written
I(x) = c, if vlk+1,c > vuk+1,1−c.

Figure 1 provides a graphical representation of this classi-
fication semantics. Using the INN as a computational back-
bone, we can now define the interval abstraction of an FFNN
which is central to this work.
Definition 12. Consider an FFNNM and a set of plausible
model shifts ∆. We define the interval abstraction ofM un-
der ∆ as the interval neural network I(M,∆) such that M
and I(M,∆) have identical topology and the interval-valued
biases/weights of I(M,∆) are:

• Bi[j] = [B′i[j], B
′
i[j]] for i ∈ [k + 1] and j ∈ [|Ni|];

• Wi[j, l] = [W ′i [j, l],W
′
i [j, l]] for i ∈ [k + 1], j ∈ [|Ni|]

and l ∈ [|Ni−1|].

Lemma 2. I(M,∆) over-approximates the set of modelsM′
that can be obtained fromM via ∆.
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c

1− c

I(x) = c

c

1− c

I(x) 6= c

1− c
c

I(x) 6= c

Figure 1: Graphical comparison of output intervals for class
c and class 1 − c, for Definition 11. When I(x) = c, the
output range for class c is always greater than that of class
1− c. Otherwise, we say I(x) 6= c.

Lemma 2 states that I(M,∆) contains all models that can
be obtained from ∆ and possibly more, but not fewer. For
some values of p, the interval abstraction may cease to be an
over-approximation and encode exactly the models that can
be obtained fromM via ∆, e.g., when p =∞.

A model shift S, although plausible, may result in changes
to the classification of the original input x. When this hap-
pens, robustness of explanations becomes vacuous. For this
reason, we will focus on sound shifts, formulated as follows.
Definition 13. Consider an input x ∈ R|N0| and an FFNN
M s.t.M(x) = c. Let I(M,∆) be the interval abstraction of
M under a set of plausible model shifts ∆. We say that ∆ is
sound if I(M,∆)(x) = c.

We are now ready to formally define the CFX robustness
property that we target in this work.

Definition 14. Consider an input x ∈ R|N0| and an FFNN
M s.t. M(x) = c. Let I(M,∆) be the interval abstraction
ofM under a sound set of plausible model shifts ∆. We say
that a CFX x′ is ∆-robust iff I(M,∆)(x

′) = 1− c.
We illustrate these concepts in the following example.

Example 3. We observe that the INN in Example 2 corre-
sponds to the interval abstraction I(M,∆) of the FFNNM in
Example 1, obtained for ∆ = {S | ‖M−S(M)‖∞ ≤ 0.1}.

The symbolic expressions for the outputs of the INN are:

y0 = [0.9, 1.1] ·max(0, [0.9, 1.1] · x0 + [−1.1,−0.9] · x1)+

[−0.1, 0.1] ·max(0, [−1.1,−0.9] · x0 + [0.9, 1.1] · x1)

y1 = [0.9, 1.1] ·max(0, [0.9, 1.1] · x1 + [−1.1,−0.9] · x0)+

[−0.1, 0.1] ·max(0, [−1.1,−0.9] · x1 + [0.9, 1.1] · x0)

Given a concrete input x = [1, 2], we observe that
I(M,∆)(x) = 1 and thus establish that ∆ is sound. We
now check if the old CFX x′ = [2.1, 2] is still valid un-
der the model shifts captured by ∆. The INN outputs y0 =
[−0.031, 0.592] and y1 = [−0.051, 0.392], indicating that
I(M,∆)(x

′) 6= 0. We thus conclude that x′ is not ∆-robust.
Assume now a different CFX x′′ = [2.6, 2] is computed.

The outputs of I(M,∆) for x′′ are y0 = [0.126, 1.166]

and y1 = [−0.106, 0.106]. Since yl0 > yu1 , we have
I(M,∆)(x

′′) = 0, proving that the new CFX is ∆-robust.
As shown in Example 3, the interval abstraction I(M,∆)

can be used to prove whether a given CFX x′ is ∆-robust.
Indeed, when I(M,∆)(x) = c, we can conclude that the clas-
sification of x′ will remain unchanged for all S in ∆. Check-
ing Definition 11 requires the computation of the output

reachable intervals for each output of the INN; for ReLU-
based FFNNs, we use the MILP formulation of (Prabhakar
and Afzal 2019).

