The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

AutoCost: Evolving Intrinsic Cost for Zero-Violation Reinforcement Learning

Tairan He, Weiye Zhao, Changliu Liu

Robotics Institute, Carnegie Mellon University
{tairanh, weiyezha, cliu6 } @andrew.cmu.edu

Abstract

Safety is a critical hurdle that limits the application of deep
reinforcement learning (RL) to real-world control tasks. To
this end, constrained reinforcement learning leverages cost
functions to improve safety in constrained Markov decision
processes. However, such constrained RL methods fail to
achieve zero violation even when the cost limit is zero. This
paper analyzes the reason for such failure, which suggests
that a proper cost function plays an important role in con-
strained RL. Inspired by the analysis, we propose AutoCost,
a simple yet effective framework that automatically searches
for cost functions that help constrained RL to achieve zero-
violation performance. We validate the proposed method and
the searched cost function on the safe RL benchmark Safety
Gym. We compare the performance of augmented agents that
use our cost function to provide additive intrinsic costs with
baseline agents that use the same policy learners but with only
extrinsic costs. Results show that the converged policies with
intrinsic costs in all environments achieve zero constraint vi-
olation and comparable performance with baselines.

1 Introduction

Reinforcement learning (RL) has achieved remark-
able progress in board games (Mnih et al. 2015),
card games (Brown and Sandholm 2018) and video
games (Vinyals et al. 2019). Despite its impressive success
so far, the lack of safety guarantees limits the application
of RL to real-world physical tasks like robotics. This is
particularly concerning for safety-critical scenarios such
as robot-human collaboration or healthcare where unsafe
controls may lead to fatal consequences.

Many safe RL methods leverage cost functions defined
in constrained Markov decision process (CMDP) (Altman
1999) to formulate safety. Recent approaches usually adopt
indicator cost functions where a positive signal deems a state
as unsafe and zero deems a state safe. However, under such
a design of cost functions, state-of-the-art safe RL meth-
ods still fail to achieve zero violation even with sufficiently
enough interactions with the environment (Ma et al. 2021).
For example, Figure 1 illustrates the average episodic ex-
trinsic cost (i.e., constraint violations in CMDP) of two safe

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

14847

-
=)

- GO
~——— PPO-Lagrangian
==+ Cost limit

—— PPO-Lagrangian
A CRE)
===+ Cost limit

N
= e
NoO
a o

e B2 &
N o
a o u
e ¢
N ©
a o

e
o
=3
Fd
O
o

e
N
o

AverageEpGroundtruthCost
=
o
o
&

AverageEpGroundtruthCost

e
=3
=1
o
o
o

0.5 1.0
TotalEnvinteracts

(a) Cost limit = 0.5

1.5

TotalEnvinteracts

(b) Cost limit =0

H
o
~

Figure 1: Average episodic extrinsic cost of safe RL base-
lines with different limit. CPO and PPO-Lagrangian both
fail to achieve zero violation even with a zero cost limit

RL baselines (Achiam et al. 2017; Chow et al. 2017) in the
commonly used safe RL benchmark Safety Gym.

Note that though the average extrinsic cost reduces to 0.5
when the cost limit is set as 0.5, both safe RL baselines
with zero cost limit fail to obtain a zero-violation policy
even after convergence. Nevertheless, in safety-critical ap-
plications, reducing the number of safety violations may not
be sufficient since one violation may lead to unacceptable
catastrophes. How to eliminate all violations and achieve
zero violation remains a challenge for RL.

To break this barrier, in this paper, we conduct an empir-
ical analysis on why safe RL methods fail to achieve zero
violation. We find that the reason is closely related to the
design of cost functions, where a proper cost function could
drive the converged safe RL policies to achieve zero vio-
lation. However, designing cost functions has the same is-
sues as designing reward functions (Hong et al. 2018; Faust,
Francis, and Mehta 2019), which requires extensive human
efforts. To this end, instead of handcrafting a cost function
with expert knowledge, we propose AutoCost which auto-
matically searches for proper cost functions with the aim of
obtaining a zero-violation policy, relieving researchers from
such tedious work. AutoCost formulates the problem as a
bi-level optimization where we try to find the best intrinsic
cost function, which, to the most extent, helps train a zero-
violation RL agent. Specifically, AutoCost utilizes an evolu-
tionary strategy to search the parameters of cost function.

We apply the evolutionary intrinsic cost search to an envi-
ronment in Safety Gym (Ray, Achiam, and Amodei 2019),

over two safe RL algorithms: Constrained Policy Optimiza-
tion (CPO) (Achiam et al. 2017) and Lagrangian Proximal
Policy Optimization (PPO-Lagrangian) (Chow et al. 2017).
We optimize the parameters of intrinsic cost functions over
two objectives: cost rate and reward performance. The re-
sults show that augmented agents that use the searched cost
function to provide additive intrinsic costs achieve zero vi-
olation under different settings including (i) different con-
trol tasks; (ii) different robots; (iii) different types of ob-
stacles. We further analyze why the searched intrinsic cost
function boosts the safety of RL agents, revealing that some
vital properties of cost functions like local awareness and
dense signals are beneficial to safe RL methods. The main
contribution of this paper are listed as follows:

* We find that different safe RL algorithms react differently
to cost functions. We analyze the failure of current safe
RL algorithms and point out that a proper cost function
is the key to zero-violation RL policies.

To the best of our knowledge, we are the first to propose
automated searching for cost function to achieve zero-
violation safety performance.

