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Abstract

The usage of deep neural networks in safety-critical systems
is limited by our ability to guarantee their correct behavior.
Runtime monitors are components aiming to identify unsafe
predictions and discard them before they can lead to catas-
trophic consequences. Several recent works on runtime mon-
itoring have focused on out-of-distribution (OOD) detection,
i.e., identifying inputs that are different from the training data.
In this work, we argue that OOD detection is not a well-suited
framework to design efficient runtime monitors and that it
is more relevant to evaluate monitors based on their ability
to discard incorrect predictions. We call this setting out-of-
model-scope detection and discuss the conceptual differences
with OOD. We also conduct extensive experiments on popu-
lar datasets from the literature to show that studying monitors
in the OOD setting can be misleading: 1. very good OOD
results can give a false impression of safety, 2. comparison
under the OOD setting does not allow identifying the best
monitor to detect errors. Finally, we also show that removing
erroneous training data samples helps to train better monitors.

1 Introduction
With the recent progress in machine learning (ML) research,
deep neural network (DNN) architectures are now used to
address safety-critical tasks, e.g., self-driving cars (Stocco
et al. 2020), surgical robots (Haidegger 2019), drones land-
ing (Guerin, Delmas, and Guiochet 2022). Online fault tol-
erance approaches, or runtime monitors, are promising re-
search directions to improve the safety of such systems. A
runtime monitor is a component aiming to identify and re-
ject unsafe data encountered at inference time. As in most of
the recent literature, this paper focuses on the unsupervised
setting, where we do not have access to examples of “unsafe
input data” during monitor training. In other words, to sep-
arate safe data instances from unsafe ones, we need to fit a
one-class classifier (Khan and Madden 2014) using only the
DNN training dataset. Figure 1 illustrates the life cycle of a
DNN runtime monitor (training and inference phases).

Many approaches have been proposed to tackle the DNN
runtime monitoring problem defined above. However, in the
literature, they are found under different names as they adopt
different definitions of “unsafe data instances”. On the one
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hand, the field of Out-Of-Distribution (OOD) detection aims
at identifying input data that are not from the training distri-
bution (Wang et al. 2022; Sun, Guo, and Li 2021; Schorn
and Gauerhof 2020). On the other, several works consider
directly the problem of identifying input data that lead to er-
rors of the monitored DNN (Granese et al. 2021; Wang et al.
2020; Kang et al. 2018). In this work, we name this second
view Out-of-Model-Scope (OMS) detection. In practice, the
approaches to address OOD and OMS detection are not dif-
ferent and follow the same workflow: they use the DNN
training dataset to build a one-class classifier (the monitor)
to characterize safe data instances and use it to reject un-
safe samples (Figure 1). These two paradigms only differ
in their objectives (definition of normal data samples), and
by extension in how new approaches are evaluated. We em-
phasize that OOD and OMS are evaluation settings and not
monitoring approaches per se.

In this work, we claim that the real goal of a DNN run-
time monitor is to tackle the OMS problem, i.e., to identify
prediction errors before they can propagate through the sys-
tem. We argue that OOD detection was designed as a proxy
task for OMS detection, based on the belief that what the
DNN knows is equivalent to the information contained in
the dataset that was used to train it. The first objective of
this paper is to discuss the conceptual differences between
the OOD and OMS detection settings. Then, we conduct ex-
periments to determine whether OOD detection is a good
proxy for OMS detection. In other words, we want to know
whether the OMS performance of a runtime monitor can be
correctly assessed under the OOD setting. Finally, based on
the insights gained from these discussions, we formalize a
good practice to train better monitors. We show experimen-
tally that, when fitting the monitor, it is better to remove er-
roneous samples from the DNN training dataset.

This paper is organized as follows. In section 2, nota-
tions are introduced and the concepts of OMS and OOD are
clearly defined. In section 3, we present the existing litera-
ture about OMS and OOD detection. In section 4, we discuss
the differences between OOD and OMS and explain why
the OOD setting can lead to an inaccurate perceived perfor-
mance of a monitor. In section 5, we conduct experiments to
verify whether these limitations of OOD detection actually
occur in practical scenarios. Finally, in section 6, we intro-
duce a new training trick to build better monitors.
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(a) Monitor training (design time) (b) Using monitor at inference time (runtime)

Figure 1: Neural Network Runtime Monitoring is a research area aiming to characterize safe data instances, in order to reject
unsafe predictions during inference. Different definitions of safe data instances gave rise to different subfields in the literature.