5 ∆-Robustness in Action
In 4 we laid the theoretical foundations of an abstraction
framework based on INNs that allows to reason about the ro-
bustness of CFXs compactly. In this section we demonstrate
the utility thereof by considering two distinct applications:
• in 5.2, we show how the interval abstraction can be used

to analyse the ∆-robustness of different CFX algorithms
across model shifts of increasing magnitudes;

• in 5.3, we propose an algorithm that uses interval abstrac-
tions to generate provably robust CFXs.

Our experiments, conducted on both homogeneous (con-
tinuous features) and heterogeneous (mixed continuous and
discrete features) data types (see 5.1), show that our ap-
proach provides a measure for assessing the robustness of
CFXs generated by other SOTA methods, but it can also be
used to devise algorithms for generating CFXs with provable
robustness guarantees, in contrast with existing methods.

5.1 Experimental Setup
We consider four datasets with a mixture of heterogeneous
and continuous data. We refer to them as credit (heteroge-
neous) (Dua and Graff 2017), small business administration
(SBA) (using only their continuous features) (Li, Mickel, and
Taylor 2018), diabetes (continuous) (Smith et al. 1988) and
no2 (continuous) (Vanschoren et al. 2013).

The first two datasets contain known distribution shifts
(Upadhyay, Joshi, and Lakkaraju 2021). We use D1 (D2) to
denote the dataset before (respectively after) the shift. For
the other datasets, we randomly shuffle the instances and
separate them into two halves, again denoted as D1 and D2.
For each dataset, we use D1 to train a base model, and use
instances in D2 to generate model shifts via incremental re-
training. We use p =∞ in all experiments that follow.

CFXs are generated using the following SOTA algo-
rithms. We consider Wachter et al. (Wachter, Mittelstadt, and
Russell 2017) (continuous data only), Proto (Van Looveren
and Klaise 2021) and a method inspired by (Mohammadi
et al. 2021). The first two implement CFX search via gradi-
ent descent, while the third uses MILP, and is thus referred to
here as MILP. We also include ROAR (Upadhyay, Joshi, and
Lakkaraju 2021), a SOTA framework specifically designed
to generate robust CFXs.

5.2 Analysing ∆-Robustness of CFXs
This experiment is designed to show that interval abstrac-
tions can provide an effective tool to analyse CFXs gen-
erated by SOTA algorithms. For each dataset, we identify
the largest δmax that results in a set ∆ that is sound for at
least 50 test instances in D1. This is achieved by retrain-
ing the base model using increasingly large portions of D2.3

3In real-world applications, values of δ could be empirically es-
timated by model developers by observing retraining histories and
calculating the p-distances between subsequent retraining steps.
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(a) SOTA algorithms, diabetes (b) SOTA algorithms, no2 (c) SOTA algorithms, SBA (d) SOTA algorithms, credit

(e) robust algorithms, diabetes (f) robust algorithms, no2 (g) robust algorithms, SBA (h) robust algorithms, credit

Figure 2: Evaluation of ∆-validity. (a-d, see 5.2): SOTA algorithms fail to generate completely robust CFXs as δ increases.
(e-h, see 5.3): Embedding ∆-robustness in the search process of the same algorithms results in more provably robust CFXs.

We then use the CFX generation algorithms to produce 50
CFXs. We evaluate their robustness for model shifts of mag-
nitude up to δmax using ∆-validity, the percentage of test
instances whose CFXs are ∆-robust.

Figures 2(a-d) report the results of our analysis for the
four datasets. As we can observe, all methods generate CFXs
that tend to be valid counterfactuals for the original model
(δ = 0), with ROAR having lower results in most cases.
This is because ROAR approximates the local behaviours
of FFNNs using LIME (Ribeiro, Singh, and Guestrin 2016),
which may cause a slight decrease in the counterfactual va-
lidity (Upadhyay, Joshi, and Lakkaraju 2021). However, the
picture changes as soon as small model shifts are applied.
The ∆-validity values of Wachter et al., Proto and MILP
quickly drop to zero even for model shifts of magnitude
equal to 10% of δmax, revealing that these algorithms are
prone to generating non-robust CFXs when even very small
shifts are seen in the model parameters. ROAR exhibits a
higher degree of ∆-robustness, as expected. However, its
heuristic nature does not allow to reason about all possible
shifts in ∆, which clearly affects the ∆-robustness of CFXs
as δ grows larger.