* We evaluate the searched cost function with different safe
RL algorithms on state-of-the-art safe RL benchmarks.
Results show that the converged policies with intrinsic
costs in all environments achieve zero constraint viola-
tion and comparable performance with baselines.

2 Related Work
2.1 Safe RL
The safe RL algorithms can be divided into three categories.

e Lagrangian method: Lagrangian multiplier (Boyd,
Boyd, and Vandenberghe 2004) provides a regulariza-
tion term to penalize objectives with constraint viola-
tions. Previous work (Chow et al. 2017) derives a for-
mula to compute the gradient of the Lagrangian func-
tion in CMDP. Some safe RL works (Liang, Que, and
Modiano 2018; Tessler, Mankowitz, and Mannor 2018)
solve a primal-dual optimization problem to satisfy con-
straints. Another work (Stooke, Achiam, and Abbeel
2020) leverages derivatives of the constraint function
and PID Lagrangian methods to reduce violations dur-
ing agent learning. More recent work (Chen, Dong, and
Wang 2021) gives an analysis on the convergence rate for
sampling-based primal-dual Lagrangian optimization.

Direct policy optimization methods: Though La-
grangian methods are easy to transfer to the setting of
safe RL, the resulted policy was only safe asymptoti-
cally and lacks safety guarantees during each training it-
eration (Chow et al. 2018). Therefore, many works pro-
pose to derive surrogate algorithms with direct policy
optimization. One representative method is constrained
policy optization (Achiam et al. 2017) which leverages
the trust region of constraints for policy updates. An-
other work (El Chamie, Yu, and Acikmese 2016) pro-
poses a conservative stepwise surrogate constraint and
leverages linear programming to generate feasible safe

14848

policies. FOCOPS (Zhang, Vuong, and Ross 2020) pro-
poses a convex approximation to replace surrogate func-
tions with first-order Taylor expansion.

Safeguard-based methods: Another line of safe RL
works add a safeguard upon the policy network, project-
ing unsafe actions to safe actions. Some works (Srini-
vasan et al. 2020; Bharadhwaj et al. 2020) leverage a
safety critic to detect unsafe conditions and use such a
critic to choose the safe action. Safety layer (Dalal et al.
2018) solves a QP problem to safeguard unsafe actions
with learned dynamics, but it is limited to linear cost
functions. ISSA (Zhao, He, and Liu 2021) proposes an
efficient sampling algorithm for safe actions and guar-
antees zero violation during agent learning, but it also
requires a perfect dynamics model for a one-step predic-
tion. ShieldNN (Ferlez et al. 2020) designs a safety fil-
ter neural network with safety guarantees specifically for
the kinematic bicycle model (KBM) (Kong et al. 2015),
which limits the generalization ability to other dynamics.

Besides different methodology, the types of safety consid-
ered by these safe RL algorithms are also different. Most
Lagrangian and direct policy optimization methods con-
sider safety as the cost expectation of trajectories being
lower than a cost limit (i.e., safety in expectation), while
safeguard-based methods consider state-wise safety. How-
ever, safeguard-based methods usually require either the dy-
namics model or prior knowledge as discussed above, which
is unrealistic in practice. Our work aims to boost general
safe RL algorithms (i.e., the first two categories) to achieve
safety in expectation but with a zero cost limit. Note that
strictly satisfying a zero cost limit in expectation is actually
equivalent to state-wise safety. So our framework is a vital
step that bridges safety in expectation and state-wise safety.

2.2 Certificate of Safety

Besides the cost function of CMDP used in safe RL,
there are many different certificates (Wei and Liu 2019)
to measure safety in the safe control community includ-
ing (i) potential function; (ii) safety index; (iii) control
barrier function. Representative methods include potential
field method (Khatib 1986), sliding mode algorithm (Gra-
cia, Garelli, and Sala 2013), barrier function method (Ames,
Grizzle, and Tabuada 2014), and safe set algorithm (Liu and
Tomizuka 2014). However, designing such safety certificate
functions is difficult and requires great human efforts to find
appropriate parameters and functional forms (Dawson, Gao,
and Fan 2022; Zhao, He, and Liu 2021). Some automated
synthesis techniques for safety certificates are either com-
putationally expensive (Giesl and Hafstein 2015) or limited
to specific dynamics (Ahmadi and Majumdar 2016). Re-
cently, many works (Chang, Roohi, and Gao 2019; Qin et al.
2021; Dawson et al. 2022) leverage neural networks to learn
such safety certificates. But such methods require prior sig-
nals (e.g., safe and unsafe regions) for supervised learning,
whereas our framework searches for proper intrinsic cost
functions automatically with the goal of zero violation.

3 Problem Formulation and Background
3.1 Constrained Markov Decision Process

We consider constrained Markov decision process (CMDP)
defined as the tuple (S, A, P,R,C, po,7y) with following
components: states s € S, actions a € A, P is the distri-
bution of state transition where P = P(s;y1|s¢,at), po :
S — [0,1] is the initial state distribution, v € [0, 1] is the
discounted factor. The agent holds its policy 7(als) : & X
A — [0, 1] to make decisions and receive rewards defined
asr : & — R and cost defined as ¢ : S — R. To distinguish
between the cost function defined in the CMDP and other
additive cost functions, we denote the original cost function
in the CMDP as the extrinsic cost as ¢** : S — R, and we
denote intrinsic cost parameterized by 6 as ¢j* : S — R.

