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Abstract

Communicating the predictive uncertainty of deep neural net-
works transparently and reliably is important in many safety-
critical applications such as medicine. However, modern neu-
ral networks tend to be poorly calibrated, resulting in wrong
predictions made with a high confidence. While existing post-
hoc calibration methods like temperature scaling or isotonic
regression yield strongly calibrated predictions in artificial
experimental settings, their efficiency can significantly re-
duce in real-world applications, where scarcity of labeled data
or distribution shifts are commonly present. In this paper, we
first investigate the impact of these characteristics on post-hoc
calibration and introduce an easy-to-implement extension of
common post-hoc calibration methods based on test time aug-
mentation. In extensive experiments, we demonstrate that our
approach results in substantially better calibration on various
architectures. We demonstrate the robustness of our proposed
approach on a real-world application for skin cancer classifi-
cation and show that it facilitates safe decision-making under
real-world uncertainties.

Introduction

Deep neural networks are increasingly applied in safety-
critical applications such as autonomous driving (Grig-
orescu et al. 2020) or medical diagnosis (Aggarwal et al.
2021). Such systems require not only high accuracy but also
strongly calibrated uncertainty estimates. That is, the confi-
dence score provided by the model should reflect its predic-
tive uncertainty such that it matches the true likelihood of
the prediction.

A lighthouse application for neural network-based clas-
sification in medicine is to support dermatologists in the
diagnosis of skin cancer (Esteva et al. 2017). Studies have
shown that image classifiers based on convolutional neural
networks are on par or even superior to human experts in
experimental settings (Brinker et al. 2019). However, sev-
eral challenges arise when translating such systems from re-
search to clinical practice. Due to different lighting condi-
tions, acquisition systems or digital post-processing steps,
the real-world deployment environment can generally be
slightly different from the training domain (see Fig. 1). As a
result, there may be a significant drop in the predictive power
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Ground truth Melanoma Melanoma
Model Prediction Melanoma Nevus
Methods Confidence Confidence
Uncalibrated model 0.99 0.99
Baseline calibration 0.85 0.91
Proposed calibration 0.92 0.78

Figure 1: Real-world distribution shift in skin cancer clas-
sification: recalibrated models make over-confident predic-
tions. Left: in-distribution predictions by a model trained
on images taken in Barcelona are made correctly with high
confidence. Right: Under real-world distribution shift (im-
age taken at a different hospital in Sidney) all models make
wrong predictions, but only our proposed approach has a low
confidence score reflecting model uncertainty.

of the system.

For Al-based diagnostic systems to be applied routinely in
the clinic, the underlying neural networks need to be able to
transparently communicate the reliability of individual pre-
dictions throughout the entire life-cycle of the model. That
is, predictive uncertainties need to be calibrated not only for
in-distribution predictions, but also for distribution shift sce-
narios.

A variety of different post-hoc calibration methods have
been proposed to ensure well-calibrated models (Guo et al.
2017; Platt et al. 1999; Zhang, Kailkhura, and Han 2020).
These methods transform weakly calibrated model predic-
tions such that in-distribution predictions are strongly cal-
ibrated. However, modern neural networks typically still
make highly overconfident predictions under distribution
shift, even after post-hoc calibration (Ovadia et al. 2019;
Tomani and Buettner 2021).

Recent studies have examined calibration of deep neural
networks under distribution shift typically on standard
computer vision benchmarks such as IMAGENET-C or
OBJECTNET for IMAGENET. However, calibration in the
medical domain comes with requirements and challenges
that are substantially different from those in these bench-



mark settings. In particular, binary classification tasks, such
as whether a tumor is present or not, are common, and
there is often a class imbalance between the positive and
negative class. In addition, data labeling in the medical
domain is typically a challenging and time-intensive task
which requires domain-specific experts. Together with
rigorous data protections regulations, this often results in
data scarcity. However, these low-data medical regimes are
precisely the safety-critical environments where models are
required to communicate their uncertainty in a transparent
and reliable manner.

Contributions. In this paper, we focus on the problem
of post-hoc calibration under real-world uncertainties. We
make the following main contributions:

* First, we introduce an easy-to-implement extension of
common post-hoc calibration methods based on test time
augmentation (TTA).