All methods considered here (Wachter et al, Proto, MILP
and ROAR) return a single CFX for each input. However, ∆-
robustness can also be used with methods generating mul-
tiple CFXs, e.g., as with the DiCE method of (Mothilal,
Sharma, and Tan 2020). In these latter cases, ∆-robustness
can be deployed as a filter, with customisable coarseness
achieved by varying ∆, to obtain sets of diverse and ∆-
robust CFXs. When doing so, experiments show a similar
decrease of ∆-validity as in Figure 2(a-d). We leave fur-
ther exploration of this application of ∆-robustness to future
work.

5.3 Generating Provably Robust CFXs

Our earlier experiments reveal that SOTA algorithms, in-
cluding those that are designed to be robust, often fail to
generate CFXs that satisfy ∆-robustness. Thus, the prob-
lem of generating CFXs that are provably robust against
model shifts remains largely unsolved. We will now show
how ∆-robustness can be used to guide CFX generation al-
gorithms toward CFXs with formal robustness guarantees.
Our proposed approach, shown in Algorithm 1, can be ap-
plied on top of any CFX generation algorithm and proceeds
as follows. First, an interval abstraction is constructed for the
FFNNM and set ∆; the latter is then checked for soundness
(Definition 13). Then, the search for a CFX starts. At each
iteration, a CFX is generated using the base method and is
tested for ∆-robustness using the interval abstraction (Def-
inition 14). If the CFX is robust, then the algorithm termi-
nates and returns the solution. Otherwise, the search contin-
ues, allowing for CFXs of increasing distance to be found.
These steps are repeated until a threshold number of itera-
tions t is reached. As a result, the algorithm is incomplete,
in that it may report that no ∆-robust CFX can be found
within t steps (while one may exist for larger t).

We instantiated Algorithm 1 on the non-robust base meth-
ods, i.e., Wachter et al, Proto and MILP. We use Wachter et
al-R, Proto-R and MILP-R, respectively, to denote the re-
sulting algorithms. For each dataset, we use the same δmax

identified in 5.2 to create sound sets of model shifts ∆. The
iterative procedure of Algorithm 1 generates CFXs of in-
creasing distance until the target robustness ∆ is satisfied.
To increase the distance of CFXs for Wachter et al and Proto
we iteratively increase the influence of the loss term pertain-
ing to CFX validity. For MILP, instead, we require that the
probability of the output produced by the classifier to subse-
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diabetes, target δ = 0.11 no2, target δ = 0.02 SBA, target δ = 0.11 credit, target δ = 0.05
vm1 vm2 `1 lof vm1 vm2 `1 lof vm1 vm2 `1 lof vm1 vm2 `1 lof

Wachter et al. 100% 0% 0.051 0.96 100% 32% 0.035 1.00 92% 92% 0.018 -0.57 - - - -
Wachter et al.-R 100% 100% 0.122 1.00 100% 100% 0.084 1.00 92% 92% 0.023 -0.78 - - - -

Proto 100% 18% 0.063 1.00 100% 32% 0.036 1.00 90% 6% 0.008 0.60 24% 22% 0.313 -1.00
Proto-R 100% 96% 0.104 1.00 100% 100% 0.069 1.00 90% 88% 0.011 -0.02 32% 30% 0.300 -1.00

MILP 100% 0% 0.049 0.96 100% 32% 0.032 1.00 100% 4% 0.007 0.56 100% 74% 0.024 1.00
MILP-R 100% 100% 0.212 -0.48 100% 100% 0.059 1.00 100% 100% 0.018 -0.88 100% 100% 0.031 1.00
ROAR 82% 14% 0.078 0.95 88% 34% 0.074 1.00 82% 78% 0.031 -0.80 62% 60% 0.047 1.00

Table 1: Evaluating the robustness of CFXs for base methods and their ∆-robust variants.