In RL, we aim to select a policy = which maximizes the
discounted cumulative rewards R™ := E, [70,74
Meanwhile, the extrinsic cost function ¢®® in CMDP de-
fines the cost return as J%. := E-w[>,° 7 c*]. Based
on these two definitions, the feasible policies Il ... and opti-
mal policies 7* in CMDP are defined as:

Meeo :={m €Il : Jlw < d}, 7" =argmaxR™ (1)
wEll ex
The goal of constrained RL algorithms is:
maxR™ st Je. <d 2)
well

3.2 Proximal Policy Optimization

Proximal policy optimization (PPO) (Schulman et al. 2017)
is an on-policy policy gradient algorithm. PPO proposes a
surrogate objective that attains the data efficiency and re-
liable performance of TRPO (Schulman et al. 2015) while
using only first-order optimization:

Tp+1 =argmin B, min (77r(a|s) ATk (s, a),
L5 e als))
. m(als)
lip(———=,1 —¢,1 AT
(a6 I G0)

where AT* is the advantage function of reward with respect
to . and € is a (small) hyper-parameter determining how far
away the new policy 7y is allowed to go from the old 7.

3.3 Lagrangian Methods

Lagrangian methods (Boyd, Boyd, and Vandenberghe 2004)
use adaptive coefficients to enforce constraints in optimiza-
tion with f(w) the objective and g(w) < O the constraint:

max r)\n;{)ll:(w, A) = f(w) — Ag(w) ()]
Similarly, Lagrangian safe RL (Chow et al. 2017) adopt such
an iterative learning scheme to solve Equation (2) as:

i AN)=R" = AJla —d
mgx&nzllgﬁ(ﬂ,)=R (J?) Q)
In the implementation, Lagrangian safe RL methods itera-
tively take gradient ascent steps with respect to 7 and gradi-
ent descent with respect to \.

14849

3.4 Constrained Policy Optimization

CPO (Achiam et al. 2017) analytically solves trust region
optimization problems at each policy update to enforce con-
straints throughout training:

Tk+1 = argmax ESNWk,aNTr [A:k (8’ a)]
mell

1
I—v
D(TFHﬂ'k) <94,

Tk
cex

s.t. + Egmny amn A (s,0)] < d - (0)

where ATF and A% are advantage functions of reward and
extrinsic cost functions with respect to 7.

4 Empirical Observation and Analysis

In this section, we begin with empirical observations that
motivate the core idea of our method to design cost func-
tions in order to achieve zero violation. Generally, we aim to
investigate why safe RL methods fail to achieve zero viola-
tion as shown in Figure 1. We come up with two hypotheses
and verify them in the following subsections.

4.1 More Conservative Cost Limit

Inspired by Figure 1, we find that safe RL does not strictly
meet the requirements of the cost limit and oscillates around
the threshold. To further eliminate violations, we attempt a
more conservative cost limit (i.e., a negative cost limit). The
results are shown in Figure 2, where CPO achieves near zero
violation with the cost limit of —0.1 and achieves zero vio-
lation with the cost limit of —1.0, but with significant per-
formance drops. On the contrary, negative cost limits do not
affect PPO-Lagrangian differently compared with the zero
cost limit. The reason behind the difference is that a nega-
tive cost limit makes CPO update policies in the most con-
servative way (i.e., only considering constraints). As for La-
grangian methods, a negative cost limit just applies the rela-
tively same penalty on objectives at each policy update. We
conclude that tuning the cost limit is possible to help CPO to
achieve zero violation (with significant performance drops)
but can not help Lagrangian methods. To find a more general
method to drive safe RL agents to achieve zero violation, we
turn to the design of cost functions.

3.0 —— CPO (cost limit = -0.1)

—— CPO (cost limit = -1)
—— PPO-Lagrangian (cost limit = -0.1)
20 —— PPO-Lagrangian (cost limit = -1)

15
510
]
805
[

ZOO

8 2
le6

25

0 (costTimit = -0.1)
CPO (cost limit = -1)

—— PPO-Lagrangian (cost limit = -0.1)
PPO-Lagrangian (cost limit = -1)

Performance
pGroundtruthCost

g

2 4

6
TotalEnvinteracts

4 6 8

TotalEnvinteracts le6

(a) Performance (b) Extrinsic cost

Figure 2: Average episodic reward and cost of safe RL base-
lines with negative cost limit.

4.2 Denser Cost Function

The sparsity (costs only obtained on constraint violation) of
indicator cost functions has the same issue of sparse reward
functions (Andrychowicz et al. 2017). Similarly, we apply a
commonly used dense reward design to cost functions:

c(s¢) = max(d(si—1) — d(st),0), @)

where d(-) denotes the distance from RL agent to the closet
constraint. Note that this dense cost function is very con-
servative because it assigns positive costs to any step mak-
ing the RL agent closer to constraints. We train CPO and
PPO-Lagrangian under the denser cost function. The results
are shown in Figure 3, where we find that the dense cost
function is detrimental to RL performance of CPO though it
helps CPO quickly converges to a zero-violation policy. On
the other hand, PPO-Lagrangian converges to a near zero-
violation policy in the end with satisfying reward perfor-
mance. We point out that safe RL algorithms react differ-
ently under the same cost function due to different algorith-
mic designs. One cost function may be suitable for a specific
algorithm but may be detrimental to another algorithm. How
to find a more generalizable cost function for different safe
RL algorithms remains a challenge. We also try more hand-
designed cost functions, but none is good enough to achieve
both zero violation and satisfying reward performance, indi-
cating the difficulty of manually designing cost functions.

