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Abstract

Pre-trained programming language (PL) models (such as
CodeT5, CodeBERT, GraphCodeBERT, etc.,) have the po-
tential to automate software engineering tasks involving code
understanding and code generation. However, these models
operate in the natural channel of code, i.e., they are primarily
concerned with the human understanding of the code. They
are not robust to changes in the input and thus, are poten-
tially susceptible to adversarial attacks in the natural chan-
nel. We propose, CodeAttack, a simple yet effective black-
box attack model that uses code structure to generate ef-
fective, efficient, and imperceptible adversarial code samples
and demonstrates the vulnerabilities of the state-of-the-art PL
models to code-specific adversarial attacks. We evaluate the
transferability of CodeAttack on several code-code (transla-
tion and repair) and code-NL (summarization) tasks across
different programming languages. CodeAttack outperforms
state-of-the-art adversarial NLP attack models to achieve the
best overall drop in performance while being more efficient,
imperceptible, consistent, and fluent. The code can be found
at https://github.com/reddy-lab-code-research/CodeAttack.

Introduction
There has been a recent surge in the development of gen-
eral purpose programming language (PL) models (Ahmad
et al. 2021; Feng et al. 2020; Guo et al. 2020; Tipirneni,
Zhu, and Reddy 2022; Wang et al. 2021). They can cap-
ture the relationship between natural language and source
code, and potentially automate software engineering devel-
opment tasks involving code understanding (clone detection,
defect detection) and code generation (code-code transla-
tion, code-code refinement, code-NL summarization). How-
ever, the data-driven pre-training of the above models on
massive amounts of code data constraints them to primar-
ily operate in the ‘natural channel’ of code (Chakraborty
et al. 2022; Hindle et al. 2016; Zhang et al. 2022). This
‘natural channel’ focuses on conveying information to hu-
mans through code comments, meaningful variable names,
and function names (Casalnuovo et al. 2020). In such a sce-
nario, the robustness and vulnerabilities of the pre-trained
models need careful investigation. In this work, we lever-
age the code structure to generate adversarial samples in
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Figure 1: CodeAttack makes a small modification to the in-
put code snippet (in red) which causes significant changes
to the code summary obtained from the SOTA pre-trained
programming language models. Keywords are highlighted
in blue and comments in green.

the natural channel of code and demonstrate the vulnerabil-
ity of the state-of-the-art programming language models to
adversarial attacks.

Adversarial attacks are characterized by imperceptible
changes in the input that result in incorrect predictions from
a machine learning model. For pre-trained PL models oper-
ating in the natural channel, such attacks are important for
two primary reasons: (i) Exposing system vulnerabilities and
evaluating model robustness: A small change in the input
programming language (akin to a typo in the NL scenario)
can trigger the code summarization model to generate gib-
berish natural language code summary (Figure 1), and (ii)
Model interpretability: Adversarial samples can be used to
inspect the tokens pre-trained PL models attend to.

A successful adversarial attack in the natural channel for
code should have the following properties: (i) Minimal per-
turbations: Akin to spelling mistakes or synonym replace-
ment in NL that mislead neural models with imperceptible
changes, (ii) Code Consistency: Perturbed code is consistent
with the original input and follows the same coding style as
the original code, and (iii) Code fluency: Does not alter the
user-level code understanding of the original code. The cur-
rent natural language adversarial attack models fall short on
all three fronts. Hence, we propose CodeAttack – a sim-
ple yet effective black-box attack model for generating ad-
versarial samples in the natural channel for any input code
snippet, irrespective of the programming language.

CodeAttack operates in a realistic scenario, where the ad-
versary does not have access to model parameters but only to
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the test queries and the model prediction. CodeAttack uses
a pre-trained masked CodeBERT model (Feng et al. 2020)
as the adversarial code generator to generate imperceptible
and effective adversarial examples by leveraging the code
structure. Our primary contributions are as follows:
• To the best of our knowledge, our work is the first one

to detect the vulnerabilities of pre-trained programming
language models to adversarial attacks in the natural
channel of code. We propose a simple yet effective realis-
tic black-box attack method, CodeAttack, that generates
adversarial samples for a code snippet irrespective of the
input programming language.