* With extensive experiments we show that the proposed
TTA-based extensions consistently improve the perfor-
mance of state-of-the-art post-hoc calibration methods
in terms of calibration under distribution shift, without
compromising on in-distribution calibration.

At the example of skin cancer classification, we evaluate
our approach on a real-world safety-critical application
and showcase its data efficiency and practical relevance.

Related Work

In general, existing approaches towards neural networks
with calibrated predictive uncertainties can be broadly di-
vided into two categories. On the one hand, several ap-
proaches proposed to modify the training process in or-
der to obtain strongly calibrated predictions (Lakshmi-
narayanan, Pritzel, and Blundell 2017; Thulasidasan et al.
2019; Mukhoti et al. 2020; Tomani and Buettner 2021).

In this paper, we focus on the second category of cal-
ibration methods, so-called post-hoc calibration methods,
in which the uncalibrated output of a trained model is
transformed such that the resulting confidence scores better
match the true likelihood of a prediction.

Post-hoc Calibration Methods

A plethora of post-hoc calibration methods have been
proposed in recent literature and include both parametric
and non-parametric approaches (Guo et al. 2017; Zhang,
Kailkhura, and Han 2020; Gupta et al. 2021; Ma and
Blaschko 2021; Wang, Feng, and Zhang 2021).

The key idea of these methods is to use a validation set
sampled from the same distribution as the training set in or-
der to rescale the original outputs of a trained neural network
such that in-distribution predictions are strongly calibrated.
A simple non-parametric post-hoc method is histogram bin-
ning (Zadrozny and Elkan 2001), which partitions all confi-
dence scores into .S bins. Then, a calibrated score calculated
by optimizing a bin-wise squared loss function on the val-
idation set is assigned to each bin. For each test-time pre-
diction, the original confidence score is then replaced by the
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optimized value associated with the bin, in which the pre-
diction falls.

Isotonic regression (IR) (Zadrozny and Elkan 2002) is an
extension of histogramm binning. Here, the outputs of the
neural network are divided into M intervals and a piecewise
constant function is fitted on the validation set to transform
uncalibrated outputs to calibrated confidence scores.

Besides these non-parametric methods, also parametric
approaches for post-hoc calibration exist. Their main differ-
ence lies in the parametric family of the respective calibra-
tion function. For binary classification, Platt scaling (Platt
etal. 1999) is an approach for transforming uncalibrated log-
its to calibrated confidence scores using logistic regression.
A simple extension of Platt scaling is temperature scaling
(TS) (Guo et al. 2017). Here, a single parameter 7" is learned
to rescale the logits of the network. A more expressive alter-
native to TS is extended temperature scaling (ETS) (Zhang,
Kailkhura, and Han 2020), which is based on a weighted en-
semble of 3 fixed temperatures. Dirichlet calibration (Kull
et al. 2019) allows learning within the family of linear func-
tions f(z) = Wx+b, where W € R"*"™ and b € R™. A reg-
ularization of the off-diagonal elements of W is suggested in
(Kull, Silva Filho, and Flach 2017) in order to avoid overfit-
ting .

Zhang, Kailkhura, and Han (2020) have proposed a com-
bination of parametric and non-parametric methods. The au-
thors suggest to perform isotonic regression after a temper-
ature scaling step. Additionally, the authors introduce an
accuracy-preserving version of isotonic regression (IRM)
(Zhang, Kailkhura, and Han 2020).

A first comprehensive evaluation of calibration under dis-
tribution shift is presented in (Ovadia et al. 2019). The au-
thors show by means of artificially generated distribution
shifts that the quality of predictive uncertainties decreases
with increasing distribution shift, regardless of the calibra-
tion method.

Test Time Augmentation

While data augmentation is typically used as part of training
neural networks, it can also be used at test time. The idea
behind test time augmentation is to let a model predict mul-
tiple transformations of a given image and then aggregate
the individual predictions via an adequate method, e.g. by
calculating the arithmetic mean.

