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Abstract
Information leakage is becoming a critical problem as various
information becomes publicly available by mistake, and ma-
chine learning models train on that data to provide services.
As a result, one’s private information could easily be mem-
orized by such trained models. Unfortunately, deleting infor-
mation is out of the question as the data is already exposed to
the Web or third-party platforms. Moreover, we cannot nec-
essarily control the labeling process and the model trainings
by other parties either. In this setting, we study the problem
of targeted disinformation generation where the goal is to di-
lute the data and thus make a model safer and more robust
against inference attacks on a specific target (e.g., a person’s
profile) by only inserting new data. Our method finds the clos-
est points to the target in the input space that will be labeled as
a different class. Since we cannot control the labeling process,
we instead conservatively estimate the labels probabilistically
by combining decision boundaries of multiple classifiers us-
ing data programming techniques. Our experiments show that
a probabilistic decision boundary can be a good proxy for la-
belers, and that our approach is effective in defending against
inference attacks and can scale to large data.

Introduction
Information leakage is becoming a serious problem as per-
sonal data is being used to train machine learning (ML)
models. Personal data can be leaked through AI chat-
bots (McCurry 2021) and the Web (Hill and Krolik 2019)
among others. Furthermore, there are various privacy threats
on ML models including inference attacks (Shokri et al.
2017; Hayes et al. 2019; Choo et al. 2020) and reconstruc-
tion attacks (Fredrikson, Jha, and Ristenpart 2015). Defend-
ing against such leakage is critical for safe and robust AI.

In many cases, it is impossible to delete one’s informa-
tion that is published on the Web or uploaded on a third-
party platform. Even if the original data is deleted by re-
quest, there is no way to prevent someone from extracting
that information elsewhere by attacking the model of the un-
known third-party platform. Moreover, there is also no con-
trol over the model training process where anyone can train
a model on the publicized data. Therefore, conventional pri-
vacy techniques or defenses that require ownership of the
data or model cannot be used here.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Figure 1: (a) Existing inference attack defenses (e.g., add
noise to model’s output) are not feasible when the victim
models are owned by third parties. (b) Instead, we assume
the realistic setting where we can only add disinformation
to the unlabeled training data, which is presumably labeled
and used for model training by unknown model owners.

The only solution is to take a data-centric approach and
add new data that “dilutes” an individual’s personal infor-
mation, which we refer to as disinformation. An analogy
is blacking out or redacting text where the reader knows
there is some information, but cannot read it. We thus define
the problem of targeted disinformation generation where
the goal is to generate disinformation that indirectly makes
a victim model less likely to leak personal information to
an attack model without any access to the victim model
(Figure 1). We assume the disinformation will be eventu-
ally picked up automatically by crawlers for model training,
which is a common assumption in the AI Security litera-
ture (Shafahi et al. 2018; Suciu et al. 2018; Chen et al. 2019).
From an ethical perspective, our disinformation is intended
to protect one’s information from inference attacks.

Our solution is motivated by clean-label targeted poison-
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Figure 2: A labeler is approximated as a probabilistic model
that combines surrogate labelers. The decision boundaries
of surrogate labelers are shown as thin lines while the prob-
abilistic decision boundary (PDB) is the thick gray line. Us-
ing the base example b2, Redactor can generate the disin-
formation example d2 that is close to t, but still labeled dif-
ferently. In addition, Redactor can generate other realistic
points d3 and d4 using a generative model where d4 hap-
pens to be even closer to t.

ing methods (Suciu et al. 2018; Shafahi et al. 2018; Zhu et al.
2019; Kermani et al. 2015) that degrade the model perfor-
mance only on a target example. We would like to utilize
such techniques to change the output of the unknown mod-
els (e.g., third-party platforms) and protect target examples
from indirect privacy attacks. However, many of these poi-
soning techniques implicitly rely on a transfer learning (Pan
and Yang 2010) setup where a pre-trained model is available
and exploit the fact that the feature space is fixed for opti-
mizing the poisoning. While transfer learning benefits cer-
tain applications (e.g., NLP or vision tasks), it is not always
available, especially for structured data where there is no ef-
ficient and generally-accepted practice (Borisov et al. 2021).
However, structured data is key to our problem as most per-
sonal information is stored in this format (e.g., name, gender,
age, race, address, and more). In order to primarily support
structured data, we thus need to assume end-to-end training
where we cannot count on a fixed feature space. Although
existing techniques have also been extended for end-to-end
training, we show their performances are not sufficient.