== CPO)
—— PPO-Lagrangian

20

10

Performance

— CPO
——— PPO-Lagrangian

AverageEpGroundtruthCost

2 4 6

TotalEnvinteracts

8 4 6

TotalEnvinteracts

8

le6 le6

(a) Performance (b) Extrinsic cost

Figure 3: Average episodic reward and cost of safe RL base-
lines with a dense cost function.

S Automating Cost Function Design
5.1 Bi-level Optimization Problem

In this paper, we aim to find the intrinsic cost function ¢
(parameterized by 6) such that the agent 7, (parameterized
by w) can achieve zero violation by maximizing cumulative
discounted rewards R™ under the constraint of cost function
5" = e 4 ¢t Formally, our optimization goal is:

.
min Jlen

*

™

®

s.t. argmax R”.

TE cxtin
‘6

Compared with other possible formulations (e.g., consider-

ing J:mm in the outer loop), the objective in Equation (8)
“0

tries to minimize the ground truth constraint violation (i.e.,

the extrinsic cost objective J7.) to achieve zero violation.

14850

This formulation enables safe RL to further eliminate con-
straint violations. And the corresponding 7* is solved with
downstream safe RL algorithms within the feasible policy
set Hch+in defined by ¢§" "

To find proper cost functions without expert knowledge,
we propose AutoCost, a principled solution for resolving the
bi-level optimization problem in Equation (8).

5.2 AutoCost

!RL Training Scores & Violationi

/SafeRLAgent CMDP

Interact

Select Top 10%

v

(s:r,0) Mutation

£ 1

L

Vs ~N

|I Intrinsic
Cost

LCost Function Candidates—]

Intrinsic | | Extrinsic
\\ Cost Cost

Figure 4: Overview of AutoCost. AutoCost contains an inner
loop (left) and an outer loop (right). The inner loop performs
an RL training procedure with searched intrinsic cost func-
tions. The outer loop searches intrinsic cost functions using
an evolutionary algorithm.

The success of evolution strategies in exploring large,
multi-dimensional search space has been proven in many
works (Houthooft et al. 2018; Faust, Francis, and Mehta
2019; Co-Reyes et al. 2020). Similarly, AutoCost adopts an
evolutionary algorithm (Béck and Schwefel 1993) to search
for proper cost functions over the parameter space of the
intrinsic cost function. The overall pipeline of AutoCost is
shown in Figure 4. Specifically, the evolutionary search of
AutoCost contains four parts.

1. Initialization: At the beginning of evolutionary search,
randomly sample a population of 50 candidates of intrin-

sic cost functions ¢}

Evaluation: At each evolution stage, we train RL agents
with the population of intrinsic cost functions.

. Selection: After the inner loop of RL training, all can-
didates are then sorted by the average episodic extrin-
sic cost of the converged policy. The top-10% candi-
dates with the lowest constraint violations are selected
to generate the population for the next stage. Note that
for a population with more than 10% candidates achiev-
ing zero violation, we select the top-10% candidates with
highest reward performance for the next generation.

Mutation After selection, we apply mutation on the top
intrinsic cost functions to construct the next generation.
We design two types of mutations on parameters 0: (i)
Gaussian Noise: 8/ = 6 + z, where z ~ N(0,1); (ii)
random scaling: 8’ = 6 * z, where z ~ Uni[a, f].

(a) Goal

(b) Push (c) Hazard

(d) Pillar

(e) Point (f) Car (g) Doggo

Figure 5: Different tasks, constraints and robots in Safety Gym.

6 Experiment
6.1 Environment Setup

We evaluate AutoCost in Safety Gym (Ray, Achiam, and
Amodei 2019), a widely used benchmark for safe RL al-
gorithms. Safety Gym is built on an advanced physics en-
gine MuJoCo (Todorov, Erez, and Tassa 2012), with various
tasks, constraints and robots. We name these environments
as {Task}—-{Constraint Type}-{Robot}.Inourex-
periments, two tasks are considered:

* Goal: The robot must navigate inside the green goal area
as shown in Figure Sa.

e Push: The robot must push a yellow box inside the green
goal area as shown in Figure 5b.

Two different types of constraints are considered:

* Hazard: Dangerous (but non-physical) areas as shown
in Figure 5c. The agent is penalized for entering them.

e Pillar: Fixed obstacles as shown in Figure 5d. The
agent is penalized for hitting them.

And three robots are considered:

e Point: A simple mobile robot with one actuator for
turning and another for moving forward/backwards as
shown in Figure Se.

Car: A wheeled robot with two independently-driven
parallel wheels and a free rolling rear wheel as shown
in Figure 5f.

Doggo: A quadrupedal robot with bilateral symmetry as
shown in Figure 5g. Each of the four legs has two con-
trols at the hip, for azimuth and elevation relative to the
torso, and one in the knee, controlling angle.

6.2 Evolution on Safety Gym

Experiment Setting We apply AutoCost to environment
Goal-Hazard-Point. To ensure the generalizability of
searched intrinsic cost functions to different safe RL algo-
rithms, we train two RL agents (CPO and PPO-Lagrangian)
for each intrinsic cost function candidate, and we take
the average episodic extrinsic costs of CPO and PPO-
Lagrangian as the evaluation metric. As for the parameter
space of the intrinsic cost function, we use a simple multi-
layer perception (MLP) neural network with one hidden
layer with four neurons, which results in 41 parameters in
total including weights and bias. To further reduce the size
of the parameter space, we only include sensors related to
constraints (e.g., hazard/pillar lidar) into the input for the in-
trinsic cost function.