• We design a general purpose black-box attack method
for sequence-to-sequence PL models that is transferable
across different downstream tasks like code translation,
repair, and summarization. The input language agnos-
tic nature of our method also makes it extensible to
sequence-to-sequence tasks in other domains.

• We demonstrate the effectiveness of CodeAttack over
existing NLP adversarial models through an extensive
empirical evaluation. CodeAttack outperforms the natu-
ral language baselines when considering both the attack
quality and its efficacy.

Background and Related Work
Dual Channel of Source Code. Casalnuovo et al. (2020)
proposed a dual channel view of code: (i) formal, and (ii)
natural. The formal channel is precise and used for code ex-
ecution by compilers and interpreters. The natural language
channel, on the other hand, is for human comprehension and
is noisy. It relies on code comments, variable names, func-
tion names, etc., to ease human understanding. The state-of-
the-art PL models operate primarily in the natural channel
of code (Zhang et al. 2022) and therefore, we generate ad-
versarial samples by making use of this natural channel.

Adversarial Attacks in NLP. BERT-Attack (Li et al. 2020)
and BAE (Garg and Ramakrishnan 2020) use BERT for at-
tacking vulnerable words. TextFooler (Jin et al. 2020) and
PWWS (Ren et al. 2019) use synonyms and part-of-speech
(POS) tagging to replace important tokens. Deepwordbug
(Gao et al. 2018) and TextBugger (Li et al. 2019) use char-
acter insertion, deletion, and replacement strategy for at-
tacks whereas Hsieh et al. (2019) and Yang et al. (2020)
use a greedy search and replacement strategy. Alzantot et al.
(2018) use genetic algorithm and Ebrahimi et al. (2018), Pa-
pernot et al. (2016), and Pruthi, Dhingra, and Lipton (2019)
use model gradients for finding subsititutes. None of these
methods have been designed specifically for programming
languages, which is more structured than natural language.

Adversarial Attacks for PL. Zhang et al. (2020) gen-
erate adversarial examples by renaming identifiers using
Metropolis-Hastings sampling (Metropolis et al. 1953).
Yang et al. (2022) improve on that by using greedy and ge-
netic algorithm. Yefet, Alon, and Yahav (2020) use gradi-
ent based exploration; whereas Applis, Panichella, and van
Deursen (2021) and (Henkel et al. 2022) propose metamor-
phic transformations for attacks. The above models focus on

classification tasks like defect detection and clone detection.
Although some works do focus on adversarial examples for
code summarization (Henkel et al. 2022; Zhou et al. 2022),
they do not do so in the natural channel. They also do not
test the transferability to different tasks, PL models, and dif-
ferent programming languages. Our model, CodeAttack, as-
sumes black-box access to the state-of-the-art PL models for
generating adversarial attacks for code generation tasks like
code translation, code repair, and code summarization using
a constrained code-specific greedy algorithm to find mean-
ingful substitutes for vulnerable tokens, irrespective of the
input programming language.

CodeAttack
We describe the capabilities, knowledge, and the goal of the
proposed model, and provide details on how it detects vul-
nerabilities in the state-of-the-art pre-trained PL models.

Threat Model
Adversary’s Capabilities. The adversary is capable of
perturbing the test queries given as input to a pre-trained PL
model to generate adversarial samples. We follow the exist-
ing literature for generating natural language adversarial ex-
amples and allow for two types of perturbations for the input
code sequence in the natural channel: (i) character-level per-
turbations, and (ii) token-level perturbations. The adversary
is allowed to perturb only a certain number of tokens/char-
acters and must ensure a high similarity between the origi-
nal code and the perturbed code. Formally, for a given input
code sequence X ∈ X , where X is the input space, a valid
adversarial code example Xadv satisfies the requirements:

X ̸= Xadv (1)

Xadv ← X + δ; s.t. ||δ|| < θ (2)
Sim(Xadv,X ) ≥ ϵ (3)

where θ is the maximum allowed perturbation; Sim(·) is a
similarity function; and ϵ is the similarity threshold.