2 Notations and Definitions
Let T be an ML task, defined by an oracle function Ω, on
a domain X , i.e., ∀x ∈ X , the ground-truth for T is Ω(x).
This work mostly discusses classification, but could easily
be extended to other ML tasks. Let f be a DNN used to solve
T , and let mf be a monitor of f , i.e., a one-class classifier
used during inference to reject unsafe predictions of f .

2.1 The Out-of-Model-Scope Detection Setting
We define the scope of f , Df , to be the set of data instances
where f is correct:

Df = {x ∈ X | f(x) = Ω(x)} (1)
Ideally, we want mf to identify data points that lead to errors
of f . The perfect monitor for f , noted m∗

f , is defined by

∀x ∈ X , m∗
f (x) =

{
0 if x ∈ Df ,

1 else.
(2)

We call Out-of-Model-Scope (OMS) detection, the task of
designing a monitor that reproduces the behavior of m∗

f .
OMS detection is defined with respect to a specific model f .
Indeed, if another neural network f ′ (different architecture
or weights) is used, the model scope will likely be different
(Df ′ ̸= Df ), and so will the optimal monitor (m∗

f ′ ̸= m∗
f ).

2.2 The Out-Of-Distribution Detection Setting
In practice, the monitored DNN f is trained using a super-
vised training dataset, i.e., a small subset of n data points in
X for which the ground truth is known:
Dtrain = {(xi, yi) | ∀i ∈ {1, ...n}xi ∈ X , yi = Ω(xi)}.

A common practice for DNN monitoring is to define an in-
distribution domain DID, that comprises all data instances
drawn from the same distribution as Dtrain. The Out-Of-
Distribution (OOD) detection task aims to build a monitor
m to identify data instances that do not belong to DID, i.e.,
the perfect OOD monitor (m∗) is defined by

∀x ∈ X , m∗(x) =

{
0 if x ∈ DID,

1 else.
(3)

The rationale behind OOD detection is that DNNs trained on
Dtrain must be good for input data similar to Dtrain (x ∈ DID),
but should not perform well on other data (x /∈ DID). The
evaluations conducted in the OOD setting are independent
of f , they only depend on the task and training dataset.

3 Related Works
This section presents several monitoring approaches. Con-
ceptually, OOD and OMS detectors are not different, i.e.,
one-class classifiers fitted to Dtrain, usually using feature rep-
resentations extracted from f (Figure 1). However, in prac-
tice, they differ in the way they are evaluated experimentally.

3.1 OMS Detection in the Literature
Several previous works have studied the problem of OMS
detection, i.e., they developed DNN runtime monitoring ap-
proaches and assessed their performance based on their abil-
ity to detect errors of f . Granese et al. (2021) developed a
monitor called DOCTOR, which computes an optimal rejec-
tion score based on the softmax vector returned by f . Wang
et al. (2020) proposed a monitor called DISSECTOR, which
rejects inputs with incoherent activations among different
layers of f . The monitor proposed by Kang et al. (2018)
is specific to object detection. They developed a model as-
sertion technique to specify constraints on the shape of the
predicted bounding boxes. Cheng, Nührenberg, and Yasuoka
(2019) proposed to store neuron activations of Dtrain in the
form of binary decision diagrams, and reject patterns that
were not seen previously.

3.2 OOD Detection in the Literature
The definition of OOD in equation 3 is frequently seen in
the literature. However, the boundaries of DID are fuzzy and
there is no clear definition of whether a data point was drawn
from the same distribution as Dtrain. To overcome this issue,
OOD detection works consider that the test split associated
with Dtrain belongs to DID. Then, different approaches exist
to construct OOD sets, and the monitors are evaluated based
on their ability to distinguish whether a data point is from the
test set or the OOD set. In the literature, three main concepts
of “OODness” are used to build OOD datasets.