14851

Evolutionary Process The evolution process on the train-
ing environment Goal-Hazard-Point is shown in Fig-
ure 6. We can observe a clear decreasing trend in the aver-
age extrinsic cost of populations as evolution continues, in-
dicating the effectiveness of the evolutionary search. More
importantly, the decreasing trend in constraint violation is
especially significant in terms of the best intrinsic cost func-
tions in each population. To be more specific, in the pop-
ulation of stage 1, there is no intrinsic cost achieving zero
violation. As the population evolves, more and more intrin-
sic cost functions drive the safe RL algorithms to obtain a
zero-violation policy after convergence. Note that the train-
ing of each intrinsic cost candidate is parallelizable.

Average Episodic Cost

T + T 1 T T T
Stage-1 Stage-2 Stage-3 Stage-4 Stage-5 Stage-6 Stage-7
Evolution Stage

Figure 6: Evolution process in the training environment. Ev-
ery white dot represents a candidate of the intrinsic cost
function, and the y-axis shows its corresponding constraint
violations after convergence. The red horizontal line indi-
cates zero-violation safety.

6.3 Generalization Experiments

Among all the intrinsic cost functions achieving zero viola-
tion during the evolution, we finalize the candidate with the
highest reward performance and name it IC4SRL (intrinsic
cost for safe RL). In this section, we further test the gener-
alization ability of ICASRL in different environments. The
methods in the comparison group include: unconstrained
RL algorithm PPO (Schulman et al. 2017) and constrained
safe RL algorithms PPO-Lagrangian (Chow et al. 2017),
CPO (Achiam et al. 2017). We denote CPO+IC4SRL and
PPO-Lagrangian+IC4SRL as the corresponding safe RL
methods with IC4SRL as intrinsic cost added to the original

N}
o

N
o

-
@

—— CPO+IC4SRL —— CPO+IC4SRL
—— PPO-Lagrangian+IC4SRL
— CPO
——— PPO-Lagrangian

PPO

Performance
-
1S
Performance

— CPO

PPO

4 6
TotalEnvinteracts

8 4 6

le6 TotalEnvinteracts

—— CPO+IC4SRL —— CPO+IC4SRL

—— PPO-Lagrangian+IC4SRL
— CPO
—— PPO-Lagrangian

PPO

— Eio

PPO

ok N W A U O

AverageEpGroundtruthCost
AverageEpGroundtruthCost
o N W & 0 o

—— PPO-Lagrangian+IC4SRL

—— PPO-Lagrangian

8
le6

—— PPO-Lagrangian+IC4SRL

—— PPO-Lagrangian

Dol A

/;\/CPO+IC4SRL
—— PPO-Lagrangian+IC4SRL
— CPO
—— PPO-Lagrangian
PPO

~—— PPO-Lagrangian+IC4SRL
— CPO
—— PPO-Lagrangian

PPO

Performance
Performance

4 6
TotalEnvinteracts

8 4 6

TotalEnvinteracts

8

le6 le6

—— CPO+IC4SRL
—— PPO-Lagrangian+IC4SRL
=—-1CPO)
—— PPO-Lagrangian
PPO

—— CPO+IC4SRL
—— PPO-Lagrangian+IC4SRL
— E:
—— PPO-Lagrangian
PPO

AverageEpGroundtruthCost
AverageEpGroundtruthCost

S e

2 4 6

TotalEnvinteracts

8 2 4 6

le6 TotalEnvinteracts

(a) Goal-Hazard-Point

8
le6

(b) Goal-Pillar-Point

2 4 6

TotalEnvinteracts

8 2 4 6

TotalEnvinteracts

8
le6

(c) Push-Hazard-Point (d) Push-Pillar-Point

Figure 7: Average episodic return and extrinsic cost of IC4SRL and baseline methods on Safety Gym over five seeds. Goal-
Hazard-Point is the training environment of AutoCost while the other three environments are unseen environments for IC4SRL.

extrinsic cost defined in the CMDP. We set the cost limit to
zero for all safe RL methods since we aim to avoid any con-
straint violation. For all experiments, we use the same neural
network architectures and hyper-parameter.

Generalize to Different Tasks and Constraints
IC4SRL is searched from the training environment
Goal-Hazard-Point, and how well can the intrinsic
cost function transfer to different fest environments remains
a question. To answer the question, we first test I[C4SRL
in different tasks and constraint types. The results are
shown in Figure 7, where both CPO+IC4SRL and PPO-
Lagrangian+IC4SRL quickly converge to zero-violation
policies while CPO and PPO-Lagrangian without intrinsic
cost fail to achieve zero violation. The difference between
adding intrinsic cost and not adding intrinsic cost proves
a proper cost function is a key factor towards achieving
zero violation. We also notice that adding intrinsic cost
also lowers the reward performance of both CPO and
PPO-Lagrangian, indicating the trade-off between safety
and performance where IC4SRL drives RL agents to learn
more conservative behaviors to avoid any violation.

Generalize to Different Robots To see whether IC4SRL
is able to transfer to different robots, we replace the
point robot with more complex robots like car and
doggo. The evaluation results are shown in Figure 8.
Both CPO+IC4SRL and PPO-Lagrangian+IC4SRL achieve
zero violation with the car robot, whereas only PPO-
Lagrangian+IC4SRL converges to a zero-violation with the
doggo robot. We find that both CPO and CPO+IC4SRL
totally fail to gain meaningful rewards in the doggo en-
vironment, indicating the zero-violation policy brought by
ICASRL builds on the precondition that safe RL methods
work (i.e., learn meaningful behaviors) in the environment.