Adversary’s Knowledge. We assume standard black-box
access to realistically assess the vulnerabilities and robust-
ness of existing pre-trained PL models. The adversary does
not have access to the model parameters, model architec-
ture, model gradients, training data, or the loss function.
It can only query the pre-trained PL model with input se-
quences and get their corresponding output probabilities.
This is more practical than a white-box scenario where the
attacker assumes access to all the above.

Adversary’s Goal. Given an input code sequence as
query, the adversary’s goal is to degrade the quality of the
generated output sequence through imperceptibly modifying
the query in the natural channel of code. The generated out-
put sequence can either be a code snippet (code translation,
code repair) or natural language text (code summarization).
Formally, given a pre-trained PL model F : X → Y , where
X is the input space, and Y is the output space, the goal of
the adversary is to generate an adversarial sample Xadv for
an input sequence X s.t.

F (Xadv) ̸= F (X ) (4)
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Q(F (X ))−Q(F (Xadv)) ≥ ϕ (5)

where Q(·) measures the quality of the generated output and
ϕ is the specified drop in quality. This is in addition to the
constraints applied on Xadv earlier. We formulate our final
problem of generating adversarial samples as follows:

∆atk = argmaxδ [Q(F (X ))−Q(F (Xadv))] (6)

In the above objective function, Xadv is a minimally per-
turbed adversary subject to constraints on the perturbations
δ (Eqs.1-5). CodeAttack searches for a perturbation ∆atk to
maximize the difference in the quality Q(·) of the output se-
quence generated from the original input code snippetX and
that by the perturbed code snippet Xadv .

Attack Methodology
There are two primary steps: (i) Finding the most vulnerable
tokens, and (ii) Substituting these vulnerable tokens (subject
to code-specific constraints), to generate adversarial samples
in the natural channel of code.

Finding Vulnerable Tokens CodeBERT gives more at-
tention to keywords and identifiers while making predictions
(Zhang et al. 2022). We leverage this information and hy-
pothesize that certain input tokens contribute more towards
the final prediction than others. ‘Attacking’ these highly in-
fluential or highly vulnerable tokens increases the probabil-
ity of altering the model predictions more significantly as
opposed to attacking non-vulnerable tokens. Under a black-
box setting, the model gradients are unavailable and the ad-
versary only has access to the output logits of the pre-trained
PL model. We define ‘vulnerable tokens’ as tokens having a
high influence on the output logits of the model. Let F be an
encoder-decoder pre-trained PL model. The given input se-
quence is denoted by X = [x1, .., xi, ..., xm], where {xi}m1
are the input tokens. The output is a sequence of vectors:
O = F (X ) = [o1, ..., on]; yt = argmax(ot); where {ot}n1 is
the output logit for the correct output token yt for the time
step t. Without loss of generality, we can also assume the
output sequence Y = F (X ) = [yi, ..., yl]. Y can either be a
sequence of code or natural language tokens.

To find the vulnerable input tokens, we re-
place a token xi with [MASK] such that X\xi

=
[x1, ., xi−1, [MASK], xi+1, ., xm] and get its output logits.
The output vectors are now O\xi

= F (X\xi
) = [o′1, ..., o

′
q]

where {o′t}
q
1 is the new output logit for the correct prediction

Y . The influence score for the token xi is as follows:

Ixi =
n∑

t=1

ot −
q∑

t=1

o′t (7)

We rank all the tokens according to their influence score Ixi

in descending order to find the most vulnerable tokens V .
We select the top-k tokens to limit the number of perturba-
tions and attack them iteratively either by replacing them or
by inserting/deleting a character around them.

Substituting Vulnerable Tokens We adopt greedy search
using a masked programming language model, subject to

Token Class Description
Keywords Reserved word
Identifiers Variable, Class Name, Method name
Operators Brackets ({},(),[]), Symbols (+,*,/,-,%,;,.)

Arguments Integer, Floating point, String, Character

Table 1: Token class and their description.

code-specific constraints, to find substitutes S for vulner-
able tokens V such that they are minimally perturbed and
have the maximal probability of incorrect prediction.