Since we cannot rely on a fixed feature space, we instead
utilize the input space to find the best disinformation that
is close to the target, but labeled differently. How do we
know the true label of the disinformation? Since we do not
have access to the labelers, one of our key contributions is
a novel adaptation of data programming (Ratner et al. 2020,
2017a,b) to conservatively estimate human behavior using
a probabilistic decision boundary (PDB) produced by com-
bining multiple possible classifiers. In our setting, we make
the generative model produce the probability of an example
having a class that is different than the target’s class. By lim-
iting this probability to be above a tolerance threshold, we
now have a conservative decision boundary. This approach
is agnostic to the victim model. We call our system Redactor,
and Figure 2 illustrates our overall approach.

Our contributions: (i) We define the targeted disinforma-
tion generation problem. (ii) We suggest a novel data-centric
and model-agnostic defense using data programming and
generative models without any access to the training process

of victim models. (iii) We empirically demonstrate that our
solution is effective in defending against membership infer-
ence attacks and scales to large data.

Background
Membership Inference Attack (MIA)
Among various types of adversarial attacks, exploratory at-
tacks are used to extract information from models. The dom-
inant attack most related to our work is the membership in-
ference attack (MIA). The goal of an MIA is to train an at-
tack model that predicts if a specific example was used to
train a victim model based on its confidence scores and loss
values. Formally, an attacker trains an attack model A sat-
isfying A : s → {0, 1} where the input s is the confidence
score or loss value of the victim model V for an example x,
and 1 means that x is a member of the training set of V .

Many defenses (Jia et al. 2019; Li, Li, and Ribeiro 2021;
Salem et al. 2019) have been proposed against MIAs, but
most of them assume that accessing the victim model V is
possible. For example, MemGuard (Jia et al. 2019) is a state-
of-the-art defense that adds noise to the model’s output to
drop the attack model’s performance. Other techniques in-
clude adding a regularizer to the model’s loss function (Li,
Li, and Ribeiro 2021) and applying dropout or model stack-
ing techniques (Salem et al. 2019).

Such model modifications are not possible in our setting
where we assume no access to the model. We thus design a
new approach using a targeted poisoning objective to indi-
rectly change the victim model’s performance on the target
(confidence score and loss value).

Targeted Poisoning
Targeted poisoning attacks have the goal of flipping the pre-
dictions on specific targets to a certain class. A naı̈ve ap-
proach is to add examples that are identical to the target, but
with different labels. Unfortunately, such an approach would
only work if one has complete control over the labeling pro-
cess, which is unrealistic. Instead, the poison p needs to be
different enough from the target to be labeled differently by
any human. Yet, we also want p to be close to the target.

The state-of-the-art targeted poisoning attacks include
Convex Polytope Attack (CPA) (Zhu et al. 2019) and its pre-
decessors (Chen et al. 2017; Suciu et al. 2018; Shafahi et al.
2018), which also do not assume any control over the label-
ing and generate poison examples that are similar to the base
examples, but have the same predictions as the target. These
techniques are not involved in the model training itself, but
generate poisons that are presumably added to the training
set. The goal is to generate examples close to the target in
the feature space while being close to a base example in the
input space. To find an optimal poison satisfying such condi-
tions, CPA utilizes a fixed feature extractor, which is effec-
tive when the victim uses transfer learning (see Figure 3a).

