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Abstract

We introduce the problem of training neural networks such
that they are robust against a class of smooth intensity pertur-
bations modelled by bias fields. We first develop an approach
towards this goal based on a state-of-the-art robust training
method utilising Interval Bound Propagation (IBP). We anal-
yse the resulting algorithm and observe that IBP often pro-
duces very loose bounds for bias field perturbations, which
may be detrimental to training. We then propose an alterna-
tive approach based on Symbolic Interval Propagation (SIP),
which usually results in significantly tighter bounds than IBP.
We present ROBNET, a tool implementing these approaches
for bias field robust training. In experiments networks trained
with the SIP-based approach achieved up to 31% higher certi-
fied robustness while also maintaining a better accuracy than
networks trained with the IBP approach.

1 Introduction
Neural networks have achieved remarkable performance in
a wide range of applications recently; however, they re-
main fragile to even small perturbations of the networks’
inputs (Szegedy et al. 2014). Thus, research into robust train-
ing, i.e., training approaches that improve the robustness of
neural networks, is of high importance.

Adversarial augmentation-based methods (Zhang and Li
2019) are one class of robust training approaches which aug-
ment the training set with adversarial examples (Szegedy
et al. 2014) to promote robustness. Adversarial augmenta-
tion often produces networks that are empirically more ro-
bust (Madry et al. 2017); however, the method does not
capture all adversarial inputs for the perturbation under
consideration. Therefore, networks trained with adversar-
ial augmentation often exhibit a higher empirical robust-
ness against the adversarial attacks used during training than
against different ones.

A further approach to robust training utilises abstraction-
based methods to over-approximate the reachable output
sets for each perturbation region (Zhang et al. 2020a). The
output sets are used in loss functions that promote correct-
ness for all perturbations under consideration. In contrast
to adversarial training, this approach encapsulates all inputs
defined by the perturbation. Moreover, the abstractions used
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during training can provide formal guarantees on the robust-
ness of the networks; for these reasons, these methods are
often referred to as certifiably robust training methods.

While abstraction-based robust training methods have
achieved state-of-the-art results, their supported input per-
turbation types are limited with most methods supporting
white noise perturbations only. But additional input pertur-
bations such as contrast, brightness, and other smooth inten-
sity perturbations remain of high interest in practice. This
paper focuses on robust training against bias field perturba-
tions (Tincher et al. 1993; Vovk, Pernus, and Likar 2007).

Bias field perturbations model a wide range of smooth,
spatially varying intensity changes via multiplicative and
additive polynomials. For instance, brightness and contrast
perturbations are instantiations of 0-order bias field pertur-
bations. While bias field perturbations have extensively been
used to model noise in MRI images from imperfections in
the magnetic imaging equipment and electrodynamic inter-
actions (Styner et al. 2000), more recent work has employed
them to model smooth intensity changes in natural images
due to changes in lighting conditions (Henriksen et al. 2021)
(see Figure 1). This makes them a useful perturbation to ex-
plore in the context of robust training of neural networks. In
this paper we make the following contributions towards bias
field robust training of neural networks.
• We define bias field robust training and propose a novel

encoding such that white noise robust training methods
become applicable to bias fields perturbations.

• We provide an analytical evaluation of the leading ro-
bust training method, RSIP-IBP, when instantiated on
bias field robust training and identify some limitations.

• Based on our analytical findings, we propose a new
method, called RSIP-SSIP, which addresses some of the
limitations of RSIP-IBP when applied to bias field robust
training.

• We implement RSIP-IBP and RSIP-SSIP in a
toolkit ROBNET. In experiments networks trained
with RSIP-SSIP achieved up to 31% higher certified bias
field robustness than networks trained with RSIP-IBP.

Related Work. A significant body of work has consid-
ered methods for robust training of neural networks based on
augmenting the training set with adversarial examples (Ku-
rakin, Goodfellow, and Bengio 2017; Madry et al. 2017;

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

14865



Figure 1: Bias field perturbed CIFAR10 images. Original
image (left), correctly classified (mid), misclassified (right).

Shafahi et al. 2019; Zhang et al. 2020b; Wong, Rice, and
Kolter 2020; Andriushchenko and Flammarion 2020) and
various robustness-promoting loss functions (Wang et al.
2018a; Zheng, Chen, and Ren 2019; Xiao et al. 2019). While
these methods often produce networks with good empirical
robustness, they are limited in that they (i) do not consider
all adversarial examples for the perturbation under consider-
ation, (ii) do not produce any formal guarantees for the ro-
bustness of the network, and (iii) mostly target white noise
perturbations of the inputs. In contrast, we here propose a
method that (i) uses abstractions which encapsulate all ad-
versarial examples in the perturbation region, (ii) can be
used to give formal guarantees on the robustness of the net-
work, and (iii) considers bias field perturbed inputs.