Search Method. In a given input sequence, we mask a vul-
nerable token vi and use the masked PL model to predict a
meaningful contextualized token in its place. We use the top-
k predictions for each of the masked vulnerable tokens as
our initial search space. LetM denote a masked PL model.
Given an input sequence X = [x1, .., vi, .., xm], where vi
is a vulnerable token, M uses WordPiece algorithm (Wu
et al. 2016) for tokenization that breaks uncommon words
into sub-words resulting in H = [h1, h2, .., hq]. We align
and mask all the corresponding sub-words for vi, and com-
bine the predictions to get the top-k substitutes S′ =M(H)
for the vulnerable token vi. This initial search space S′ con-
sists of l possible substitutes for a vulnerable token vi. We
then filter out substitute tokens to ensure minimal pertur-
bation, code consistency, and code fluency of the generated
adversarial samples, subject to code-specific constraints.

Code-Specific Constraints. Since the tokens generated from
a masked PL model may not be meaningful individual code
tokens, we further use a CodeNet tokenizer (Puri et al. 2021)
to break a token into its corresponding code tokens. The
code tokens are tokenized into four primary code token
classes (Table 1). If si is the substitute for the vulnerable
token vi as tokenized by M, and Op(·) denotes the oper-
ators present in any given token using CodeNet tokenizer,
we allow the substitute tokens to have an extra or a missing
operator (akin to typos in the natural channel of code).

|Op(vi)| − 1 ≤ |Op(si)| ≤ |Op(vi)|+ 1 (8)

Let C(·) denote the code token class (identifiers, keywords,
and arguments) of a token. We maintain the alignment be-
tween between vi and the potential substitute si as follows.

C(vi) = C(si) and |C(vi)| = |C(si)| (9)

The above code constraints maintain the code fluency and
the code consistency of Xadv and significantly reduce the
search space for finding adversarial examples.

Substitutions. We allow two types of substitutions of vul-
nerable tokens to generate adversarial examples: (i) Oper-
ator (character) level substitution – only an operator is in-
serted/replaced/deleted; and (ii) Token-level substitution. We
use the reduced search space S and iteratively substitute, un-
til the adversary’s goal is met. We only allow replacing upto
p% of the vulnerable tokens/characters to limit the number
of perturbations. We also maintain the cosine similarity be-
tween the input text X and the adversarially perturbed text
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Algorithm 1: CodeAttack: Generating adversarial examples
for Code
Input: Code X ; Victim model F ; Maximum perturbation θ;
Similarity ϵ; Performance Drop ϕ
Output: Adversarial Example Xadv

Initialize: Xadv ← X
// Find vulnerable tokens ‘V’
for xi inM(X ) do

Calculate Ixi
acc. to Eq.(7)

end
V ← Rank(xi) based on Ixi

// Find substitutes ‘S’
for vi in V do

S ← Filter(vi) subject to Eqs.(8), (9)
for sj in S do

// Attack the victim model
Xadv = [x1, ..., xi−1, sj , ..., xm]
if Q(F (X )) − Q(F (Xadv)) ≥ ϕ and
Sim(X ,Xadv) ≥ ϵ and ||Xadv − X|| ≤ θ
then

return Xadv // Success
end

end
// One perturbation
Xadv ← [x1, ...xi−1, sj , ..xm]

end
return

Xadv above a certain threshold (Equation 3). The complete
algorithm is given in Algorithm 1. CodeAttack maintains
minimal perturbation, code fluency, and code consistency
between the input and the adversarial code snippet.

Experiments
We study the following research questions:
• RQ1: How effective and transferable are the attacks gen-

erated using CodeAttack to different downstream tasks
and programming languages?

• RQ2: How is the quality of adversarial samples gener-
ated using CodeAttack?

• RQ3: Is CodeAttack effective when we limit the number
of allowed perturbations?

• RQ4: What is the impact of different components on the
performance of CodeAttack?