In end-to-end training, however, all the layers of the
model are trainable where any feature space that is not the
input space may change after model training with the poison.
Therefore, CPA’s optimization may not be effective because
any distance on the feature space corresponding to each
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Figure 3: In a transfer learning scenario (a), the feature space
is fixed, making it possible to optimize on both the input and
feature spaces. In an end-to-end scenario (b), however, the
feature space may change after the model trains, so optimiz-
ing on the feature space may not be effective.

layer can change arbitrarily. Figure 3b illustrates this point
where the poison example p can still be close to the base ex-
ample b on a feature space that is not the input space even
after CPA’s optimization. Empirical results for this analysis
can be found in our technical report (2022). Although (Zhu
et al. 2019) suggests the extension of applying CPA on every
layer of the network for end-to-end training, it is inefficient
and does not fundamentally solve the problem. We thus need
a completely different solution that does not utilize the fea-
ture space for optimization.

Methodology: Redactor
We design an optimization problem of generating targeted
disinformation for end-to-end training based on the targeted
poisoning objective. We describe our objectives and intro-
duce the overall process of Redactor. In end-to-end training,
we can only utilize the input space and need to generate a
disinformation that is as close as possible to the target ex-
ample, but likely to be labeled as a different class from the
target. Suppose that a human labeler has a mental decision
boundary for labeling. In order to satisfy both conditions,
the disinformation must be the closest point on the other side
based on this decision boundary as we define below:

min
{dj}

Nd∑
j=1

dist(dj , t)

s.t. HumanLabel( dj) ̸= ct
dj ∈ Creal, ∀j ∈ [1 . . . Nd]

(1)

where t ∈ RD is the target example, dj ∈ RD is the jth
disinformation among a budget of Nd disinformations, ct is
t’s class, and Creal ⊆ RD is a set that conceptually contains
all possible realistic candidates where D is the number of
features. However, since we do not have control of the la-
beling and thus do not know the decision boundary, we pro-
pose to use surrogate classifier models as a proxy for human
labeling, which we call surrogate labelers. This approach is
inspired by ensemble techniques commonly used for forg-
ing black-box attacks (Zhu et al. 2019; Liu et al. 2017). We
do not assume that the surrogate labelers are highly accurate.

LF TransformAvailable 
Data

Surrogate Labelers

Disinformation 
Selection

Probabilistic Decision Boundary

Candidate 
Generator

Figure 4: Redactor runs in four stages: surrogate labeler
training, Probabilistic Decision Boundary (PDB) creation,
candidate generation, and disinformation selection.

However, when combining these models, we assume that we
can find a conservative decision boundary that can confi-
dently tell whether an example will be labeled differently
than the target. Based on Equation 1, we now formulate our
optimization problem as follows:

min
{dj}

Nd∑
j=1

||dj − t||2

s.t. argmax
c

Mc(ϕ, dj) ̸= ct

max
c ̸=ct

Mc(ϕ, dj) ≥ α

dj ∈ Ccand, ∀j ∈ [1 . . . Nd]

(2)

where Mc(ϕ, x) is the probabilistic generative model that
combines surrogate labelers ϕ and returns the probability of
an example x being in class c, Ccand is a realistic candidate
set that we generate, and α is the tolerance threshold for Mc.
We use common pre-processings where numeric features are
normalized, and categorical features are converted to have
numerical values using one-hot encoding.

Redactor generates disinformation in four stages (Fig-
ure 4): training surrogate labelers on the available data, cre-
ating a PDB, generating realistic candidates, and selecting
the examples that will be used as disinformation. In the next
sections, we cover each component in more detail. The over-
all algorithm is in our technical report (2022).

Training Surrogate Labelers
When choosing surrogate labelers, it is useful to have a va-
riety of models that can complement each other in terms
of performance as they are not necessarily highly accurate.
Similar strategies are used in data programming and ensem-
ble learning (Breiman 1996; Freund, Schapire et al. 1996).
However, our goal is not necessarily improving the overall
accuracy of the combined model, but ensuring a conserva-
tive PDB. That is, there should be few false positives where
a disinformation that is predicted to be on the other side of
the target is actually labeled the same.

Another issue is that we may only have partial data for
training surrogate labelers because the data is too large or
unavailable. Indeed, if we are protecting personal informa-
tion on the Web, it is infeasible to train a model on the entire
Web data. However, we argue that we only need data that
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is in the vicinity of the target and contains some examples
in different classes as well. We only require that the PDB
approximates the decision making around the target. In our
experiments, we show how Redactor can scale to large data
by properly selecting partial data.