Various studies have employed TTA to improve accuracy
(Krizhevsky, Sutskever, and Hinton 2012; Szegedy et al.
2015), enhance robustness (Maron et al. 2021; Prakash et al.
2018), or perform uncertainty estimation in the context of
classification (Wang et al. 2019a; Combalia et al. 2020) and
segmentation (Javadi et al. 2022; Wang et al. 2019b).
However, a combination of TTA with post-hoc calibration
has not been investigated yet. This is particularly of inter-
est since recent work has demonstrated that combining sev-
eral calibration methods does not necessarily lead to better
results. For example, Wang, Feng, and Zhang (2021) have
shown that it is harder to further calibrate predictions with
post-hoc calibration methods obtained from models with im-
plicit or explicit regularization techniques.



Algorithm 1: TTA-based extension of common post-hoc
re-calibration algorithms

Input - trained model f(-)
- post-hoc calibrator ¢(-) tuned for f(-) on
hold-out labeled validation set D¥¥!
- set of transformations 7T
- test image x
- number of considered augmentations 7’
Output calibrated uncertainty prediction p for
test image x

t+0 > Initialize iteration counter
L+ 0

: logits « f(x)
L + L Ulogits
: whilet < T do
T+ tta(z, T) > TTA of test image
logits <— f(Z) ® Calculate logits of augmentations
L + L Ulogits
t+t+1

. end while

1+ 0

: for logits in £ do
- f+logits

: end for

L 1/(TH+1)

cp=c(l)

> Calculate logits of original image
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—
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> Calculation of mean logits
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> Calculate calibrated uncertainty score

Problem Formulation and Definitions
Top-label Recalibration under distribution Shift

In this paper, we address the problem of recalibrating an
already trained neural network. Let € RP represent the
D-dimensonal input and y € Y := {1,..., K} the cor-
responding labels in a classification task. Let p*(x,y) =
p*(y|z)p*(x) be the true joint distribution of the data gen-
erating process. It is unknown and can only be observed

through the training dataset D, which consists of N i.i.d.

samples D = {(z, Z/n)}iyzl-

Furthermore, let py(y|x) be a neural network, where the
model parameters 6 are optimized during the training us-
ing D. For each input x, the model outputs a class pre-
diction § = argmax,py(y|z) and an associated confidence
score p = max,pg(y|z). Here, we do not focus primar-
ily on the accuracy of the class predictions, but rather on
an accurate estimation of the predictive uncertainties (i.e.
of the confidence scores p). We consider not only the in-
distribution case, in which the test data originates from the
same distribution p*(x, y) as D but also data shift scenarios,
where the test data sample is from a different distribution
q(zly) # p*(x|y). More specifically, we study distribution
shift scenarios, in which the distribution of the test data grad-
ually shifts away from the true training distribution p*(x|y).

Calibration Metrics

Intuitively, a model is strongly calibrated if its outputs re-
flect reliably the predictive uncertainties. For example, if we
consider all data samples having a confidence score p = 0.6
for label y, we expect 60% of them to indeed take on the la-
bel y. More, formally we can define strong calibration such
that accuracy and confidence match for all confidence levels
(Gupta et al. 2021):

P(y=ylp=p) =p, ¥pe[0,1] (1)

Based on this definition, a calibration error can be defined
as the difference in expectation between accuracy and con-
fidence. The most common estimator for this calibration er-
ror is the expected calibration error (ECE) (Naeini, Cooper,
and Hauskrecht 2015). It calculates the average weighted
gap between within-bin accuracy and within-bin predictive
probabilities for S interval bins B, = {n € 1,...,N :
po(Ynlzn) € (ps, ps+1]}, typically of equal size. Then, the
ECE is calculated by

s
B
ECE = Z %\acc(Bs) — conf(B,)|, 2
s=1

where acc(B;) = ﬁ > nep, [Yn = 9n] and conf(B;) =

ﬁ ZnGBs pG(@n|xn)

Although the ECE is the most commonly used met-
ric for measuring calibration, it has some drawbacks. It is
not a proper score and for instance the chosen number of
bins can result in biased estimates and/or volatility (Zhang,
Kailkhura, and Han 2020). Therefore, we further calculate
two alternative calibration metrics based on proper scores:
Brier score (BS) and negative log likelihood (NLL).