Downstream Tasks and Datasets We evaluate the trans-
ferability of CodeAttack across different sequence to se-
quence downstream tasks and in different programming lan-
guages: (i) Code Translation1 involves translating between
C# and Java and vice-versa, (ii) Code Repair automatically
fixes bugs in Java functions. We use the ‘small’ dataset (Tu-
fano et al. 2019), (iii) Code Summarization involves gen-
erating natural language summary for a given code. We
use Python, Java, and PHP from the CodeSearchNet dataset
(Husain et al. 2019). (See Appendix A for details).

1https://github.com/eclipse/jgit/, http://lucene.apache.org/,
http://poi.apache.org/, https://github.com/antlr/

Victim Models We pick a representative method from
different categories for our experiments: (i) CodeT5: Pre-
trained encoder-decoder transformer-based PL model (Wang
et al. 2021), (ii) CodeBERT: Bimodal pre-trained PL model
(Feng et al. 2020), (iii) GraphCodeBERT: Pre-trained graph
PL model (Guo et al. 2020), (iv) RoBERTa: Pre-trained NL
model (Guo et al. 2020). (See Appendix A for details).

Baseline Models Since CodeAttack operates in the nat-
ural channel of code, we compare with two state-of-the-
art adversarial NLP baselines for a fair comparison: (i)
TextFooler: Uses synonyms, Part-Of-Speech checking, and
semantic similarity to generate adversarial text (Jin et al.
2020), (ii) BERT-Attack: Uses a pre-trained BERT masked
language model to generate adversarial text (Li et al. 2020).

Evaluation Metrics We evaluate the effectiveness and the
quality of the generated adversarial code.

Attack Effectiveness. To measure the effectiveness of the ad-
versarial attacks on sequence-to-sequence tasks, we define
the following metric.
• ∆drop: We measure the drop in the downstream perfor-

mance before and after the attack using CodeBLEU (Ren
et al. 2020) and BLEU (Papineni et al. 2002). We define

∆drop = Qbefore−Qafter = Q(F (X ),Y)−Q(F (Xadv,Y)
where Q = {CodeBLEU, BLEU}; Y is the ground truth
output; F is the pre-trained victim PL model, Xadv is
the adversarial code sequence generated after perturbing
the original input source code X . CodeBLEU measures
the quality of the generated code snippet for code trans-
lation and code repair, and BLEU measures the quality
of the generated natural language code summary when
compared to the ground truth.

• Success %: Computes the % of successful attacks as
measured by ∆drop. The higher the value, the more ef-
fective is the adversarial attack.

Attack Quality. The following metric measures the quality
of the generated adversarial code across three dimensions:
(i) efficiency, (ii) imperceptibility, and (iii) code consistency.
• # Queries: Under a black-box setting, the adversary can

query the victim model to check for changes in the output
logits. The lower the average number of queries required
per sample, the more efficient is the adversary.

• # Perturbation: The number of tokens changed on an
average to generate an adversarial code. The lower the
value, the more imperceptible the attack will be.

• CodeBLEUq: Measures the consistency of the adversar-
ial code using CodeBLEUq = CodeBLEU(X ,Xadv);
where Xadv is the adversarial code sequence generated
after perturbing the original input source code X . The
higher the CodeBLEUq , the more consistent the adver-
sarial code is with the original source code.

Implementation Details The model is implemented in
PyTorch. We use the publicly available pre-trained Code-
BERT (MLM) masked model as the adversarial code gen-
erator. We select the top 50 predictions for each vulner-
able token as the initial search space and allow attacking
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Task Victim
Model

Attack
Method

Attack Effectiveness Attack Quality
Before After ∆drop Success% #Queries #Perturb CodeBLEUq

Translate
(Code-
Code)

CodeT5
TextFooler

73.99
68.08 5.91 28.29 94.95 2.90 63.19

BERT-Attack 63.01 10.98 75.83 163.5 5.28 62.52
CodeAttack 61.72 12.27 89.3 36.84 2.55 65.91

CodeBERT
TextFooler

71.16
60.45 10.71 49.2 73.91 1.74 66.61

BERT-Attack 58.80 12.36 70.1 290.1 5.88 52.14
CodeAttack 54.14 17.03 97.7 26.43 1.68 66.89