Probabilistic Decision Boundary (PDB)
We now explain how to generate a conservative PDB for
identifying examples that will very likely not be labeled
the same as the target. We utilize multiple surrogate label-
ers and combine them into a single probabilistic model us-
ing data programming (Ratner et al. 2020, 2017a,b) tech-
niques, which combines multiple labeling functions into a
label model that produces probabilistic labels.

The data programming framework assumes that each la-
beling function (LF) can output one of the classes as a
prediction or an abstained prediction (-1) if not confident
enough. The abstained prediction is necessary for making
the LFs as reliable as possible. Thus, we transform each sur-
rogate labeler ϕi as follows:

λ(ϕi, x) =

{
−1(Abstain) maxc ϕ

(c)
i (x) ≤ β/C

argmaxc ϕ
(c)
i (x) otherwise

where β is used to determine when to abstain, c ∈ [1 . . . C]
is a class, and ϕi outputs a C-dimensional probability vector.

We train a probabilistic generative model M with latent
true labels Y using the label matrix Λϕ,x where Λ

(i,j)
ϕ,x =

λ(ϕi, xj):

Pw(Λϕ, Y ) = Z−1
w exp

(
l∑

k=1

wT Corrk(Λϕ, yk)

)
ŵ = argmax

w
log
∑
Y

Pw(Λϕ, Y )

M(ϕ, d) = Pŵ(Y | Λϕ,d).

Here Corr values are binary values indicating all possible
correlations between LFs and the latent Y , Z−1

w is the con-
stant for normalization, and w has the weights of the gener-
ative model corresponding to each correlation.

We then use M with ϕ as the PDB. For each example
d, M returns probability values for each class. Then d is
considered to be in a different class than the target t if the
class with the maximum probability is not t’s class, and the
maximum probability is at least the tolerance threshold α.

Candidate Generation & Disinformation Selection
Given a target, we would like to find the closest possible
points that would be labeled differently. Obviously we can-
not use the target itself as it would not be labeled differently.
Instead, we utilize the PDB to find the closest point beyond
the projected real decision boundary. We use watermark-
ing (Quiring, Arp, and Rieck 2018; Chen et al. 2017; Hitaj
and Mancini 2018; Shafahi et al. 2018) techniques where
a watermark of the target is added to the base example to
generate disinformation using linear interpolations. While
this approach works naturally for image data (i.e., the dis-
information image is the same as the base image, but has a

glimpse of the target image overlaid), structured data con-
sists of numeric, discrete, and categorical features, so we
need to perform watermarking differently. For numeric fea-
tures, we can take linear interpolations. For discrete features
that say require integer values, we use rounding to avoid out-
putting real numbers as a result of the interpolation. For cate-
gorical features, we choose the base’s value or target’s value,
whichever is closer. More formally:

Numeric : d(i) = γt(i) + (1− γ)b(i)

Discrete : d(i) = round(γt(i) + (1− γ)b(i))

Categorical : d(i) = round(γ)t(i) + round(1− γ)b(i)

where d is the disinformation example, t is the target, b is
a base example, x(i) is x’s attributes corresponding to the
feature index set i, round(x) = ⌊x+ 0.5⌋, and 0 ≤ γ ≤ 1.

In order to increase our chances of finding disinformation
closer to the target, we can use GANs to generate more bases
that are realistic and close to the decision boundary. Among
possible GAN techniques for tabular data (Ballet et al. 2019;
Choi et al. 2017; Srivastava et al. 2017; Park et al. 2018; Xu
and Veeramachaneni 2018; Xu et al. 2019), we extend the
conditional tabular GAN (CTGAN) (Xu et al. 2019), which
is the state-of-the-art method for generating realistic tabu-
lar data. CTGAN’s key techniques are using mode-specific
normalization to learn complicated column distributions and
training-by-sampling to overcome imbalanced training data.