Algorithm 1: Generation of robust CFXs

Require: FFNNM, input x such thatM(x) = c,
set of plausible model shifts ∆ and threshold t

Step 1: build interval abstraction I(M,∆).
Step 2: check soundness of ∆
if ∆ is sound then

while iteration number < t do
Step 3: compute CFX x′ for x andM

using base method
if I(M,∆)(x

′) = 1− c then
return x′

else
Step 4: increase allowed distance of next CFX
Step 5: increase iteration number

return no robust CFX can be found

quent CFXs increases at each iteration (all test instances are
classified as class 0, and the desired class is class 1). In prac-
tice, the number of iterations will depend on the choice of δ
and the magnitude of step changes of the hyper-parameters,
which is specific to each base method (e.g., 25, 6, 35 on aver-
age for Wachter et al-R, Proto-R and MILP-R, respectively).

Figures 2(e-h) show the results obtained. Overall, we
can observe that Algorithm 1 successfully increases the ∆-
validity of CFXs generated by base methods (compared with
Figures 2(a-d)). MILP-R appears to be the best performing
algorithm, generating CFXs that always satisfy the given
robustness target. The robustness of CFXs computed with
Wachter et al and Proto also drastically improves across dif-
ferent datasets. In some cases our algorithm fails to pro-
duce robust CFXs for high values of δ, yet a considerable
improvement in robustness can be observed overall (com-
pare, e.g., Figures 2a and 2e). Interestingly, simply by al-
tering the hyperparameters of the base methods not specifi-
cally designed for robustness purposes, they produced more
∆-robust results than ROAR.

We also evaluated the extent to which ∆-robustness to
smaller model shifts can help mitigate the effect of more
significant model shifts. To this end, for each base method,
we generated ∆-robust CFXs for a model trained on D1.
We then generated a new model retrained using bothD1 and
D2 and evaluated the validity of CFXs for the new model.
We highlight that this retraining procedure may result in
model shifts that are larger than the ∆ targeted for the origi-
nal model. As such, ∆-robustness may not be guaranteed on

the new model. For each algorithm and dataset, we analyse
the following metrics: vm1, the percentage of CFXs that are
valid on the original model; vm2, the percentage of CFXs
that remain valid after retraining; `1, the `1 distance from the
input; lof, the local outlier factor (+1 for inliers, −1 other-
wise), used to test if an instance is within the data manifold.
We average `1 and lof over the generated CFXs.

Table 1 reports the results obtained for this second set of
experiments. We observe that enforcing ∆-robustness, even
for small δ values, can considerably improve the validity of
CFXs in the presence of larger model shifts. Indeed, Algo-
rithm 1 increases the number of CFXs that remain valid af-
ter retraining by 68-100%. This improvement comes at the
expense of `1 distance, which often increases. This phe-
nomenon has already been observed in recent work (Dutta
et al. 2022), where robust CFXs for tree classifiers were up
to seven times more expensive than the non-robust base-
lines. The lof score tends to remain unchanged in many
cases. However, for some combinations of base methods and
datasets, the score drops considerably, suggesting that a bet-
ter strategy to generate CFXs of increased distance may ex-
ist. Finally, we can observe that our approach often outper-
forms ROAR, producing CFXs that retain a higher degree of
validity after retraining.

6 Conclusions
Despite the great deal of attention which CFXs in XAI have
received of late, SOTA approaches fall short of providing
formal robustness guarantees on the explanations they gen-
erate, as we have demonstrated. In this paper we proposed
∆-robustness, a formal notion for assessing the robustness
of CFXs with respect to changes in the underlying model.
We then introduced an abstraction-based framework to rea-
son about ∆-robustness and used it to verify the robustness
of CFXs and to guide existing methods to find CFXs with
robustness guarantees.

This paper opens several avenues for future work. Firstly,
while our experiments only considered FFNNs with ReLU
activations, there seems to be no reason why interval-based
analysis for robustness of CFXs could not be applied to a
wider range of AI models. Secondly, it would be interest-
ing to investigate probabilistic extensions of this work, so
as to accommodate scenarios where robustness cannot be
always guaranteed. Finally, our algorithm for generating ∆-
robust CFXs is incomplete; we plan to investigate whether
our abstraction framework can be used to devise complete
algorithms with improved guarantees.
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