Methods

Standard post-hoc calibration methods only utililze the orig-
inal test image to determine well-calibrated predictions. The
main idea of our approach is to obtain better calibrated confi-
dence scores by applying data augmentation to the test data
and recalibrating the resulting outputs with common post-
hoc calibration methods.

First, a set of simple image transformations 7 (such as ro-
tation, shift, changes in brightness) is defined. Each transfor-
mation has two parameters: 1) the probability that it will be
performed and 2) the maximum magnitude of the transfor-
mation. The applied magnitude is randomly sampled out of
the specified intervals during test time. The individual trans-
formations are applied sequentially to an image x, such that
the output of the composed function is a single transformed
image . Specific parameter settings used for all experiments
are described in the next section.

For initializing the TTA-based extension for a given post-
hoc calibration method, the base calibrator is tuned in a stan-
dard manner on the non-augmented validation set. During
test time, not only the original test image is classified with
the given model but also augmented versions of the test im-
age modified with the image transformations 7. Based on
the resulting logits of the individual predictions, the mean



Data Meth. Acc Acc ECE ECE BS BS NLL NLL
Base ours Base ours Base ours Base ours
C-10 TS 96.9+0.66 97.1+0.61 0.6+0.14 0.4+0.07 4.7£0.93 4.3+0.83 9.74+1.78 8.8+1.61
C-10 ETS 96.94+0.66 97.1+0.61 0.6+0.08 0.5+0.15 4.7£+0.93 4.3+0.83 9.8+1.80 9.0+1.62
C-10 IR 96.94+0.66 97.1+0.61 0.840.09 0.54+0.09 4.840.93 4.4+0.83 13.8+2.16 11.942.04
C-10 IRM 96.9+0.66 97.1+0.61 0.6+0.12 0.4+0.10 4.8+£0.93 4.4+0.83 9.94+1.81 9.1+£1.58
C-100 TS 84.3+1.92 85.2+1.67 2.6+0.30 2.3+0.38 22.64+2.43 21.5+2.12 56.44+6.28 52.9+5.34
C-100 ETS 84.3+1.92 85.2+1.67 1.9+£0.25 2.0+£0.38 22.64+2.43 21.4+2.12 57.64+6.31 54.2+5.36
C-100 IR 84.3+1.92 85.2+1.67 2.6+030 2.1+0.26 2344250 22.3+2.19 87.6+7.63 78.4+6.37
C-100 IRM 84.3+1.92 85.2+1.67 1.1+031 1.3+0.34 2274249 21.5+2.14 58.1+6.56 53.9+5.45
Skin TS 85.1+3.34 86.9+2.83 2.7+094 33+£1.16 21.243.81 19.3£3.99 3434525 31.74£5.53
Skin ETS 85.1+3.34 86.9+2.83 2.8+1.25 34+094 21.1+3.78 19.3+3.86 34.3+5.14 31.7+5.36
Skin IR 85.1+3.34 86.9+2.83 3.1+099 3.8+1.68 2124340 19.9+4.12 41.6+7.66 38.7+9.69
Skin IRM 85.1+3.34 86.9+2.83 2.5+0.88 3.3+1.64 21.24+3.68 19.5+3.97 3584540 32.3+5.58

Table 1: Performance comparison of the proposed TTA-based extensions to the corresponding standard post-hoc calibration
methods on the in-distribution hold-out test set of CIFAR-10 (C-10), CIFAR-100 (C-100), and skin images (Skin). The mean
and standard deviation of accuracy (Acc), expected calibration error (ECE), Brier score (BS), and negative log likelihood (NLL)
over all considered architectures is shown. Better individual results (higher accuracy or lower calibration errors, respectively)

are written in bold.

logit is calculated, which is subsequently used to compute
the calibrated uncertainty score with the tuned post-hoc cal-
ibration method. The pseudocode of the proposed method is
shown in Algorithm 1.