Realistic Examples CTGAN does not guarantee that all
constraints requiring domain knowledge are satisfied. For
example, in the AdultCensus dataset, the marital status
“Wife” means that the person is female, but we need to per-
form separate checking instead of relying on CTGAN. Our
solution is to avoid certain patterns that are never seen in the
original data. In our example, there are no examples where
a Wife is a male, so we ignore all CTGAN-generated exam-
ples with this combination. This checking can be performed
efficiently by identifying frequent feature pairs in the origi-
nal data and rejecting any feature pair that does not appear in
this list. In addition, we use clipping and quantization tech-
niques to further make sure the feature values are valid.

Experiments
Datasets We use four real tabular datasets for binary and
multi-class classification tasks. All the datasets contain peo-
ple records whose information can be leaked. The last Dia-
betes dataset is large and thus used to demonstrate the scal-
ability of our techniques.
• AdultCensus (Kohavi 1997): Contains 45,222 people ex-

amples and is used to determine if one has a salary of
≥$50K per year.

• COMPAS (Angwin et al. 2016): Contains 7,214 exam-
ples and is used to predict criminal recidivism rates.

• Epileptic Seizure Recognition (ESR) (Andrzejak et al.
2001): Contains 11,500 electroencephalographic (EEG)
recording data and is used to classify five types of brain
states including epileptic seizure.

• Diabetes (Strack et al. 2014): Contains 100,000 diabetes
patient records in 130 US hospitals between 1999–2008.
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Surrogate Labelers

s nn relu 5-2, relu 50-25, relu 200-100, relu 25-10
tanh 5-2, log 5-2, identity 5-2

s tree dt gini, dt entropy, rf gini, rf entropy

s svm rbf, linear, polynomial, sigmoid

others s gb, s ada, s logreg

Table 1: 18 surrogate labeler architectures.

Target and Base Examples For each dataset, we choose
10 targets per dataset randomly. For each target, we choose k
nearest examples with different labels as the base examples
to generate k watermarked disinformation examples.

Measures To evaluate a PDB, we use precision, which is
defined as the portion of examples that are on the other side
of the decision boundary from the target and have different
ground truth labels. To evaluate a model’s performance, we
measure the accuracy, which is the portion of predictions
that are correct, and use the confidence given by the model.
For all measures, we always report percentages.

Models We use three types of models: surrogate labelers
for PDBs, victim models to simulate inaccessible black-box
models, and attack models that are used to perform MIAs.

We use 18 surrogate labelers explained below and sum-
marized in Table 1. Although we could use more complex
models, they would overfit on our datasets.

• Seven neural networks that have different combinations
of the number of layers, the number of nodes per layer,
and the activation function. We use the naming conven-
tion s nn A X-Y, which indicates a neural network that
uses the activation function A (tanh, relu, log, and iden-
tity) and has X layers with Y nodes per layer.

• Two decision trees s tree and two random forests (s rf)
using the Gini and Entropy purity measures.

• Four SVM models (s svm) using the radial basis function
(rbf), linear, polynomial, and sigmoid kernels.

• Three other models: gradient boosting (s gb), AdaBoost
(s ada), and logistic regression (s logreg).

For the victim models, we use a subset of Table 1 con-
sisting of 13 models (four neural networks, four trees and
forests, two SVMs, and three others), but with different
numbers of layers and optimizers to clearly distinguish them
from the surrogate labelers. For the attack models, we select
nine of the smallest models having the fewest layers, depth,
or number of tree estimators from Table 1. We choose small
models because attack models train on a victim model’s out-
put and loss and need to be small to perform well. We use the
same naming conventions as Table 1 except that the model
names start with “a ” instead of “s ” as shown in Table 4.

Methods We compare Redactor with three baselines: (1)
CPA is the convex polytope attack extended to end-to-end
training; (2) GAN only is Redactor using a CTGAN only;
and (3) WM only is Redactor using watermarking only.