Closely related to our work are the abstraction-based ro-
bust training methods (Wong and Kolter 2018; Wong et al.
2018; Dvijotham et al. 2018; Mirman, Gehr, and Vechev
2018; Raghunathan, Steinhardt, and Liang 2018; Balunovic
and Vechev 2020; Xu et al. 2020; Zhang et al. 2020a;
Palma et al. 2022). These methods use abstractions to cal-
culate overestimating reachable sets for the networks’ out-
put which, in turn, are used in loss functions to promote
robustness. The abstractions encapsulate all adversarial ex-
amples in the perturbation region and produce lower bounds
on the robustness. However, most abstraction-based meth-
ods are limited to white noise perturbations and no previous
work has considered robustness to bias field perturbations.

The state-of-the-art abstraction-based method RSIP-
IBP (Zhang et al. 2020a) is particularly relevant to our work.
RSIP-IBP uses interval bound propagation (IBP) and re-
versed symbolic interval propagation (RSIP) to calculate
reachable output sets for the networks. In our work, we pro-
pose an encoding of bias field perturbations such that RSIP-
IBP can directly be applied to bias field robust training.
Moreover, we analyse RSIP-IBP in the context of bias field
robust training and, based on our findings, propose a novel
method RSIP-SSIP. In experiments, we show that RSIP-
SSIP significantly outperforms RSIP-IBP for bias field ro-
bust training.

Also relevant to this work is the formal verification
method for bias field robustness in (Henriksen et al. 2021).
While this paper builds on the formalisation of bias field ro-
bustness from (Henriksen et al. 2021), this paper deals with
robust training, not verification.

2 Preliminaries
In this section we provide definitions for neural network ro-
bustness and summarise symbolic interval propagation algo-
rithms and their connection to robust training approaches.

In the following we use N : Rn → Rm to denote a neural
network, x ∈ Rn without superscripts to denote the input to
a neural network, and xji to denote the pre-activation value
for node i in layer j. For notational convenience, we con-
sider neural networks with 1-dimensional inputs only when
the extension to more dimensions is straightforward. For
more information about neural networks, we refer to (Good-
fellow, Bengio, and Courville 2016).

We here consider the following definition of robust-
ness (Botoeva et al. 2020; Kouvaros and Lomuscio 2021).

Definition 1 (NN-Robustness). A networkN : Rn → Rm is
robust wrt some input constraints ψx and output constraints
ψy if N(x) satisfies ψy for all x satisfying ψx.

The literature on formal verification and robust training
usually considers ψx to be an `2 or `∞ bounded set centred
around a concrete input x, which we here refer to as white
noise robustness. The output constraints ψy are usually con-
sidered to be linear constraints on the network’s output. The
certified robustness of a network is the number of proven
robust inputs in a test set.

Interval Bound Propagation (IBP) (Gowal et al. 2018)
is a method for calculating over approximating reachable
output sets for neural networks given input sets on the form
X = {xi|xi,l ≤ xi ≤ xi,u} for xi,l,xi,u ∈ R. The in-
put bounds are propagated through the network on a layer-
by-layer basis. For a fully connected layer i with lower
and upper input bounds xi:,l,x

i
:,u, weight matrix W i, and

bias bi, the layer’s output bounds are computed as xi+1
:,l =

W i
+x

i
:,l+W i

−x
i
:,u+bi and xi+1

:,u = W i
+x

i
:,u+W i

−x
i
:,l+bi.

Here W i
+ and W i

− are the weight matrices where negative
and positive elements have been set to zero, respectively.
Monotonously increasing activation functions σ : R → R
(e.g., ReLU, Sigmoid, Tanh) are handled by applying the
activation function element-wise to the bounds.

Standard and Reversed Symbolic Interval Propagation
(SSIP and RSIP) are extensions of IBP in which the
bounds are represented as linear equations of the network’s
input variables. In SSIP the bounds are initialised at the
network’s input layer and propagated to the output layer.
In contrast, RSIP initialises bounds at the layer of interest
and back-substitutes the bounds’ variables to the input layer.
Both SIP versions use linear relaxations of activation func-
tions (Wang et al. 2018b; Singh et al. 2018, 2019) that re-
quire calculating concrete bounds. In SSIP these bounds are
calculated in the forward pass without significant additional
computational costs. In RSIP, however, the bound propaga-
tion has to be repeated for each activation layer.

The symbolic bounds in SIP implicitly track node depen-
dencies, and do thus usually produce tighter bounds than
IBP (Wang et al. 2018c). For more information on SSIP, we
refer to (Wang et al. 2018b); for RSIP we refer to (Henriksen
and Lomuscio 2021; Singh et al. 2019; Zhang et al. 2018).
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Note that RSIP is referred to as “CROWN” in (Zhang et al.
2018) and “DeepPoly” in (Singh et al. 2019).