The Limit of Generalization Ability Though IC4SRL
successfully generalizes to different environments as shown
in Figure 7 and Figure 8, there is still a limit of its gener-

14852

alization ability. One limit is that ICASRL is only searched
with two safe RL algorithms. It is possible that some other
safe RL methods require even more conservative intrinsic
cost functions to achieve zero violation. Another major lim-
itation is that IC4SRL is coupled with the properties and fea-
tures of Safety Gym. However, though IC4SRL may be not
universal to all settings, one can always apply AutoCost to
automatically search for a proper intrinsic cost function for
either new safe RL algorithms or new environments.

6 —— CPO+IC4SRL

—— PPO-Lagrangian+IC4SRL
— cPO

—— PPO-Lagrangian

PPO
2
0

2

4

-
«

CPO+IC4SRL
—— PPO-Lagrangian+IC4SRL
— CPO

—— PPO-Lagrangian

PPO

Performance
=
)
Performance

o w

2

Oi%zza%

4 6
TotalEnvinteracts

8 4 6

TotalEnvinteracts

8

—— CPO+IC4SRL
—— PPO-Lagrangian+IC4SRL
— CPO
—— PPO-Lagrangian
PPO

4 —— CPO+IC4SRL
—— PPO-Lagrangian+IC4SRL
— CPO
—— PPO-Lagrangian
PPO

1%
0

2

3

AverageEpGroundtruthCost
AverageEpGroundtruthCost
N

2 4 6

TotalEnvinteracts

8 4 6

TotalEnvinteracts

8
le6

(a) Goal-Hazard-Car (b) Goal-Hazard-Doggo

Figure 8: Average episodic return, episodic extrinsic cost of
constraints of IC4SRL and baseline methods on Safety Gym
with more complex robots over five seeds.

6.4 Visualization of Intrinsic Cost

To further investigate what the searched intrinsic cost func-
tion capture, we visualize IC4SRL in Figure 9a. The blue cir-
cle in the middle represents the hazard. And each grid repre-
sents the positions of robots. The results show that IC4SRL

assigns intrinsic cost values to the states next to the hazard,
indicating that ICASRL can capture local-aware information
about the unsafe state surroundings. This result also echoes
recent works (Ma et al. 2021) which adds prior measures to
the cost function to improve safety performance.

To further illustrate why adding intrinsic cost is helpful
for achieving zero-violation safe RL policies, we plot the
training curve of ¢§” " in Figure 9b. Note that both safe
RL methods fail to lower ¢;* " under the cost limit of zero.
However, the ground truth extrinsic cost quickly converges
to zero as shown in Figure 7a. This indicates that adding a
more conservative intrinsic cost like I[C4SRL is the key to
zero violation for safe RL algorithms.

1.0

—— CPO+IC4SRL
—— PPO-Lagrangian+IC4SRL

N w »
5] =3 S

AverageEpCost

-
o

o

2 4 6
TotalEnvinteracts

8

le6

15 3

(a) Heatmap of IC4ASRL

(b) sz+in

Figure 9: (a) Heatmap of intrinsic cost IC4SRL with dif-
ferent positions of the robot. The blue circle in the middle
represents the hazard. (b) The average episodic sum of in-
trinsic cost and extrinsic cost for CPO+IC4SRL and PPO-
Lagrangian+IC4SRL in Goal-Hazard-Point.

6.5 The Necessity of AutoCost

The heatmap shown in Figure 9a demonstrates that intrin-
sic cost adds an extra margin to the constraint. To justify
the necessity of AutoCost, we compare IC4SRL with hand-
tuned intrinsic cost with different sizes of the safety mar-
gin. The results are shown in Figure 10, where 3x mar-
gin and IC4SRL both obtain zero-violation policies af-
ter convergence. But IC4ASRL achieves much better re-
ward performance, which may be due to the selection pro-
cedure where AutoCost selects zero-violation candidates
with higher reward performance. Note that tuning a proper
safety margin (e.g., 3x margin) requires many human efforts
while IC4SRL is discovered in a fully automated manner.
More importantly, hand-tuned intrinsic cost functions re-
quire much prior knowledge (e.g., the size of the constraint
and the distances from the robot to the constraint at each
time step), which is unrealistic in practice. Nevertheless, Au-
toCost discovered IC4SRL only with information from lidar
sensors, indicating the generalizability of AutoCost to more
complex CMDP and black-box safety constraints.

6.6 With or Without Extrinsic Cost

To test whether safe RL methods are capable of achiev-
ing zero violation solely with the intrinsic cost, we denote
the safe RL baselines without extrinsic cost function as
CPO+IC4SRL (w/o ex) and PPO-Lagrangian+IC4SRL

14853

0.12

—— PPO-Lagrangian (1.25x margin)

—— PPO-Lagrangian (1.5x margin)

—— PPO-Lagrangian (1.75x margin)

—— PPO-Lagrangian (3x margin)
PPO-Lagrangian+IC4SRL

Dokt e

sy o0
0.08

r

—— PPO-Lagrangian (1.25x margin) *
——— PPO-Lagrangian (1.5x margin)
~— PPO-Lagrangian (1.75x margin)
—— PPO-Lagrangian (3x margin)
PPO-Lagrangian+IC4SRL

0.06
0.04

Performance
=
1S

0.02

s 4,

0.00

AverageEpGroundtruthCost

-0.02
8 2
le6

2 4 6
TotalEnvinteracts

4 6 8

TotalEnvinteracts le6

(a) Performance (b) Extrinsic cost

Figure 10: Average episodic return, episodic extrinsic cost
of PPO-Lagrangian with hand-tuned intrinsic cost functions
with different safety margins.