Group 0.5 0.7 0.9 0.95 0.99 MV

all 83.68 83.86 84.13 84.35 84.38 84.42
top-15 84.52 84.72 85.11 85.22 85.59 84.37
top-10 85.00 85.00 85.20 85.49 86.28 83.90
top-5 85.37 86.39 87.95 88.74 78.92 84.24
top-3 85.30 87.18 82.45 82.45 78.54 75.39

nn-only 81.74 81.79 82.08 82.32 82.66 84.43
tree-only 85.44 86.12 87.86 88.18 79.34 84.35
svm-only 82.96 82.96 82.96 82.96 64.20 84.83

others 85.13 86.94 80.33 80.33 77.27 75.39

Table 2: Precision for PDBs with different α tolerance
thresholds (0.5–0.99) and taking a majority vote of the sur-
rogate labelers (MV).

Other Settings We set the abstain threshold β to 0.1. For
all models, we set the learning rate to 1e-4 and the num-
ber of epochs to 1K. For CTGAN, we set the input random
vector size to 100. We use PyTorch and Scikit-learn, and all
experiments are performed using Nvidia Titan RTX GPUs.
We evaluate all models on separate test sets.

Decision Boundary as a Labeler Proxy
We evaluate the PDB precision in Table 2. We use cross vali-
dation accuracies to select the top-k performing surrogate la-
belers without knowledge of the test accuracies (more details
are in our technical report (2022)). We then use the following
groups of models as surrogate labelers: all contains all the
models, top-k contains the top-performing surrogate label-
ers, nn only contains the neural network models, tree only
contains the tree models, svm only contains the SVM mod-
els, and others contains the rest of the models. The table
shows the PDB’s precision for different α tolerance thresh-
olds. For model groups with many surrogate labelers, the
precision tends to increase for larger α values.

We observe that employing five or more surrogate labelers
leads to good performance. Compared to taking a majority
vote of surrogate labelers (MV), the precision of a PDB is
usually higher. In particular, using top-5 combined with α =
0.95 results in the best precision, so we use this setup in the
remaining sections.

Disinformation Performance
We evaluate Redactor’s disinformation in terms of how it
changes a victim model’s accuracy and confidence on the
AdultCensus, COMPAS, and ESR in Table 3. (Evaluations
on image data give similar results and are shown in our tech-
nical report (2022).) We train the 13 victim models for each
dataset. We then generate disinformation for the targets (500
examples for AdultCensus, 50 for COMPAS, and 100 for
ESR) and re-train the victim models on the dataset plus dis-
information. As a result, Redactor reduces the performances
more than the other baselines (especially CPA) without re-
ducing Test Acc. significantly.

Using the same victim model setting, we also analyze how
the disinformation budget and the distance between the tar-
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Overall Test Target Acc. Target Conf.
Acc. Change Change Change

Adult
Census

CPA -0.27±0.52 -2.78±8.08 -1.97±8.60
GAN only -0.49±0.65 -16.67±13.72 -13.30±10.69
WM only -1.43±1.40 -28.89±12.78 -21.35±15.00
Redactor -1.99±1.73 -37.22±13.20 -26.23±14.44

COMPAS

CPA -0.26±0.80 -0.56±5.39 -2.24±3.10
GAN only -0.14±0.72 -5.56±10.96 -2.30±3.31
WM only -2.31±2.08 -32.77±20.23 -21.68±13.26
Redactor -2.40±2.18 -33.89±18.83 -23.93±14.37

ESR

CPA -0.43±4.27 -7.14±16.04 -2.59±5.75
GAN only -0.65±1.58 -8.57±15.74 -1.57±10.37
WM only -0.07±1.13 -34.29±12.72 -18.42±17.16
Redactor -0.11±0.89 -35.71±13.97 -18.28±17.25

Table 3: Average performance change of victim models
on targets when generating disinformation examples on the
AdultCensus, COMPAS, and ESR datasets. The number of
inserted examples is about 1% of the entire dataset size.
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Figure 5: (a) As the number of disinformation examples
that we can create increases, the target accuracy and con-
fidence decrease significantly while the overall test accuracy
decreases only by 2%. (b) As the distance to the target in-
creases, we observe increasing trends as opposed to (a).

get and disinformation impacts the disinformation perfor-
mance. We first select 10 random target examples and vary
the number of disinformation examples generated. Figure 5a
shows how the average target accuracy and confidence of
the 13 victim models decrease further as more disinforma-
tion budget is allowed, but eventually plateaus. Next, we se-
lect 50 random target examples and generate disinformation.
Then we cluster the targets by their average L2 distances
to their disinformation examples. We then plot each cluster
in Figure 5b, which shows the average target accuracy and
confidence degradation of the 13 models against the aver-
age target-disinformation L2 distance of each cluster. As the
disinformation is further away from a target, it becomes dif-
ficult to reduce the target’s accuracy and confidence.