Certifiable White Noise Robust Training. The field of
certifiable robust training considers how to train robust net-
works as defined in Definition 1. In particular the problem
is usually instantiated with ψx as a `∞-bounded neighbour-
hood around the inputs x. The robust training problem can
then be formalised as follows (Zhang et al. 2020a).
Definition 2 (White Noise Robust Training). LetN : Rn →
Rm be a neural network with parameters θ, X be a training
distribution, L be a loss function, and let λ ∈ R. The white
noise robust training problem is defined as follows.

min
θ

E
(x,y)∈X

[
max

x′: ||x′−x||∞≤λ
L(N(x′);y)

]
. (1)

Directly evaluating the inner maximisation in the defini-
tion above is usually infeasible, thus certified robust training
methods use an upper-bounding relaxation instead.

RSIP-IBP (Zhang et al. 2020a) is a state-of-the-art
method for certifiable robust training in which the upper
bounding relaxation of the inner maximisation in Defini-
tion 2 is calculated via IBP and RSIP. The combination of
IBP and RSIP does not only reduce the computational cost
for RSIP, but recent work has shown that the bounds pro-
duced by IBP are beneficial for robust training against `∞-
perturbations (Jovanović et al. 2021). Note that the algo-
rithm was originally named “CROWN-IBP”; however, in the
following we will use RSIP-IBP for notational consistency.

Bias Fields. We here consider bias field transformations to
be additive and multiplicative spatially varying polynomials.
Formally, we define bias fields and bias field transformations
as in (Henriksen et al. 2021).
Definition 3 (Bias Field). A k-th order bias field Bk(a) ∈
Rn parametrised by a is defined as B(a) =

∑k
t=0 atb

t for
at ∈ R and bt ∈ Rn where bti = (i/n)t.
Definition 4 (Bias Field Transformation). A k-th order
bias field transformation T kB : Rn → Rn is defined as
T kB(x;am,aa) = x � Bm(am) + Ba(aa) where Bm and
Ba are k-th order multiplicative and additive bias fields.
Here “�” denotes the Hadamard product.

Definition 4 assumes inputs in Rn for for ease of pre-
sentation. However, the extension to Rn×m is straight-
forward by considering bias fields on the form B =∑k
t=0

∑k
g=0 at,gb

t,g for at,g ∈ R and bt,g ∈ Rn×m where
bt,gi,j = (i/n)t(j/m)g .

In (Henriksen et al. 2021) robustness to bias field pertur-
bations is defined with respect to `∞ perturbations of the
bias field’s coefficients aa, am, formalised as follows.
Definition 5 (Bias Field Robustness). Let N : Rn → Rm
be a neural network, x ∈ Rn be a input, TB be a bias field
transform, andAm = {ām : ||ām−am||∞ < λ} andAa =
{āa : ||āa −aa||∞ < λ} with am,aa ∈ Rk, λ ∈ R be sets
of parameters for the bias field transform. The network N
is bias field robust for x, Am, and Aa if N(TB(am,aa;x))
satisfies ψy for all aa ∈ Aa and am ∈ Am.

We note that white noise and bias field robustness and ro-
bust training can easily be generalised from `∞-based per-
turbation sets to box constrained sets on the form X =
{x | xi,low ≤ xi ≤ xi,up}∀i for xi,low,xi,up ∈ R; this
is because box constraints are supported by SIP algorithms.
However, we here use `∞ for ease presentation.

3 Bias Field Transformations for Robust
Training

In this section we define the bias field robust training prob-
lem and propose a method for reducing the problem to a
white noise robust training problem. We then conclude that
algorithms for white noise robust training can be applied to
the reduced form of the bias field robust training problem.

Building on Definition 5, we here propose the following
novel definition of the bias field robust training problem as
an optimisation problem with respect to `∞ perturbations of
the am and aa coefficients.
Definition 6 (Bias Field Robust Training). Let N : Rn →
Rm be a neural network with parameters θ, X be a train-
ing distribution, L be a loss function, and TB be a bias field
transform. Moreover, let Am = {ām : ||ām−am||∞ < λ}
andAa = {āa : ||āa−aa||∞ < λ} with am,aa ∈ Rk, λ ∈
R, be sets of parameters for the multiplicative and additive
bias fields in the bias field transformation. The bias field ro-
bust training problem is defined as the following optimisa-
tion problem.

min
θ

E
(x,y)∈X

[
max

am,aa∈Am,Aa
L(N(TB(am,aa;x));y)

]
.

(2)

The optimisation problem in Definition 6 has an inner
maximisation on the parameters of the bias field; thus, we
aim to minimise the maximal loss for any bias-field pertur-
bation satisfying am ∈ Am and aa ∈ Aa. Since these per-
turbations correspond to the perturbation in Definition 5, we
expect a network with a small loss to be robust against bias
field perturbations. Later, in Section 6, we will present em-
pirical results supporting this assumption.