(w/o ex). The results are shown in Figure 11. Note that safe
RL baselines without extrinsic cost eliminate much more vi-
olations compared with baselines using only the extrinsic
cost function, which indicates the advantage of IC4SRL over
naive indicator cost functions. But both CPO+IC4SRL (w/o
ex) and PPO-Lagrangian+IC4SRL (w/o ex) fail to converge
to a zero-violation policy. This may be due to the evolution-
ary process of AutoCost adopting the setting that the cost
function is the sum of intrinsic and extrinsic costs and there-
fore the searched intrinsic cost is limited to that setting.

0.4 '
—— CPO+IC4SRL
—— PPO-Lagrangian+IC4SRL
—— CPO+IC4SRL (w/o ex)
—— PPO-Lagrangian+IC4SRL (w/o ex)
CPO
PPO-Lagrangian

0.3

-
@

—— CPO+IC4SRL 02
—— PPO-Lagrangian+IC4SRL
—— CPO+IC4SRL (w/o ex)
—— PPO-Lagrangian+IC4SRL (w/o ex)
CPO
PPO-Lagrangian

Performance
-
w o

o
AverageEpGroundtruthCost

2 4 6
TotalEnvinteracts

8 2 4 6

TotalEnvinteracts

8
le6

(a) Performance (b) Extrinsic cost

Figure 11: Average episodic return, episodic extrinsic cost
of CPO and PPO-Lagrangian with three different cost func-
tions designs: (i) IC4SRL adds intrinsic cost to the extrinsic
cost; (ii) IC4SRL (w/o ex) only uses intrinsic cost as the cost
function; (iii) vanilla version only uses extrinsic cost.

7 Conclusion

In this paper, we present AutoCost, a principled and univer-
sal framework for automated intrinsic cost design for safe
RL. This is the first such framework to the best of our knowl-
edge. By searching on Safety Gym with this framework, we
discover IC4SRL, a top-performing intrinsic cost function
that generalizes well to diverse test environments. Our em-
pirical results show promise in using intrinsic cost function
to achieve zero-violation safety performance with safe RL
methods like CPO and Lagrangian methods. We hope our
studies provide insights that will deepen the understanding
of cost function design in safe RL, and shed light on how
to enable avenues for real-world deployment of RL in areas
like robotics where zero-violation safety is critical.

References

Achiam, J.; Held, D.; Tamar, A.; and Abbeel, P. 2017. Con-
strained policy optimization. In International conference on
machine learning, 22-31. PMLR.

Ahmadi, A. A.; and Majumdar, A. 2016. Some applications
of polynomial optimization in operations research and real-
time decision making. Optimization Letters, 10(4): 709—
729.

Altman, E. 1999. Constrained Markov decision processes:
stochastic modeling. Routledge.

Ames, A. D.; Grizzle, J. W.; and Tabuada, P. 2014. Control
barrier function based quadratic programs with application
to adaptive cruise control. In 53rd IEEE Conference on De-
cision and Control, 6271-6278. IEEE.

Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong,
R.; Welinder, P.; McGrew, B.; Tobin, J.; Pieter Abbeel, O.;
and Zaremba, W. 2017. Hindsight experience replay. Ad-
vances in neural information processing systems, 30.

Bick, T.; and Schwefel, H.-P. 1993. An overview of evolu-
tionary algorithms for parameter optimization. Evolutionary
computation, 1(1): 1-23.

Bharadhwaj, H.; Kumar, A.; Rhinehart, N.; Levine, S.;
Shkurti, F.; and Garg, A. 2020. Conservative safety critics
for exploration. arXiv preprint arXiv:2010.14497.

Boyd, S.; Boyd, S. P; and Vandenberghe, L. 2004. Convex
optimization. Cambridge university press.

Brown, N.; and Sandholm, T. 2018. Superhuman Al for
heads-up no-limit poker: Libratus beats top professionals.
Science, 359(6374): 418-424.

Chang, Y.-C.; Roohi, N.; and Gao, S. 2019. Neural lyapunov
control. Advances in neural information processing systems,
32.

Chen, Y.; Dong, J.; and Wang, Z. 2021. A primal-dual ap-
proach to constrained markov decision processes. arXiv
preprint arXiv:2101.10895.

Chow, Y.; Ghavamzadeh, M.; Janson, L.; and Pavone, M.
2017. Risk-constrained reinforcement learning with per-
centile risk criteria. The Journal of Machine Learning Re-
search, 18(1): 6070-6120.

Chow, Y.; Nachum, O.; Duenez-Guzman, E.; and
Ghavamzadeh, M. 2018. A lyapunov-based approach
to safe reinforcement learning. Advances in neural
information processing systems, 31.

Co-Reyes, J. D.; Miao, Y.; Peng, D.; Real, E.; Le, Q. V;;
Levine, S.; Lee, H.; and Faust, A. 2020. Evolving Reinforce-
ment Learning Algorithms. In International Conference on
Learning Representations.