Novelty A data point x ∈ X is OOD if the ground-truth
Ω(x) is not among the predefined classes handled by f , i.e.,
f cannot be correct (e.g., an image of a frog presented to a
cat vs. dog classifier). A large body of works was developed
and evaluated in this configuration. Liang, Li, and Srikant
(2018) proposed ODIN, an approach using input preprocess-
ing and temperature scaling on the softmax outputs to max-
imize ID/OOD separation. Liu et al. (2020) proposed an en-
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ergy score (logsumexp of the logits) to detect OOD data.
Sun, Guo, and Li (2021) showed that clipping the highest
values of the last layer can help to build better logits for
OOD detection. Their approach is called ReAct and can be
combined with any logits-based scores. Lee et al. (2018)
proposed to fit Gaussian distributions to features extracted
from f , and to use the Mahalanobis distance as an OOD
score. All the above approaches used another dataset, with
disjoint label classes, as the OOD set. Another idea to build
OOD sets is to remove data samples from certain classes
while training f and mf , and use them as OOD examples to
test the monitor. This was done by Henzinger, Lukina, and
Schilling (2020), who developed a monitor called Outside-
the-Box, using the smallest bounding boxes containing all
features representing Dtrain to model the boundary of DID.

Covariate shift OOD data present different characteris-
tics than Dtrain, but with valid ground-truth. Covariate shift
comes from changes in external conditions, sensor failures,
or modifications to the environment. Such threats to DNN
safety were discussed extensively by Hendrycks and Diet-
terich (2019). Most works studying covariate shift detection
have built OOD sets by injecting perturbations to test im-
ages. Schorn and Gauerhof (2020) injected different kinds
of noise patterns and evaluated their monitor called FACER.
Cai and Koutsoukos (2020) used a variational auto-encoder
and anomaly detection to detect abnormal rain conditions
(injected in simulation). Chen, Yoon, and Shao (2020) ap-
plied brightness changes to the test images to build an OOD
set to test their approach. Finally, Zhang et al. (2018) used
distances in the feature space of a DNN to separate sunny
images (used for training) from rainy or snowy images (from
YouTube).

Adversarial attack A data sample that was modified to
make a DNN fail with high confidence. The difference with
covariate shift is in the malicious intent to generate imper-
ceptible perturbations. Several works presented above also
tested their approaches for adversarial attack detection. In
addition, Kantaros et al. (2021) proposed to detect adversar-
ial attacks by testing the robustness of a prediction against
input image transformations. Similarly, Wang et al. (2019)
considered the robustness against random mutations of f .

3.3 Approaches considering Both OMS and OOD
Hendrycks and Gimpel (2017) proposed to use the Maxi-
mum Softmax Probability (MSP) as a rejection score. They
evaluated the performance of MSP under both the OOD
and OMS settings. Ferreira et al. (2021) conducted a bench-
mark study of OOD detection methods. Their experiments
included novelties, covariate shifts, and adversarial attacks.
They also reported the OMS detection performance. How-
ever, in both of these papers, OOD and OMS are simply
viewed as separate problems. Here, we consider that OOD
is simply a proxy for OMS, and we discuss whether both
paradigms are useful for the field of DNN monitoring.

4 Limitations of OOD Detection
In this work, we claim that a successful runtime monitor mf

should perform well under the OMS setting, i.e., reject data

Figure 2: What is Out-Of-Distribution? Images from CI-
FAR10 test set with predictions by a ResNet-34 model. The
columns represent increasing brightness perturbation levels.

samples that correspond to errors of f , and accept others.
DNNs are usually good on their training dataset (train, val-
idation, and test splits), while their performance decreases
when data move away from Dtrain (Hendrycks and Dietterich
2019). These two facts gave rise to the highly studied prob-
lem of OOD detection, aiming to reject samples that are far
from the training distribution. Studying the alternate OOD
detection problem in place of OMS detection presents sev-
eral conceptual issues, which are highlighted in this section.

4.1 The Definition of OOD Is Ambiguous
The first issue with OOD detection is that DID is not well-
defined. Figure 2 shows examples of brightness covariate
shifts to illustrate this problem. Here, it is not clear how to
set a threshold on the perturbation factor to define OODness.
At a perturbation level of 2, the accuracy of f has dropped
about 13%, but it can still produce above 80% of correct
predictions. Hence, should the second column be considered
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Figure 3: Differences between OOD and OMS detection. Schematic representation of the in-distribution domain DID for a task,
as well as the model scope Df of a model f for this task.