Recent theoretical work introducing a general bias vari-
ance decomposition (Gruber and Buettner 2022) allows us
to motivate our approach from a theoretical perspective. In
Gruber and Buettner (2022), the authors demonstrate that the
classification log-likelihood can be decomposed such that
the (tractable) Bregmann Information measures variance in
logit space. They explicitly show that ensemble methods
that average in the logit space - such as our proposed TTA-
boosted calibration - provably reduce the variance of a clas-
sifier. The augmentations in our algorithm can thus be inter-
preted as a manifestation of one specific source of predictive
noise (i.e. a representation of the source of domain drift due
to changes in image acquisition systems, as in the skin lesion
detection application); averaging the ensembled predictions
in logit space will provably decrease the associated variance.

Experimental Setup
Model Architectures

We evaluate the calibration properties of deep neural net-
works using a variety of convolutional neural network archi-
tectures and sizes. We limit the focus on architectures which
are commonly used in medical image classification.

The following 9 architectures are considered:

1. ResNets (He et al. 2016) with 18, 34, 50, 101, and 152
layers
2. DenseNets (Huang et al. 2017) with 101 and 169 layers

3. VGG architectures (Simonyan and Zisserman 2014) with
16 and 19 layers
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All models were initialized with standard IMAGENET
pre-trained weights and then fine-tuned to the downstream
task using transfer learning.

Datasets

We evaluate the proposed approach with both artificially
generated distribution shift and real-world distribution shift
scenarios.

Artificial distribution shift. First, we use two standard
benchmark image data sets, CIFAR-10 and CIFAR-100.
(Krizhevsky, Nair, and Hinton 2014). We randomly draw
20% of the samples from the original training set and use
them as a validation set throughout the experiments. The
reported results of the experiments are based on the stan-
dardized test data sets. For CIFAR-10 and CIFAR-100 the
distribution shift is generated artificially by using 95 differ-
ent corruptions (19 different types and 5 levels of severities
each) proposed by Hendrycks and Dietterich (2019). Each
corruption type mimics a distribution shift scenario in which
the test data follows a distribution that gradually shifts away
from the training distribution in a different manner.

Real-world distribution shift. For a more realistic dis-
tribution shift scenario, we further consider the classifica-
tion of skin lesions. Here, we restrict ourselves to the bi-
nary classification task biopsy-verified melanoma (skin can-
cer) vs. biopsy-verified nevus (benign skin lesion such as a
birthmark), which has a high practical relevance since it rep-
resents a challenging differential diagnosis, especially for
inexperienced physicians. We use two open-source dermo-
scopic datasets for training the neural network: HAM10000
(Tschandl, Rosendahl, and Kittler 2018) and BCN20000
(Combalia et al. 2019). HAM10000 contains dermoscopic
images (614 melanoma and 1155 nevi) which were acquired
both at the University of Queensland and at the Department
of Dermatology at the Medical University of Vienna. The
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(a) Results on distribution shifted CIFAR-10.
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(b) Results on distribution shifted CIFAR-100.

Figure 2: Accuracy, expected calibration error and Brier score of state-of-the-art post-hoc calibration methods and their corre-
sponding proposed TTA-based extensions (+TTA) over 9 different model architectures.

dermoscopic images of BCN20000 (2832 melanoma and
2291 nevi) were collected at the Department of Dermatol-
ogy at the Hospital Clinic of Barcelona. 1000 samples (500
per classes) each were randomly drawn for the validation
and the hold-out test set. In addition to the in-distribution
hold-out test set, two more datasets out of the 2020 ISIC
Grand Challenge are used for testing the algorithm under
real-world distribution shift (Rotemberg et al. 2021). We
selected the sub-databases containing dermoscopic images
from the Memorial Sloan Kettering Cancer Center in New
York (216 melanoma and 614 nevi) as well as a collection
of dermoscopic images originating from the Melanoma In-
stitute Australia and the Sydney Melanoma Diagnosis Cen-
tre (134 melanoma and 161 nevi). Both external test data
sets differ from the training set in terms of image acquisi-
tion systems and post processing steps (see Fig. 1).

Baseline Methods

The performance of the proposed approach is compared to
the following baseline models: uncalibrated baseline model
(Base), temperature scaling (TS) (Guo et al. 2017), ensem-
ble temperature scaling (ETS) (Zhang, Kailkhura, and Han
2020), isotonic regression (IR) (Zadrozny and Elkan 2002),
and the accuracy preserving version of isotonic regression
(IRM) (Zhang, Kailkhura, and Han 2020).