Observe that the bias field robust training problem in Def-
inition 6 differs from the white noise robust training problem
in Definition 2 in that the input variables to the network in
the inner maximisation are perturbed by bias field transfor-
mations instead of `∞-bounded perturbations. Since RSIP-
IBP only supports `∞-perturbations of the input variables,
and not bias field transformations, RSIP-IBP cannot be ap-
plied directly to calculate the necessary relaxations.

To create a relaxation for the inner maximisation, we ex-
tend the method used in (Henriksen et al. 2021) for formal
verification against bias field perturbations and apply the re-
sult to robust training of bias field networks. In particular,
we utilise bias field transform networks.
Definition 7 (Bias Field Transform Network). Let N :
Rn → Rm be a neural network and let TB be the k-th order
bias field transform defined by the bias fields Bm(am) =∑k
t=0 a

m
t bm,t and Ba(a) =

∑k
t=0 a

a
t b
a,t. For a given in-

put x, the bias field transform network NTB ,x : R2k → Rm
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is given by NTB ,x(am,aa) = N(WTB ,x[am,aa]), where
WTB ,x = [x�bm,0...,x�bm,k, ba,0, ..., ba,k] and [am,aa]
is the concatenation of am and aa.

The network NTB ,x(am,aa) is the neural network N ,
with a prepended fully connected layer with weight matrix
WTB ,x that encodes the bias field transform TB for a given
x and takes the bias field transform coefficients am,aa as
input. Since NTB ,x is a neural network in itself and takes
as input the parameters am,aa, the bias field robust train-
ing problem in Definition 6 can be reduced to a white noise
robust training problem, formalised as follows.
Definition 8 (Reduced Bias Field Robust Training). LetN :
Rn → Rm be a neural network with parameters θ, X be
a training distribution, and TB be a k-th order bias field
transform. Moreover, for each x in the training distribution
letNTB ,x be the bias field transform network corresponding
to x, N and TB , and let Am = {ām : ||ām − am||∞ < λ}
andAa = {āa : ||āa−aa||∞ < λ}with am,aa,∈ Rk, λ ∈
R. The reduced bias field optimisation problem is defined as:

min
θ

E
(x,y)∈X

[
max

am,aa∈Am,Aa
L(NTB ,x(am,aa);y)

]
. (3)

Theorem 1. The bias field robust training problem in Defi-
nition 6 is equivalent to the reduced bias field training prob-
lem in Definition 8.

Proof. The result follows directly from the fact that

NTB ,x(am,aa) = N(WTB ,x[am,aa])

= N(TB(am,aa;x)).
(4)

Here, the first equality is from Definition 7, and the sec-
ond is from Definition 4.

Theorem 1 shows that instead of considering the bias field
robust training problem in Definition 6 we can consider the
equivalent reduced formulation in Definition 8. Moreover,
this reduced formulation is on the same form as the white
noise robust training problem defined in Definition 2. Thus,
we can directly apply any algorithm that supports white
noise robust training problems, such as RSIP-IBP, to the re-
duced formulation above in order to solve the bias field ro-
bust training problem defined in Definition 6.

In summary we here defined the bias field robust training
problem and proposed a method for reducing the problem
to a white noise robust training problem. We then concluded
that state-of-the-art algorithms for white noise robust train-
ing, such as RSIP-IBP, can be applied to bias field robust
training. In the following section, we will analyse particular
properties of the bias field robust training problem and in-
troduce a novel algorithm for robust training targeted specif-
ically at bias field robust training.

4 RSIP-SSIP for Bias Field Robustification
In the previous section we proposed a method for reducing
the bias field robust training problem to a white noise ro-
bust training problem supported by RSIP-IBP. In this sec-
tion first we present analytical results showing that the IBP

part of RSIP-IBP may not be optimal for bias field robust
training due to the looseness of the resulting bounds. Next,
we propose a novel algorithm, RSIP-SSIP, which addresses
the shortcoming of RSIP-IBP. Finally, we argue that RSIP-
SSIP is computationally efficient for low-dimensional input
networks such as bias field networks and thus suitable for
robust training. In Section 6, we provide empirical evidence
substantiating the analytical evaluation in this section and
the advantages of RSIP-SSIP over RSIP-IBP for bias field
robust training.

The bias field robust training formulation in Definition 8
differs from the white noise robustness training problem in
Definition 2 in that the former optimises over the network
NTB

, which is the network N with the fully connected layer
TB(am,aa;x) appended to the neural network. The net-
work NTB

thus takes am,aa as input which are typically
low-dimensional compared to x. For example, for a third-
order two-dimensional bias field transform, am and aa have
16 elements each, while x typically has at least thousands of
elements for computer vision networks.