Dalal, G.; Dvijotham, K.; Vecerik, M.; Hester, T.; Paduraru,
C.; and Tassa, Y. 2018. Safe exploration in continuous action
spaces. arXiv preprint arXiv:1801.08757.

Dawson, C.; Gao, S.; and Fan, C. 2022. Safe Control with
Learned Certificates: A Survey of Neural Lyapunov, Barrier,
and Contraction methods. arXiv preprint arXiv:2202.11762.
Dawson, C.; Qin, Z.; Gao, S.; and Fan, C. 2022. Safe nonlin-
ear control using robust neural lyapunov-barrier functions.
In Conference on Robot Learning, 1724-1735. PMLR.

14854

El Chamie, M.; Yu, Y.; and A¢ikmese, B. 2016. Convex syn-
thesis of randomized policies for controlled Markov chains
with density safety upper bound constraints. In 2016 Amer-
ican Control Conference (ACC), 6290-6295. IEEE.

Faust, A.; Francis, A.; and Mehta, D. 2019. Evolving re-
wards to automate reinforcement learning. arXiv preprint
arXiv:1905.07628.

Ferlez, J.; Elnaggar, M.; Shoukry, Y.; and Fleming, C. 2020.
Shieldnn: A provably safe nn filter for unsafe nn controllers.
CoRR, abs/2006.09564.

Giesl, P.; and Hafstein, S. 2015. Review on computational
methods for Lyapunov functions. Discrete & Continuous
Dynamical Systems-B, 20(8): 2291.

Gracia, L.; Garelli, F.; and Sala, A. 2013. Reactive sliding-
mode algorithm for collision avoidance in robotic systems.
IEEFE Transactions on Control Systems Technology, 21(6):
2391-2399.

Hong, Z.-W.; Shann, T.-Y.; Su, S.-Y.; Chang, Y.-H.; Fu, T.-
J.; and Lee, C.-Y. 2018. Diversity-driven exploration strat-
egy for deep reinforcement learning. Advances in neural
information processing systems, 31.

Houthooft, R.; Chen, Y.; Isola, P.; Stadie, B.; Wolski, F.;
Jonathan Ho, O.; and Abbeel, P. 2018. Evolved policy gra-
dients. Advances in Neural Information Processing Systems,
31.

Khatib, O. 1986. Real-time obstacle avoidance for manip-
ulators and mobile robots. In Autonomous robot vehicles,
396-404. Springer.

Kong, J.; Pfeiffer, M.; Schildbach, G.; and Borrelli, F. 2015.
Kinematic and dynamic vehicle models for autonomous
driving control design. In 2015 IEEE Intelligent Vehicles
Symposium (IV), 1094-1099. IEEE.

Liang, Q.; Que, F; and Modiano, E. 2018. Acceler-
ated primal-dual policy optimization for safe reinforcement
learning. arXiv preprint arXiv:1802.06480.

Liu, C.; and Tomizuka, M. 2014. Control in a safe set:
Addressing safety in human-robot interactions. In Dy-
namic Systems and Control Conference, volume 46209,
V003T42A003. American Society of Mechanical Engi-
neers.

Ma, H.; Liu, C.; Li, S. E.; Zheng, S.; Sun, W.; and Chen,
J. 2021. Learn Zero-Constraint-Violation Policy in Model-
Free Constrained Reinforcement Learning. arXiv preprint
arXiv:2111.12953.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. nature, 518(7540):
529-533.

Qin, Z.; Zhang, K.; Chen, Y.; Chen, J.; and Fan, C. 2021.
Learning safe multi-agent control with decentralized neural
barrier certificates. arXiv preprint arXiv:2101.05436.

Ray, A.; Achiam, J.; and Amodei, D. 2019. Benchmark-
ing safe exploration in deep reinforcement learning. CoRR,
abs/1910.01708.

Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; and Moritz,
P. 2015. Trust region policy optimization. In International
conference on machine learning, 1889—1897. PMLR.

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
CoRR, abs/1707.06347.

Srinivasan, K.; Eysenbach, B.; Ha, S.; Tan, J.; and Finn, C.
2020. Learning to be safe: Deep rl with a safety critic. arXiv
preprint arXiv:2010.14603.

Stooke, A.; Achiam, J.; and Abbeel, P. 2020. Responsive
safety in reinforcement learning by pid lagrangian methods.
In International Conference on Machine Learning, 9133—

9143. PMLR.

Tessler, C.; Mankowitz, D. J.; and Mannor, S. 2018. Re-
ward constrained policy optimization. arXiv preprint
arXiv:1805.11074.

Todorov, E.; Erez, T.; and Tassa, Y. 2012. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ interna-
tional conference on intelligent robots and systems, 5026—
5033. IEEE.

Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds,
T.; Georgiev, P.; et al. 2019. Grandmaster level in Star-
Craft II using multi-agent reinforcement learning. Nature,
575(7782): 350-354.

Wei, T.; and Liu, C. 2019. Safe control algorithms using
energy functions: A uni ed framework, benchmark, and new
directions. In 2019 IEEE 58th Conference on Decision and
Control (CDC), 238-243. IEEE.

Zhang, Y.; Vuong, Q.; and Ross, K. 2020. First order con-
strained optimization in policy space. Advances in Neural
Information Processing Systems, 33: 15338-15349.

Zhao, W.; He, T.; and Liu, C. 2021. Model-free safe con-
trol for zero-violation reinforcement learning. In 5th Annual
Conference on Robot Learning.

14855