GraphCode-
BERT

Textfooler
66.80

46.51 20.29 38.70 83.17 1.82 63.62
BERT-Attack 36.54 30.26 94.33 175.8 6.73 52.07
CodeAttack 38.81 27.99 98 20.60 1.64 65.39

Repair
(Code-
Code)

CodeT5
Textfooler

61.13
57.59 3.53 58.84 90.50 2.36 69.53

BERT-Attack 52.70 8.43 94.33 262.5 15.1 53.60
CodeAttack 53.21 7.92 99.36 30.68 2.11 69.03

CodeBERT
Textfooler

61.33
53.55 7.78 81.61 45.89 2.16 68.16

BERT-Attack 51.95 9.38 95.31 183.3 15.7 61.95
CodeAttack 52.02 9.31 99.39 25.98 1.64 68.05

GraphCode-
BERT

Textfooler
62.16

54.23 7.92 78.92 51.07 2.20 67.89
BERT-Attack 53.33 8.83 96.20 174.1 15.7 53.66
CodeAttack 51.97 10.19 99.52 24.67 1.67 66.16

Summarize
(Code-NL)

CodeT5
TextFooler

20.06
14.96 5.70 64.6 410.15 6.38 53.91

BERT-Attack 11.96 8.70 78.4 1014.1 7.32 51.34
CodeAttack 11.06 9.59 82.8 314.87 10.1 52.67

CodeBERT
Textfooler

19.76
14.38 5.37 61.10 358.43 2.92 54.10

BERT-Attack 11.30 8.35 56.47 1912.6 15.8 46.24
CodeAttack 10.88 8.87 88.32 204.46 2.57 52.95

RoBERTa
TextFooler

19.06
14.06 4.99 62.60 356.68 2.80 54.11

BERT-Attack 11.34 7.71 60.46 1742.3 17.1 46.95
CodeAttack 10.98 8.08 87.51 183.22 2.62 53.03

Table 2: Results on translation (C#-Java), repair (Java-Java), and summarization (PHP) tasks. The performance is measured in
CodeBLEU for Code-Code tasks and in BLEU for Code-NL task. The best result is in boldface; the next best is underlined.

a maximum of 40% of code tokens. The cosine similarity
threshold between the original code and adversarially gen-
erated code is set to 0.5. As victim models, we use the
publicly available fine-tuned checkpoints for CodeT5 and
fine-tune CodeBERT, GraphCodeBERT, and RoBERTa on
the related downstream tasks. We use a batch-size of 256.
All experiments were conducted on a 48 GiB RTX 8000
GPU. The source code for CodeAttack can be found at
https://github.com/reddy-lab-code-research/CodeAttack.

RQ1: Effectiveness of CodeAttack
We test the effectiveness and transferability of the generated
adversarial samples on three different sequence-to-sequence
tasks (Code Translation, Code Repair, and Code Summa-
rization). We generate adversarial code for four different
programming languages (C#, Java, Python, and PHP), and
attack four different pre-trained PL models (CodeT5, Graph-
CodeBERT, CodeBERT, and Roberta). The results for C#-
Java translation task and for the PHP code summarization
task are shown in Table 2. (See Appendix A for Java-C#
translation and Python and Java code summarization tasks).
CodeAttack has the highest success% compared to other ad-
versarial NLP baselines. CodeAttack also outperforms the

adversarial baselines, BERT-Attack and TextFooler, in 6 out
of 9 cases – the average ∆drop using CodeAttack is around
20% for code translation and 10% for code repair tasks,
respectively. For code summarization, CodeAttack reduces
BLEU by almost 50% for all the victim models. As BERT-
Attack replaces tokens indiscriminately, its ∆drop is higher
in some cases but its attack quality is the lowest.