Defense Against Inference Attacks
We evaluate Redactor against MIAs (Shokri et al. 2017). We
use nine models in Table 1 with different hyperparameters

Without Disinfo. With Disinfo.

Attack Overall Target Overall Target Target Acc.
Model F1 score Acc. F1 score Acc. Change

a tanh 5-2 58.96 78.57 59.41 65.71 -12.86
a relu 5-2 61.18 82.86 61.33 71.43 -11.43

a identity 5-2 59.19 75.71 59.04 65.71 -10.00
a dt gini 52.02 73.33 51.04 46.67 -26.66

a dt entropy 52.22 60.00 51.66 43.33 -16.67
a rf gini 52.20 65.00 52.03 51.67 -13.33

a rf entropy 51.78 55.71 51.86 45.71 -10.00
a ada 53.85 61.43 52.74 54.29 -7.14

a logreg 61.30 80.00 61.20 70.00 -10.00

Average 55.86 70.29 55.59 57.17 -13.12

Table 4: Using Redactor’s disinformation to defend against
MIAs using attack models. For 10 target examples, a total of
200 disinformation examples are generated. For each model,
we show how the disinformation changes its performances.

for attacking the trained victim models. We use the Adult-
Census dataset and select 10 random target examples. Ta-
ble 4 shows the MIA performances with and without 200
disinformation examples using the nine attack models. For
each scenario, we specify the attack model’s overall F1 score
and average target inference accuracy, which is the frac-
tion of target examples the attack model correctly predicts
membership. We use the F1 score just for this experiment
to address the class imbalance of membership versus non-
membership. Each experiment is repeated seven times. The
less accurate the attack model, the better the privacy of the
target. As a result, the overall F1 score of the attack model
does not change much, but the target accuracy decreases sig-
nificantly (by up to 26.66%) due to the disinformation. Fur-
thermore some target accuracies drop to around 50%, which
means the classification is almost random. Evaluations on
other MIAs (Yeom et al. 2018; Salem et al. 2019) give simi-
lar results and are shown in our technical report (2022).

Realistic Examples
We perform a comparison of our disinformation with real
data to see how realistic it is. Table 5 shows a representative
disinformation example (among many others) that was gen-
erated using our method along with the target and a few near-
est neighbors. To see if the disinformation is realistic, we
conduct a poll asking 33 human experts to correctly identify
five disinformation and five real examples. As a result, the
average accuracy is 56.9%, and the accuracies for identify-
ing disinformation and real examples are 46.1% and 67.8%,
respectively. We thus conclude that humans cannot easily
distinguish our disinformation from real data, and that iden-
tifying disinformation is harder than identifying real data.

Scalability
If the dataset is too large or not fully accessible, Redactor
can still run on partial data. We evaluate Redactor on the Di-
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Age Education Marital status Occupation Relationship Race Gender Capital gain Hrs/week Country Income

T 38 HS-grad Never-married Machine-op-inspct Not-in-family White Male 0 40 US ≤50K

D 43 HS-grad Never-married Machine-op-inspct Not-in-family White Male 7676 40 US >50K

NN
52 HS-grad Never-married Machine-op-inspct Not-in-family White Male 0 45 US >50K
36 HS-grad Married-civ-spouse Machine-op-inspct Husband White Male 7298 40 US >50K

Table 5: Comparison of disinformation D of target T with T ’s nearest neighbors NN using the AdultCensus dataset.

Dist. Known Dist. Unknown

n Time (s) Local Acc. ∆ Acc. Time (s) Local Acc. ∆ Acc.