We might expect networks with low input-dimensionality
to have stronger node dependencies than those with high
input-dimensionality. By strong node dependency, we here
mean that knowing the value at some nodes in the network
significantly limits the reachable values of other nodes in
the network for a given input set. Due to the low input-
dimensionality of bias field networks, we might expect that
bias field transform networks have a stronger node depen-
dency than the underlying neural network.

The IBP algorithm, which is essential in RSIP-IBP, does
not take node-dependencies into account when calculating
bounds (Wang et al. 2018c). Thus, from the argument above,
we might expect IBP to produce less tight bounds for the
bias field network when compared to the underlying network
for comparable input sets. Indeed, this is formalised below
for brightness perturbations, which is an instantiation of a
0-order additive bias field transformation.

Theorem 2. Let N : Rn → Rm be a neural network and
NTB ,x : R → Rm be the 0-order bias field transform net-
work NTB ,x(a) = N(x + a1) where a ∈ R and 1 ∈ Rn.
For input sets defined by A = {a : ||a||∞ < λ} and
X = {x′ : ||x′ − x||∞ < λ}, we have IBP (N,X) =
IBP (NTB ,x, A), where IBP (N,X) and IBP (NTB ,x, A)
are the bounds produced by IBP at the network’s output
layer.

Proof. Note thatN andNTB ,x only differ in thatNTB ,x has
a prepended extra fully connected layer, TB(a;x) = x+a1.
It is enough to show that IBP (TB(a;x)) = {x′ : ||x′ −
x||∞ < λ}. The lower bounds of IBP (TB(a;x)) are:

xTB

:,l = W+al +W−au + x

= 1(−λ) + 0au + x

= x− 1λ.

(5)

Similar calculations for the upper bounds gives us xTB
:,u =

x+ 1λ, thus IBP (TB(a;x)) = {x′ : ||x′−x||∞ < λ} =
X .
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Algorithm 1: RSIP-SSIP

Input: N,A,Lstd, Lrob, α, TrainingData, NumEpochs
1: for epoch← 1 to NumEpochs do
2: for x, l in TrainingData do
3: NTB ,x ← BiasF ieldNetwork(N,x)
4: ψssip ← SSIP (NTB ,x, A)
5: L̄rob ← RSIP (NTB ,x, ψssip, A, Lrob, l)
6: L← Lstd(N(x), l) + αL̄rob
7: Optimise(L, N .parameters)

Theorem 2 shows that IBP produces the same bounds for
N given the input set X = {x′ : ||x′ − x||∞ < λ} as
for NTB ,x given A = {a : ||a||∞ < λ}. However, the
brightness transform wrt A, i.e., {x′ | x′ = x + a, a ∈ A},
is clearly a subset of X , thus we would expect the bounds
for NTB ,x given A to be tighter than the bounds for N given
X . As discussed above, the loose bounds are a result of IBP
not taking node dependencies into account.

Similar arguments may be made for bias fields of higher-
order; thus we can expect IBP to produce relatively loose
bounds for bias field networks. We note that recent studies
have shown that tighter bounds do not necessarily correlate
with better performance in robust training (Jovanović et al.
2021). However, very loose bounds may still be detrimental
to robust training. Indeed in Section 6 we show that IBP-
based training quickly deteriorates for larger perturbations.

Considering the discussion above, it is clear that bias field
robust training may benefit from replacing IBP in RSIP-IBP
with a relaxation that better accounts for node dependen-
cies. We here introduce RSIP-SSIP exactly to that effect.
RSIP-SSIP differs from RSIP-IBP in that it utilises SSIP, as
described in Section 2, to calculate the bounds for the inter-
mediate layers in the network as opposed to IBP. Compared
to IBP, SSIP generally produces tighter bounds as it keeps
track of some of the node dependencies (Wang et al. 2018b).
The full RSIP-SSIP algorithm is provided in Algorithm 1.

Algorithm 1 takes as input the network N , the set of pa-
rameters for the bias field perturbation A, the standard loss
function Lstd, the robustness loss Lrob, a weighting param-
eter α, the training data, and the number of training epochs.
Lrob may be the loss function Lstd under the worst-case per-
turbation; however, in practice Lrob is often adapted to facil-
itate bound calculation.

The inner training loop first initialises the bias field trans-
form network NTB ,x. Next, the SSIP bounds are calcu-
lated for all layers in the network (ψssip), followed by the
RSIP upper bound for the robustness loss (L̄rob). Note that
RSIP utilises the bounds from SSIP, thus back-propagating
the gradients through the RSIP upper bound also back-
propagates the gradients through the SSIP bounds.

Finally, the standard training loss is calculated with re-
spect to the output of a forward pass and total loss is a
weighted sum of the robust loss and standard loss. The pa-
rameters of the network are optimised with respect to this
loss via back-propagation. We will comment on the imple-
mentation details of the Algorithm, such as the specific loss
functions used, in the next section.