Test Time Augmentation and Parameter Settings

Throughout the experiments, the configuration of the test-
time augmentation methods are fixed. In particular, the se-
lection of the individual image transformations used as well
as their parameters are neither optimized for the data sets,
model architectures, or severities of distribution shift. In-
stead, they are initialized with standard parameters that have
proven suitable for many image classification tasks. This
consisted of a random horizontal flip, rotation (£10°), zoom
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(1.0-1.1), a change in brightness (+0.1) and a symmetric
warp (£0.2). In all experiments, T = 4 test-time augmented
images were generated and the reported expected calibration
errors are based on S = 20 interval bins. The implementa-
tion of the experiments can be found on GitHub'

Results

Test Time Augmentation Improves In-distribution
Post-hoc Calibration

First, we compared the proposed approach with com-
mon state-of-the-art post-hoc calibration methods on in-
distribution hold-out test sets of CIFAR-10, CIFAR-100, and
skin images. The in-distribution results are shown in Ta-
ble 1. Regarding the calibration error, we analyzed the in-
distribution results using three different metrics, namely ex-
pected calibration error, Brier score, and negative log likeli-
hood. The experiments show that our proposed TTA-based
extension consistently results in a lower Brier score and neg-
ative log likelihood on each of the three data sets and each
every post-hoc calibrator. Moreover, in these cases, the stan-
dard deviation is also notably reduced with the proposed
method. In terms of ECE, our TTA-based extension achieved
competitive performance across all data-sets, with consistent
improvement across all methods on CIFAR-10.

Test Time Augmentation Improves Calibration on
Artificially Shifted Datasets

For a systematic in-depth analysis of the performance of
TTA-boosted post-hoc calibration methods in distribution-
shift scenarios, we first performed experiments with artifi-
cially distribution-shifted test sets of CIFAR-10 and CIFAR-
100 (see Fig. 2). For this, 95 additional test sets each modi-
fied with a specific corruption of a given severity were gener-

"https://github.com/achimhekler/TTABoostedCalibration
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Figure 3: Averaged error across all severities of perturbations and models considered for CIFAR-100. Using TTA in combination
with standard post-hoc calibration methods consistently improves ECE for any given perturbation and calibration method
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Figure 4: Brier score and negative log likelihood on the in-distribution hold-out test set and on the external datasets from New
York (NY) and Sydney (SYD) over all 9 achitectures considered

ated. As expected, the accuracy drops strongly with increas-
ing severity of distribution shift.

Considering ECE and Brier score, both calibration errors
increase significantly with distribution shift severity (as also
reported in (Ovadia et al. 2019)). However, the proposed
TTA-based extensions consistently improve their respective
baseline calibration methods with respect to both metrics. To
provide further insights, we assessed the effect of our TTA-
boosted post-hoc calibrators on ECE for each individual type
of synthetic corruption (see Fig. 3). This revealed that TTA-
boosted post-hoc calibration methods result in consistently
better calibration even at the level of each individual pertur-
bation.

Safer Decision-Making under Real-World
Distribution Shift

Next, we investigated the performance of the proposed TTA-
based extension on real-world distribution shifts in skin can-
cer detection. Fig. 4 shows the Brier score and the negative
log likelihood on the in-distribution hold-out test set and
on the external datasets from New York (NY) and Sydney
(SYD) over all 9 architectures considered. As for the exper-
iments with artificial distribution shift, Brier score and neg-
ative log likelihood increases for the two external datasets

from New York and Sydney. But for all test data sets, our
TTA-based extensions result in a substantial reduction of the
two calibration metrics. The best results over all data sets
were obtained with our proposed TTA-based extension of
ETS.