1k 59.72 58.82 -30.00 47.35 66.64 -31.67
3k 100.52 68.69 -30.00 79.85 69.30 -30.00
5k 125.76 70.40 -31.67 109.28 69.84 -27.77
7k 162.78 72.30 -26.67 122.68 70.42 -20.37

All 2,043.1 70.67 -36.67 2,043.1 70.67 -36.67

Table 6: Evaluation of the two partial data strategies on the
Diabetes dataset. For different data sizes (n), we show the
average runtime for disinformation generation per target in
seconds (Time), average local accuracy (Local Acc.), and
average target accuracy change (∆ Acc.).

abetes dataset by selecting 10 random targets, training the
18 surrogate labelers on nearest neighbors of the targets us-
ing Euclidean distance, and generating 200 disinformation
examples per target. We use two strategies for selecting the
partial data: (1) Dist. Known: We assume the entire class dis-
tribution is known and collect n nearest neighbors of targets
following this distribution (i.e., we effectively take a uniform
sample of the entire data that is closest to the target) and (2)
Dist. Unknown: We assume the distribution is unknown and
collect nearest neighbors of the target until we have at least
n examples per class.

In Table 6, we compare the following for different n val-
ues: (1) the average runtime for disinformation generation
per target, (2) the average local accuracy, which is the av-
erage accuracy of surrogate labelers on the 10K nearest
neighbors of each target, and (3) the average target accuracy
change. As a result, when n is at least 3,000 (3% of the en-
tire data), the runtime improves by >20x, while the average
local accuracy and target accuracy change are comparable to
the results using the entire data (All). In addition, utilizing
the data distribution sometimes gives worse results than not
due to the adjustment of class ratios of nearest neighbors to
follow the entire distribution. Hence, using partial data with-
out knowing the entire data distribution can be sufficient for
effective disinformation.

Related Work
Data Privacy, Data Deletion, and Disinformation Data
privacy is a broad discipline of protecting one’s personal in-
formation within data. The most popular approach is differ-

ential privacy (Dwork et al. 2006; Dwork 2011; Dwork and
Roth 2014) where random records are added to a database to
lower the chance of information leakage. In comparison, we
solve a subproblem of data privacy in ML where there is no
control over the training data, and the only way to improve
one’s privacy is to add disinformation.

Another related problem is data deletion where the goal is
to make a model forget about certain data (Ginart et al. 2019;
Guo et al. 2020; Golatkar, Achille, and Soatto 2020a,b;
Graves, Nagisetty, and Ganesh 2021)). Most of these tech-
niques assume that the data or model can be changed at will.
In comparison, we only assume that data can be added and
that models may be trained with the new data at some point.

Finally, disinformation has been studied in different con-
texts including data leakage detection (Papadimitriou and
Garcia-Molina 2011) and entity resolution (Whang and
Garcia-Molina 2013). In comparison, Redactor focuses on
obfuscating information in ML models for data privacy.

Targeted Poisoning Targeted poisoning attacks (Suciu
et al. 2018; Shafahi et al. 2018; Zhu et al. 2019; Kermani
et al. 2015) have the goal of flipping the predictions of
specific targets to certain classes. Clean-label attacks (Suciu
et al. 2018; Shafahi et al. 2018; Zhu et al. 2019) have been
proposed for neural networks to alter the model’s behavior
on a specific test instance by poisoning the training set with-
out having any control over the labeling. Convex Polytope
Attack (CPA) (Zhu et al. 2019) covers various structures of
neural networks, which is different from other techniques.
All these techniques rely on a fixed feature space for opti-
mization whereas Redactor does not assume this.

Conclusion
We proposed effective targeted disinformation methods for
black-box models on structured data where there is no ac-
cess to the labeling or model training. We explained why
an end-to-end training setting is important and that existing
targeted poisoning attacks that implicitly rely on a transfer-
able learning setting do not perform well. We then presented
Redactor, which is designed for end-to-end training where it
generates a conservative probabilistic decision boundary to
emulate labeling and then generates realistic disinformation
examples that reduce the target’s accuracy and confidence
the most. Our experiments showed that Redactor generates
disinformation more effectively than other targeted poison-
ing attacks, defends against MIAs, generates realistic disin-
formation, and scales to large data.
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