Computational Complexity. We end this section by de-
riving the computational complexity of RSIP-SSIP. We do
not consider the concretisation of symbolic bounds as the
cost is usually dominated by bound propagation.

Theorem 3. The computational complexity of a forward
pass off RSIP-SSIP is O((nb + 2ni + 3)F ) where F is the
computational complexity of a standard forward pass in the
network, ni is the the network’s input dimensionality and nb
are the number of bounds calculated by RSIP.

Proof. The computational complexity of the RSIP phase is
O(nbF ) (Zhang et al. 2020a). SSIP keeps track of separate
lower and upper symbolic bounds and each bound has ni co-
efficients and one constant value. Each coefficient and con-
stant value of the SSIP bounds has the same number of op-
erations as a standard forward pass; thus the complexity of
SSIP is O(2(ni + 1)F ). Finally RSIP-SSIP also performs a
standard forward pass to calculate the standard training loss,
giving us the total complexity O(2(ni + 1)F ) +O(nbF ) +
O(F ) = O((nb + 2ni + 3)F )

We note that nb is typically small; e.g., for classifica-
tion networks we usually calculate only one bound for
each of the network’s outputs (see Section 5). Moreover,
for bias field transform networks, the input dimension is
also typically relatively small (e.g., ni = 16 for a 3-
order 2-dimensional multiplicative bias field transformation
network). In experiments (Section 6) we recorded training
times per epoch for RSIP-SSIP to be only 8–9 times longer
than for standard training with a medium-sized CIFAR10
network. The increase in training time may be an acceptable
trade-off for increased robustness in many applications, es-
pecially when the applications are safety-critical.

In summary we (i) analysed the tightness of bounds calcu-
lated by IBP for bias field transform networks and concluded
that they may be too loose for efficient robust training, (ii)
we proposed a novel algorithm RSIP-SSIP specifically tar-
geted at bias field transform networks, and (iii) we showed
that RSIP-SSIP is computationally efficient for low dimen-
sional networks. In the following section we will cover some
implementation details of the algorithm proposed here and
in Section 6 we empirically show that RSIP-SSIP produces
significantly more robust and accurate networks than RSIP-
IBP for bias field transform networks.

5 Implementation
In this section we present ROBNET, a toolkit implementing
RSIP-IBP and RSIP-SSIP as described in the previous sec-
tions. In the rest of this paper, we consider only image clas-
sification networks for ease of presentation, but the material
can suitably be adapted to other problems.

ROBNET is implemented in Python and uses the PyTorch
library for vectorised computations, neural network training,
and GPU acceleration. As in Algorithm 1, ROBNET takes as
input a neural network N , the bias field constraints A, the
training distribution X , the number of training epochs E,
the loss-weighting parameter α, and a learning rate.
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ROBNET uses stochastic gradient descent for optimising
the networks’ parameters, thus each iteration in the training
loop considers a batch of inputs. For each input in the batch,
a new bias field transform network is created. We note, how-
ever, that all parameters in the networks are shared, except
parameters in the networks’ transform layers.

The bias field transform layers may result in pixel values
being perturbed out of the [0, 1] range. To avoid this effect,
we augment the network with pixel-clipping layers directly
after the transform layer. The clipping layers are on the form
−(ReLU(−ReLU(x) + 1) − 1) and ensure that each ele-
ment is clipped to the [0, 1] range.

For each bias field network, ROBNET uses IBP (for RSIP-
IBP) or SSIP (for RSIP-SSIP) to calculate the bounds for all
non-linear nodes in the network. In the case of RSIP-SSIP,
IBP is first used in a pre-processing step; this is followed by
SSIP; the tightest bounds obtained from either IBP or SSIP
are used to calculate the relaxations for the non-linear op-
erations. This combination is guaranteed to produce tighter
bounds than either method in isolation.

The bounds calculated with IBP and SSIP are, in turn,
used to calculate relaxations for all non-linear operations in
the network; the relaxations are utilised in RSIP to calculate
an upper bound for the following robustness loss.

LRob(NTB ,x, A; l) =∑
i6=l

max
a∈A

(max(0, NTB ,x(a)i −NTB ,x(a)l)). (6)

Here x is the network’s input, l is the corresponding la-
bel, and NTB ,x(a)i is the output for class i in the neural
network. The hinge loss from the inner maximisation en-
sures that provably robust inputs do not contribute to the
loss. Moreover, we do not calculate the robustness loss for
inputs that are misclassified (i.e., N(x)l ≤ N(x)i for some
i 6= l). We found that both of these design choices improved
the performance of the training procedure.