RQ2: Quality of Attacks Using CodeAttack

Quantitative Analysis. Compared to the other adversar-
ial NLP models, CodeAttack is the most efficient as it re-
quires the lowest number of queries for a successful attack
(Table 2). CodeAttack is also the least perceptible as the av-
erage number of perturbations required are 1-3 tokens in 8
out of 9 cases. The code consistency of adversarial samples,
as measured by CodeBLEUq , generated using CodeAttack
is comparable to TextFooler which has a very low success
rate. CodeAttack has the best overall performance.
Qualitative Analysis. Figure 2 presents qualitative exam-
ples of the generated adversarial code snippets from differ-
ent attack models. Although TextFooler has a slightly bet-
ter CodeBLEUq score when compared to CodeAttack (as
seen from Table 2), it replaces keywords with closely re-
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Figure 2: Qualitative examples of adversarial codes on C#-Java Code Translation task. (See Appendix A for more examples).

Figure 3: Syntactic correctness of adversarial code on C#,
Java, and Python demonstrating attack quality.

lated natural language words (public → audiences;
override → revoked, void → cancelling).
BERT-Attack has the lowest CodeBLEUq and substitutes to-
kens with seemingly random words. Both TextFooler and
BERT-Attack have not been designed for programming lan-
guages. CodeAttack generates more meaningful adversarial
code samples by replacing vulnerable tokens with variables
and operators which are imperceptible and consistent.
Syntactic correctness. Syntactic correctness of the gener-
ated adversarial code is a useful criteria for evaluating the
attack quality even though CodeAttack and other PL models
primarily operate in the natural channel of code, i.e., they are
concerned with code understanding for humans and not with
the execution or compilation of the code. The datasets de-
scribed earlier consist of code snippets and cannot be com-
piled. Therefore, we generate adversarial code for C#, Java,
and Python using TextFooler, BERT-Attack, and CodeAt-
tack and ask 3 human annotators, familiar with these lan-
guages to verify the syntax manually. We randomly sam-
ple 60 generated adversarial codes for all three program-
ming languages for evaluating each of the above methods.
CodeAttack has the highest average syntactic correctness for
C# (70%), Java (60%), and Python (76.19%) followed by
BERT-Attack and TextFooler (Figure 3), further highlight-
ing the need for a code-specific adversarial attack.

RQ3: Limiting Perturbations Using CodeAttack
We restrict the number of perturbations when attacking a
pre-trained PL model to a strict limit, and study the effective-
ness of CodeAttack. From Figure 4a, we observe that as the
perturbation % increases, the CodeBLEUafter for CodeAt-

tack decreases but remains constant for TextFooler and only
slightly decreases for BERT-Attack. We also observe that al-
though CodeBLEUq for CodeAttack is the second best (Fig-
ure 4b), it has the highest attack success rate (Figure 4d) and
requires the lowest number of queries for a successful attack
(Figure 4c). This shows the efficiency of CodeAttack and the
need for code-specific adversarial attacks.

RQ4: Ablation Study
Importance of Vulnerable Tokens. We create a vari-
ant, CodeAttackRAND, which randomly samples tokens from
the input code for substitution. We define another vari-
ant, CodeAttackVUL, which finds vulnerable tokens based on
logit information and attacks them, albeit without any con-
straints. As can be seen from Figure 5a, attacking random
tokens is not as effective as attacking vulnerable tokens. Us-
ing CodeAttackVUL yields greater ∆drop and requires fewer
number of queries when compared to CodeAttackRAND,
across all three models at similar CodeBLEUq (Figure 5b)
and success % (Figure 5d).

Importance of Code-Specific Constraints. We find vul-
nerable tokens and apply two types of constraints: (i) Opera-
tor level constraint (CodeAttackOP), and (ii) Token level con-
straint (CodeAttackTOK). Only applying the operator level
constraint results in lower attack success% (Figure 5d) and
a lower ∆drop (Figure 5a) but a much higher CodeBLEUq .
This is because we limit the changes only to operators re-
sulting in minimal changes. On applying both operator level
and token level constraints together, the ∆drop and the at-
tack success% improve significantly. (See Appendix A for
qualitative examples.)

Overall, the final model, CodeAttack, consists of
CodeAttackVUL, CodeAttackOP, and CodeAttackTOK, has the
best trade-off across ∆drop, attack success %, CodeBLEUq ,
and #Queries for all pre-trained PL victim models.