OOD? This limitation also applies to adversarial examples,
as different attacks lead to different levels of performance
drop. For example, if we can generate a few additional mis-
classifications by changing random pixels, is it an adversar-
ial attack? Regarding novelty detection, the problem is bet-
ter defined: an image is OOD if its label is not among the
output classes handled by f (e.g., an image of a dinosaur is
clearly OOD for CIFAR10). However, it is not easy to de-
cide whether a highly corrupted image should hold its label.
In figure 2, is the last image of the fourth row still a dog?

There is no simple answer to the questions raised in the
previous paragraph. As a matter of fact, Balestriero, Pesenti,
and LeCun (2021) showed that for high-dimensional data
spaces, such as images, interpolation almost never happens.
Even test data, which are traditionally considered ID, are
not in the convex hull of Dtrain and require extrapolation ca-
pabilities of f . In other words, the only data samples that
are unambiguously ID are the training data themselves. This
way, building an OOD evaluation dataset requires making
subjective choices regarding the definition of OODness.

Recently, Wang et al. (2022) attempted to build a less am-
biguous OOD benchmark dataset by asking two independent
human annotators to label OOD images for ImageNet. The
resulting OOD set contains all images labeled as OOD by
both annotators. Unfortunately, this approach does not re-
ally solve the problem, as difficult images for humans are
not necessarily what the DNN will struggle to process. In
addition, even if this dataset is actually difficult for f , how
can we know that it is not too simple for mf? What about
images that are less clearly OOD?

A less ambiguous way to discuss the concept of OOD is
to use ideas from the field of DNN calibration (Guo et al.
2017): a set of images is OOD if the accuracy of f falls
below a fixed user-defined threshold on this set. This defini-
tion is still threshold dependent, but it describes OODness
unambiguously. However, under this definition, OODness
depends on f and is a property of a set, not defined at the
individual sample level. This definition could be used to de-

tect a performance drop over time by evaluating the OOD
rate in consecutive data, but it is a different problem than the
one studied in most OOD detection works.

4.2 OOD Does Not Always Represent OMS
Even if we had access to an unambiguous boundary of DID,
OOD and OMS detection would still remain distinct prob-
lems. In the schematic representation of figure 3, we can see
that DID and Df can differ in two different ways.

Model generalization The first difference, represented by
the light blue region, is when input data are OOD but cor-
rectly classified by f (e.g., the top-right image of figure 2).
The limits of the ID domain are often defined by human
programmers, independently of the generalization capabil-
ities of f . For such cases, a good OOD monitor will reject
perfectly valid inputs (false positives), thus decreasing the
availability1 of the model f . For the special case of novelty
detection, this region does not exist because the model can-
not be correct on data representing novel classes.

In-distribution errors The second difference between
OOD and OMS lies in the orange region in figure 3. In-
distribution errors are data samples that are similar to train-
ing data, but that are misclassified by f (e.g., the bottom-left
image of figure 2). Such cases can have catastrophic out-
comes for safety-critical applications, since if an OOD mon-
itor accepts wrong predictions as long as they are similar to
Dtrain, it also let hazardous predictions through the system
(false negatives) and decreases its safety. This problem is an
issue even when considering novelty detection.

Furthermore, it is counter-productive to expect a monitor
to accept misclassified training data. If a data sample is mis-
classified, its representation by the DNN is likely not similar
to other representatives of its class, and forcing the monitor
to say otherwise does not make sense.

1In the dependability literature, the availability of a system rep-
resents its readiness to deliver a correct service.
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4.3 Switching to OMS
The above discussion showed that it is hard to come up with
an objective definition of what OOD means, and that build-
ing good OOD monitors might not be sufficient to ensure the
safety of a system using a DNN. The good news is that such
a definition is not necessary, as we can simply use OMS as a
generic setting for studying DNN runtime monitoring. The
OMS paradigm is defined unambiguously and actually cor-
responds to what we want to achieve, i.e., reject wrong pre-
dictions of f . In practice, it is common to define a proxy task
(here OOD detection) to address a more complex generic
task of interest (OMS detection). However, when the actual
performance at the true task is easy to compute, we should
use it to evaluate the performance of new techniques. In our
case, computing OMS detection performance is easy as we
have access to labeled datasets and we can compute the pre-
dictions of f . For these reasons, we argue that DNN runtime
monitors should be evaluated with respect to the OMS set-
ting, instead of the ambiguous OOD setting.