ROBNET optimises over a weighted sum of the robust and
standard loss:

L(x, N,A; l) =Lstd(N(x); l)+

αL̄Rob(NTB ,x, A; l).
(7)

Here L̄Rob is the upper bound for LRob as calculated by
RSIP, Lstd is the standard cross-entropy loss, and α ∈ R is
a weighting factor. ROBNET uses the PyTorch implementa-
tion of the Adam optimiser (Kingma and Ba 2015) to opti-
mise over the loss. The RSIP and SSIP implementations are
based on the SIP implementation from the open-source Ver-
iNet toolkit (Henriksen and Lomuscio 2020). However, we
significantly modified the implementations to support cal-
culating bounds for batches of inputs in parallel with GPU
acceleration. We found batch computations and GPU accel-
eration to be essential for efficient training.

6 Experimental Evaluation
This section presents experimental results for bias field ro-
bust training with ROBNET. As discussed in the introduc-
tion, bias field perturbations can model changes in lighting

conditions for natural images and inhomogeneities for MRI
images; we here represent these two applications with the
CIFAR10 dataset (Krizhevsky, Nair, and Hinton 2014) and
an MRI brain tumour classification dataset (Parvar 2021),
respectively. The CIFAR10 dataset contains ten classes of
natural images and is extensively used in experimental eval-
uations of robust training methods. The MRI dataset consists
of 7023 2-dimensional slices of brain scans where the task
is to classify each scan as one of four tumour classes.

All experiments were run on a workstation with Fedora
35, Linux kernel 5.15, NVIDIA RTX 3090 GPU, 256 GB
Ram, and an AMD Threadripper 3970X 32-Core Processor.
The networks were first trained for 200 epochs without ro-
bust loss, of which 80 epochs used a learning rate of 10−3,
80 used 10−4 and 40 used 10−5. After the initial training, the
networks were trained for 100 epochs with a learning rate of
5×10−4, while the perturbation radius was evenly increased
from 0 to the radii under consideration. Finally, we trained
50 epochs with a learning rate of 5 × 10−5, 25 epochs with
5 × 10−5 and 25 epochs with 5 × 10−6. The learning rates
for robust training (5 × 10−4, 5 × 10−5, 5 × 10−6) are the
same as in (Zhang et al. 2020a).

In line with most research in the field, we here consider
both the test accuracy and certified robustness of the net-
works. Typically, there is a trade-off between these metrics,
i.e., one can be increased at the cost of reducing the other.
Thus, both metrics should be taken into consideration when
evaluating the performance of the robust training algorithm.

We here consider robustness to third-order multiplicative
bias field perturbations. The coefficient of the bias fields’
constant term is constrained to [1 − ε, 1 + ε], and the re-
maining terms are constrained to [−ε/15, ε/15] as in (Hen-
riksen et al. 2021). The certified robustness was evaluated
with RSIP-SSIP over all data points in the test set. We note
that certified robustness evaluated by RSIP-SSIP is always
better than RSIP-IBP as RSIP-SSIP bounds are guaranteed
to be tighter than RSIP-IBP bounds (see Section 5).

Perturbation radii and loss-weights. Table 1 shows the
ROBNET results for a CIFAR10 network with the DM-
Medium architecture from (Zhang et al. 2020a) (7 layers,
62k ReLU nodes, and 2.5m parameters) with various pertur-
bation radii and loss-weights. The Table contains the results
for the standard (pre-robust training) networks, the RSIP-
IBP networks and the RSIP-SSIP networks.

For all ε (perturbation radii) and α (weight of the robust
loss), the test accuracy and certified robustness for the RSIP-
SSIP networks are better than the corresponding RSIP-IBP
networks. For small ε, the accuracy and robustness of net-
works trained with RSIP-IBP are still comparable to RSIP-
SSIP; however, the RSIP-IBP results quickly deteriorate for
larger ε . We also note that RSIP-SSIP achieves 31% higher
certified robustness than RSIP-IBP with ε = 40 and their
best α values (α = 4 and α = 1, respectively).

The average training time for the standard network was 30
seconds per epoch. For RSIP-IBP, the training time ranged
from 97 to 137, and for RSIP-SSIP from 253 to 273 sec-
onds, depending on ε and α. We note that training time gen-
erally decreases slightly for larger ε; the decrease is mainly
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Test Accuracy Cert. Robustness

ε Std % RI % RS % Std % RI % RS %

1 82.9 78.1 81.6 65.7 77.8 81.3
5 82.9 72.1 81.0 41.2 71.3 78.5
10 82.9 66.8 79.6 5.7 64.9 75.1
20 82.9 54.8 78.7 0.0 49.6 70.2
40 82.9 46.3 76.6 0.0 35.2 62.9

α Std % RI % RS % Std % RI % RS %

0.25 82.9 49.0 76.7 0.0 33.0 58.6
0.50 82.9 45.0 77.2 0.0 33.2 61.0
1.00 82.9 46.3 76.6 0.0 35.2 62.9
2.00 82.9 44.9 76.7 0.0 35.0 64.3
4.00 82.9 41.8 76.6 0.0 30.6 66.1

Table 1: Robust training for a medium-sized CIFAR10 clas-
sification model. “Std” is the standard (not robustly trained),
“RI” the RSIP-IBP, and “RS” the RSIP-SSIP trained model.
The top five rows use α = 1, the bottom five use ε = 40.