Human Evaluation. We sample 50 original and perturbed
Java and C# code samples and shuffle them to create a mix.
We ask 3 human annotators, familiar with the two program-
ming languages, to classify the codes as either original or
adversarial by evaluating the source codes in their natural
channel. On an average, 72.1% of the given codes were clas-
sified as original. We also ask them to read the given ad-
versarial codes and rate their code understanding on a scale
of 1 to 5; where 1 corresponds to ‘Code cannot be under-
stood at all’; and 5 corresponds to ‘Code is completely un-
derstandable’. The average code understanding for the ad-
versarial codes was 4.14. Additionally, we provide the an-
notators with pairs of adversarial and original codes and ask
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(a) CodeBLEUafter (b) CodeBLEUq (c) Average #Queries (d) Attack%

Figure 4: Varying the perturbation % to study attack effectiveness on CodeT5 for the code translation task (C#-Java).

(a) Performance Drop (b) CodeBLEUq (c) # Queries (d) Average Success Rate

Figure 5: Ablation Study for Code Translation (C#-Java): Performance of different components of CodeAttack with random
(RAND) and vulnerable tokens (VUL) and two code-specific constraints: (i) Operator level (OP), and (ii) Token level (TOK).

them to rate the code consistency between the two using a
scale between 0 to 1; where 0 corresponds to ‘Not at all con-
sistent with the original code’, and 1 corresponds to ‘Ex-
tremely consistent with the original code’. On average, the
code consistency was 0.71.

Discussion
Humans ‘summarize’ code by reading function calls, fo-
cusing on information denoting the intention of the code
(such as variable names) and skimming over structural infor-
mation (such as while and for loops) (Rodeghero et al.
2014). Pre-trained PL models operate in a similar manner
and do not assign high attention weights to the grammar or
the code structure (Zhang et al. 2022). They treat software
code as natural language (Hindle et al. 2016) and do not fo-
cus on compilation or execution of the input source code
before processing them to generate an output (Zhang et al.
2022). Through extensive experimentation, we demonstrate
that this limitation of the state-of-the-art PL models can be
exploited to generate adversarial examples in the natural
channel of code and significantly alter their performance.

We observe that it is easier to attack the code translation
task rather than code repair or code summarization tasks.
Since code repair aims to fix bugs in the given code snip-
pet, it is more challenging to attack but not impossible.
For code summarization, the BLEU score drops by almost
50%. For all three tasks, CodeT5 is comparatively more ro-
bust whereas GraphCodeBERT is the most susceptible to
attacks using CodeAttack. CodeT5 has been pre-trained on
the task of ‘Masked Identifier Prediction’ or deobsfuction
(Lachaux et al. 2021) where changing the identifier names
does not have an impact on the code semantics. This helps
the model avoid the attacks which involve changing the iden-

tifier names. GraphCodeBERT uses data flow graphs in their
pre-training which relies on predicting the relationship be-
tween the identifiers. Since CodeAttack modifies the identi-
fiers and perturbs the relationship between them, it proves to
be extremely effective on GraphCodeBERT. This results in
a more significant ∆drop on GraphCodeBERT compared to
other models for the code translation task.

The adversarial examples from CodeAttack, although ef-
fective, can be avoided if the pre-trained PL models com-
pile/execute the code before processing it. This highlights
the need to incorporate explicit code structure in the pre-
training stage to learn more robust program representations.

Conclusion
We introduce, CodeAttack, a black-box adversarial attack
model to detect vulnerabilities of the state-of-the-art pro-
gramming language models. It finds the most vulnerable to-
kens in a given code snippet and uses a greedy search mech-
anism to identify contextualized substitutes subject to code-
specific constraints. Our model generates adversarial exam-
ples in the natural channel of code. We perform an extensive
empirical and human evaluation to demonstrate the trans-
ferability of CodeAttack on several code-code and code-NL
tasks across different programming languages. CodeAttack
outperforms the existing state-of-the-art adversarial NLP
models, in terms of its attack effectiveness, attack quality,
and syntactic correctness. The adversarial samples generated
using CodeAttack are efficient, effective, imperceptible, flu-
ent, and code consistent. CodeAttack highlights the need for
code-specific adversarial attacks for pre-trained PL models
in the natural channel.
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