5 Experimental Validation
So far, we have argued that if the ultimate goal is to in-
crease DNN safety, we should always evaluate runtime mon-
itors under the OMS setting. However, many recent works
have reported the performance of their approaches under the
OOD setting (Section 3.2). In this section, we conduct ex-
periments on common OOD datasets from the literature, to
see whether analyzing OOD results can lead to misleading
conclusions about the safety of the system.

5.1 Experiments Description
Our experiments consist of 27 OOD datasets, 2 DNN archi-
tectures (54 OOD scenarios), and 6 monitoring approaches.

We use three popular image datasets as ID: CIFAR10, CI-
FAR100, and SVHN (Krizhevsky, Hinton et al. 2009; Netzer
et al. 2011). For each ID dataset, the train split is used to fit
the monitors, while the test split serves as the ID set for eval-
uation. Each ID set is combined with 9 distinct OOD sets:

• Three novelty tasks – For CIFAR10 we use CIFAR100,
SVHN, and LSUN (Yu et al. 2015) to represent novel
data. For CIFAR100 we use CIFAR10, SVHN, and
LSUN. For SVHN we use CIFAR10, LSUN, and Tiny-
ImageNet (subset of ImageNet (Deng et al. 2009)). With
these choices, ID and OOD classes never overlap.

• Three covariate shift tasks – For each ID dataset, we
apply three image transformations from the AugLy li-
brary (Papakipos and Bitton 2022): Brightness (fac-
tor=3), Blur (radius=2), and Pixelization (ratio=0.5).

• Three adversarial attacks – For each ID dataset, we apply
three adversarial attacks from Torchattacks (Kim 2020),
with default parameters: FGSM, DeepFool, and PGD.

For each of these 27 OOD scenarios, we experiment with
two DNN architectures: DenseNet and ResNet. We use the
pre-trained models from Lee et al. (2018).

For monitoring, we test two feature-based approaches:
Mahalanobis (Maha) (Lee et al. 2018) and Outside-the-
Box (OtB) (Henzinger, Lukina, and Schilling 2020). We use

Figure 4: OMS results for optimal OOD monitors. Distribu-
tion of the OMS recall and precision obtained by the optimal
OOD detector m∗ across the 27 OOD datasets and two neu-
ral networks tested in our experiments.

the last layer before classification as their data representa-
tion. We also use four logit-based approaches: Max Softmax
Probability (MSP) (Hendrycks and Gimpel 2017), Energy
(Ene) (Liu et al. 2020), and ReAct combined with both MSP
(R-MSP) and Energy (R-Ene) (Sun, Guo, and Li 2021). Ex-
cept for OtB, the techniques used in our experiments require
selecting a rejection threshold on the monitoring scores. This
is a complex question that is not studied here. Instead, we
consider the optimal F1 threshold, as described by Guérin,
de Paula Canuto, and Goncalves (2020).

The complete code to reproduce our experiments can
be found at https://github.com/jorisguerin/neural-network-
monitoring-benchmark

5.2 OOD Can Give a False Sense of Safety
Here, we want to answer the following question: if we man-
age to develop a perfect OOD detector m∗, can we guarantee
that (f , m∗) is safe to use in critical applications?

Let’s suppose that we are able to build m∗, which rejects
all OOD samples and accepts all ID samples (precision and
recall of 1 at OOD detection). In our experiments, we can
easily simulate the predictions of m∗ using the known bi-
nary ID/OOD labels. Then, we want to know how well m∗

performs the task of detecting OMS data samples. An OMS
recall below one means that there exist ID data points for
which f is erroneous. It represents a threat to the safety of
the system. An OMS precision below one means that there
exist OOD data points for which f is correct. It represents a
decrease in the availability of the system.