Test Accuracy Cert. Robustness

ε Std % RI % RS % Std % RI % RS %

SC 75.6 51.2 72.5 9.45 41.2 56.4
MC 82.9 46.3 76.6 0.0 35.2 62.9
LC 85.9 44.8 79.2 0.0 34.3 65.9

Table 2: Robust training with α = 1 and ε = 40 for a small
(SC), medium (MC), and large (LC) CIFAR10 network.

because larger perturbations result in a lower accuracy, and
ROBNET does not calculate the robust loss for misclassified
points (see Section 5).

Network architectures. In Table 2 we present the ROB-
NET results for the CIFAR-10 DM-Small and DM-large ar-
chitectures from (Zhang et al. 2020a). DM-Small has 4 lay-
ers, 6k ReLU nodes and 215k parameters, while DM-large
has 7 layers, 230k ReLU nodes, and 17m parameters. For
all architectures, RSIP-SSIP produces networks with signif-
icantly better accuracy and certified robustness than RSIP-
IBP, and the difference increases for larger networks.

The average training time per epoch for DM-Small was
29 seconds with standard training, 99 with RSIP-IBP and
138 with RSIP-SSIP. Corresponding numbers for DM-large
were 31, 149, and 703 seconds.

MRI classification experiments. In Table 3 we report the
robust training results for the MRI brain tumour classifica-
tion network (9 layers, 311k ReLU nodes and 17m param-
eters). The network takes MRI slices with one channel and
128× 128 pixels as input.

In these experiments RSIP-IBP slightly outperformed
RSIP-SSIP for ε = 1; however, for larger perturbations,
RSIP-SSIP significantly outperforms RSIP-IBP both on ac-
curacy and certified robustness.

The average training time per epoch for standard train-
ing was around 5 seconds, 59–63 seconds for RSIP-IBP, and
136–145 seconds in RSIP-SSIP. We note that the relative dif-

Test Accuracy Cert. Robustness

ε Std % RI % RS % Std % RI % RS %

1 97.8 98.2 97.6 97.7 98.1 97.5
5 97.8 97.1 97.9 89.2 95.6 96.6
10 97.8 97.2 97.9 17.4 92.1 96.1
20 97.8 95.3 98.0 1.4 71.2 94.0
40 97.8 87.4 97.4 0.0 44.3 96.6

Table 3: Robust training for an MRI classification network.

ference in training time for RSIP-SSIP compared to RSIP-
IBP was larger in these experiments. The difference in train-
ing time is mainly due to the larger input dimension, which
increases the size of the transform and clipping layers used
in robust training.

Summary. The experiments show that RSIP-IBP gener-
ally outperformed RSIP-SSIP for a range of perturbation
radii, network architectures and loss-weights on the CI-
FAR10 and brain tumour MRI datasets. For small pertur-
bation radii, the results for RSIP-IBP and RSIP-SSIP were
generally comparable; however, for larger radii, RSIP-SSIP-
trained networks were significantly more robust and accu-
rate than RSIP-IBP-trained networks. The performance dif-
ference is in line with our hypothesis from Section 4; IBP
bounds may become too loose to provide meaningful infor-
mation during training for larger networks.

The training times for RSIP-SSIP were only 2–4.5 times
larger for RSIP-SSIP than for RSIP-IBP; this increase is ex-
pected given the complexity remarks offered in Section 4.
We note that the training time further increased somewhat
for larger networks; we hypothesise that this is because
RSIP-SSIP reached maximum GPU utilisation for smaller
networks than RSIP-IBP did, while RSIP-IBP may compar-
atively utilise GPUs more efficiently for larger networks.

7 Conclusions
Research into robust training of neural networks remains of
high importance to facilitate widespread adoption of net-
works in safety-critical applications. While much progress
has been made lately, current approaches for robust training
are limited in that they mainly consider robustness against
white noise perturbations. In contrast, we here considered
robust training against a class of smooth spatially varying
intensity perturbations modelled via bias fields.

We proposed a method for encoding bias field perturba-
tions into the neural networks via transformation layers and
showed that the resulting networks can be combined with
white noise robust training methods to perform bias field ro-
bust training. We analysed the state-of-the-art method RSIP-
IBP in the context of bias field robust training and identi-
fied some shortcomings of the method. We addressed these
shortcomings by proposing a novel method, RSIP-SSIP, for
robust training and implemented both RSIP-SSIP and RSIP-
IBP in a toolkit ROBNET. In experiments ROBNET pro-
duced networks with up to 31% higher certified robustness
against bias field perturbations when using RSIP-SSIP com-
pared to RSIP-IBP.
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