TTA-boosted Calibration Improves Downstream
Tasks

We consider the use of a confidence threshold as an exem-
plary downstream task, which is especially relevant for sen-
sitive domains. Here, only individual predictions with a con-
fidence greater than a given threshold are retained, all oth-
ers are e.g. referred to an expert. In our example application
of machine learning-based melanoma detection, an expert
opinion from a dermatologist is consulted if the confidence
score of prediction is lower the given threshold. This task is
especially relevant under distribution-shift, since it is not a-
priori clear how well a model will perform when data shifts
occur during deployment.

Table 2 shows the result for confidence thresholding un-
der distribution shift, for the New York data. Here, only the
individual predictions of the ResNet34 trained on the skin
images from Barcelona, Vienna, and Queensland with a con-
fidence greater than a given threshold are only used for di-
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Threshold

0.55 060 065 070 0.75 080 085 090 095
Accuracy Base 0.712 0.713 0.716 0.718 0.719 0.726 0.728 0.733 0.743
TS 0.715 0.726 0.730 0.741 0.748 0.752 0.772 0.806 0.838
TS+TTA 0.737 0.750 0.752 0.752 0.771 0.787 0.812 0.832 0.857

no. of predictions Base 816 806 795 786 773 760 742 711 666
TS 794 760 725 676 612 540 464 330 130

TS+TTA 787 743 714 674 612 540 451 310 119

Table 2: Results of ResNet34 for certainty thresholding on external test set from New York. Only individual predictions with a

confidence greater than a given threshold are retained.

agnosis. All other predictions are discarded. While TS alone
improves accuracy for any given threshold due to the im-
proved calibration of the model, TTA-boosted calibration
further results in a consistently higher accuracy compared
to standard TS, for all confidence thresholds.

Our proposed TTA-based extension of TS shows an ad-
ditional practical advantage in this task. On the one hand, it
improves the accuracy by approximately 3% for each thresh-
old. However, it is particularly interesting to note that the
number of discarded predictions, does not increase com-
pared to the TS-calibrated model. For example, for a thresh-
old of 0.75 and 0.8, the number of rejected predictions is
the same , whereas the corresponding accuracy is 2.3% and
3.5% higher for our proposed approach, respectively.

Data-Efficient Calibration

A key feature of TS-based methods for post-hoc calibra-
tion over other approaches is their high data-efficiency. Even
for small validation sets, the optimal calibration parameter
can be determined in a reliable and robust manner (Zhang,
Kailkhura, and Han 2020). In order to examine the data-
efficiency of the proposed TTA-based extensions, we con-
ducted experiments using validation sets of different sizes to
determine the optimal calibration parameters. For this pur-
pose, we varied the size of the subsets from 10% to 100%
of the respective standard validation set size. Analyzing the
Brier score on the in-distribution test set, we observed that
the calibration quality of the proposed TTA-based exten-
sions of TS and ETS do not strongly depend on the size of
the validation set (see Fig. 5): TTA-boosted TS and ETS are
similarly data-efficient as their corresponding base methods.
That is, our proposed TTA-boost maintains one of the key
advantages of TS-based methods.

These findings are in contrast to non-parametric mod-
els IR and IRM. We found that calibration errors depend
strongly on the size of the validation set and increased sub-
stantially with decreasing validation set size. This behavior
can also be observed for the proposed extensions IR+TTA
and IRM+TTA; however, the absolute calibration error af-
ter TTA-boosted post-hoc calibration is consistently lower
for each validation set size compared to calibration with the
respective base calibration methods IR and IRM.
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Figure 5: Brier score for different validation set sizes on the
in-distribution test set of skin images averaged over the nine
models

Conclusion

We present a simple and versatile approach for post-hoc
calibration of neural networks that boost existing post-hoc
calibration methods with test time augmentation. Our pro-
posed TTA-based extension is easy to implement and can
be applied to any given algorithm for post-hoc calibration,
thereby making it accessible to practitioners working in
safety-critical applications such as medical diagnostics.
Through extensive experiments across various data sets,
model architectures and post-hoc calibration methods, a
consistent improvement of the state-of-the-art is shown. In
particular, we demonstrate on a real-world safety-critical ap-
plication that TTA-boosted post-hoc calibration yields con-
sistently better calibration also in real-world distribution
shifts. This directly translates into a reliably better predic-
tive power in a downstream application where only high-
confidence predictions are retained.
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