We conduct this experiment for both DNN architectures,
across the 27 OOD datasets. The distribution of the OMS
performances obtained for the different OOD types is re-
ported in Figure 4. We can see that the OMS recall is not
close to 1 for most of the experiments conducted. Even for
novelty, the median OMS recall of the 18 experiments is be-
low 0.93. In other words, in most cases, more than 7% of the
errors of f are not detected by the perfect OOD monitor m∗,
which can lead to catastrophic outcomes for safety-critical
applications. This effect is even more pronounced for co-
variate shifts and adversarial attacks.

These results show that, even if perfect OOD detectors
are developed, it will not allow us to guarantee the safety of
critical systems using ML. Indeed, an OOD recall of 1 does
not guarantee the absence of prediction errors. Even worse,
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(a) Recall (b) Precision

Figure 5: Pairwise comparison of monitors. Popular monitors are compared across 54 OOD scenarios using a Wilcoxon test.
The obtained p-values are reported. Green cells indicate that the approach corresponding to the row is better than the column,
red cells indicate that the column is better than the row, and white cells indicate no statistically significant difference (p > 0.05).

reporting very good OOD results can be detrimental as it
gives a false sense that the (f , m∗) system is safe.

Regarding OMS precision, we first note that it is always 1
for novelty datasets. This is because f cannot be correct for
novel samples, by definition. For other OOD types, we ac-
knowledge an important drop in precision, i.e., an important
proportion of correct predictions of f on OOD data.

5.3 OOD Can Be Misleading for Comparison
As explained in section 3.2, monitors are often compared us-
ing the OOD setting. Here, we want to verify whether com-
paring monitors at the OOD detection task provides relevant
insights into OMS detection performance.

To do this, we compare six monitors from the literature
across 27 OOD datasets and two DNNs architectures (sec-
tion 5.1). For each pair of monitors, we conduct a Wilcoxon
signed-rank test across the 54 OOD scenarios to determine
whether one is better than the other. The Wilcoxon test is a
non-parametric statistical test that can be used to compare
pairs of classifiers across multiple datasets (Demšar 2006).
The results obtained are reported in figure 5.

From these experiments, we can see that the comparison
matrices obtained for OOD and OMS look different. For ex-
ample, OtB is clearly the most conservative approach (high-
est recall) when looking at the OMS results, but not when
considering OOD. On another note, the benefits of using Re-
Act for monitoring are best seen in the OMS setting (MSP
vs. R-MSP, Ene vs. R-Ene).

From these results, it appears that conducting OOD ex-
periments is not a reliable way to compare monitoring ap-
proaches regarding their ability to identify errors of f .

6 Removing Training Outliers to Build
Better Runtime Monitors

As explained earlier (Figure 1), runtime monitors are often
fitted using the DNN training dataset to represent “what is
safe”. The common practice in the literature is to use all
available Dtrain samples to fit the monitor. When considering

OOD, the objective is to build a binary classifier that can re-
ject “data samples from outside of the training distribution”
(dissimilar to Dtrain). Hence, in this context, it makes sense
to fit the monitor using all available training data samples.

In practice, DNNs rarely perform perfectly, even on the
exact data used for training. For example, the ResNet-34
used in this work misclassifies 127 of the 50, 000 training
data samples (training accuracy of 99.746%). When consid-
ering the OMS setting, the objective is to build a classifier to
identify data samples that are misclassified by f . Hence, it is
conceptually wrong to use the misclassified training samples
to represent the normal class when fitting a one-class classi-
fier for OMS detection. In this section, we propose a simple
trick to build better DNN monitors, consisting in removing
erroneous training samples to fit the monitor.

To illustrate this idea, we apply a two-dimensional Uni-
form Manifold Approximation and Projection (UMAP)
transformation (McInnes, Healy, and Melville 2018) to the
training split of CIFAR10. UMAP is an unsupervised em-
bedding method that produces a lower-dimensional repre-
sentation preserving the global distances. The 2D represen-
tation obtained allows us to investigate visually whether the
misclassified training samples are outliers, which change the
shape of the one-class classifier boundary. The embeddings
of four CIFAR10 classes are shown in figure 6. It shows that
correctly classified points form compact clusters while mis-
classified points appear to be clear outliers. To further illus-
trate our point, we draw the minimal bounding box contain-
ing all training samples, and the one containing only cor-
rectly classified samples. These bounding boxes represent
the one-class classification boundaries of an Outside-the-
Box monitor without K-means pre-processing (Henzinger,
Lukina, and Schilling 2020). The blue boxes, obtained by
removing misclassified samples, are much tighter than the
orange ones, and appear to better represent the model scope.

Figure 6 suggests that removing misclassified training
data helps to fit better monitors. However, UMAP embed-
dings are not real data and one should not rely on intuition
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Figure 6: Should we use misclassified training samples to fit a monitor? Two-dimensional UMAP visualization of four selected
classes from the CIFAR10 training split. Colors indicate whether they were correctly classified by the ResNet-34 model. We
also show the minimal bounding boxes containing all training samples (orange) and all correctly classified training samples
(blue). Misclassified training samples are often outliers, leading to much larger bounding boxes when they are included.

Recall Precision
Mean (St. dev.) Mean (St. dev.)

All training data 0.75 (0.19) 0.68 (0.18)
Only correct data 0.77 (0.18) 0.68 (0.18)

Wilcoxon test Better Worst
p-value 2.6e-9 1.6e-3

Table 1: OMS results for Outside-the-box

gained from such visualizations. Hence, we conduct more
formal experiments and compare the performance of a sim-
ple OtB monitor (without K-means) when trained with and
without misclassified training samples. The mean and stan-
dard deviation (St. dev.) of precision and recall are com-
puted across all 54 OOD scenarios (section 5) and reported
in table 1. We also conduct a Wilcoxon test and report the
p-values obtained. These results demonstrate that removing
misclassified training samples can help to increase the recall
(clearly statistically significant) without impacting the preci-
sion too much. In other words, the monitor can detect more
errors of f without discarding additional valid predictions.

Two previous works already had the intuition that re-
moving misclassified training samples could reduce the
false negative rate (Henzinger, Lukina, and Schilling 2020;
Cheng, Nührenberg, and Yasuoka 2019). This section ex-
plains this intuition and shows experimental evidence of the
benefits of this simple trick in the context of OMS detection.

In these experiments, we only used OtB because it is a
threshold-free approach. As threshold selection strategies
were not discussed in this work, other monitors were not
considered here. However, when trying to select an optimal
monitoring threshold, we believe that it would also be valu-
able to not consider misclassified samples as normal data.

7 Conclusion
If we want to use DNN in safety-critical applications, it is
paramount to build efficient runtime monitors, which can
detect and remove DNN errors from the system before they

can have catastrophic consequences. As of today, many re-
search efforts are directed toward solving the problem of
out-of-distribution detection, which consists in identifying
data samples that were drawn from a different distribution
than the DNN training set. In this paper, we discuss the limi-
tations of this setting to enable the safe usage of DNN in crit-
ical systems. First, the concept of OOD is not well-defined,
which makes it difficult to compare different OOD detection
approaches. Second, even a perfect OOD detector can have
the undesirable property of discarding valid predictions of
the DNN, and even worse, accepting wrong predictions. Ex-
tensive experiments conducted on popular OOD detection
datasets confirm that these phenomena occur in practical
scenarios. Furthermore, we show that the OOD setting can-
not be used to compare monitoring approaches accurately,
as the best monitor for OOD is not always the best one to
detect DNN errors. Finally, we demonstrate experimentally
that it is a good practice to remove training data points that
the DNN cannot classify correctly before fitting the monitor.

On the bright side, adapting current OOD research to
these findings will not require drastic changes. The out-of-
model-scope (OMS) setting, defined above and discussed in
several previous works, is well-defined and perfectly aligned
with the DNN monitoring objectives. In addition, most ap-
proaches developed for OOD detection can be used for OMS
without any modification, and OMS results can be computed
straightforwardly for most OOD datasets used in the litera-
ture. Hence, the take-home message from this paper is that
instead of evaluating new approaches on their ability to de-
tect samples from other data sources, the OOD detection re-
search community should focus on the ability to detect sam-
ples leading to erroneous DNN predictions. We also believe
that it is a good idea to include OOD samples in OMS eval-
uation datasets, which is rarely done in OMS papers. It is
worth mentioning that we recently introduced a unified eval-
uation formalism for runtime monitors, considering the en-
tire system in which a DNN is included (Guerin et al. 2022).
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