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Abstract
Despite being widely deployed in safety-critical applications
such as autonomous driving and health care, deep neural
networks (DNNs) still suffer from non-negligible reliabil-
ity issues. Numerous works had reported that DNNs were
vulnerable to either natural environmental noises or man-
made adversarial noises. How to repair DNNs in deploy-
ment with noisy samples is a crucial topic for the robust-
ness of neural networks. While many network repairing meth-
ods based on data argumentation and weight adjustment have
been proposed, they require retraining and redeploying the
whole model, which causes high overhead and are infeasi-
ble for varying faulty cases on different deployment environ-
ments. In this paper, we propose a novel network repairing
framework called PatchNAS from the architecture perspec-
tive, where we freeze the pretrained DNNs and introduce
a small patch network to deal with failure samples at run-
time. PatchNAS introduces a novel network instrumentation
method to determine the faulty stage of the network structure
given the collected failure samples. Then a small patch net-
work structure is searched unsupervisedly using neural archi-
tecture search (NAS) technique with data samples from de-
ployment environment. The patch network repairs the DNNs
by correcting the output feature maps of the faulty stage,
which helps to maintain network performance on normal
samples and enhance robustness in noisy environments. Ex-
tensive experiments based on several DNNs across 15 types
of natural noises show that the proposed PatchNAS outper-
forms the state-of-the-arts with significant improvement as
well as much lower deployment overhead.

Introduction
Recent years have witnessed the explosive deployment of
Deep Neural Networks (DNNs) in production environments.
With the wide range of applications in safety-critical tasks
such as autonomous driving and healthcare, there is an ur-
gent need to concern the robustness and trustworthy of
DNNs. Numerous works had reported that neural networks
suffered from reliability issues (Eykholt et al. 2018; Ku-
rakin, Goodfellow, and Bengio 2018), and they were vulner-
able to either natural noises (Hendrycks et al. 2021) or man-
made adversarial noises (Goodfellow, Shlens, and Szegedy
2014; Madry et al. 2017). According to the Udacity self-
driving car challenge (Tian et al. 2018), the changes in driv-
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ing conditions such as fog and rain could lead to thousands
of erroneous behaviors in three top performing DNNs. The
work of (Yu et al. 2021) found that adding 15 different types
of natural noises into clean images could seriously harm the
classification accuracy of deployed DNNs, where more than
40% performance degradation were reported.

Typically, DNNs were trained with a pre-collected dataset
before being deployed into real environment. Due to the fact
that the runtime environment contains potential noises and
unseen cases, the pre-trained DNNs may fail to make cor-
rect classifications or decisions. Therefore, it is important
to repair the deployed DNNs with the failure samples col-
lected at runtime. An intuitive method was to finetune the
DNNs with the failure samples (Yun et al. 2019; Hendrycks
et al. 2020). However, since the amount of available failure
samples is usually small, finetuning DNNs with them easily
results in underfitting (the networks still focus on original
training data and neglect the faulty cases) or overfitting (the
networks learn the irrelevant information from the failure
samples). Some works proposed to repair DNNs by extract-
ing common features from the failure samples and utilized
them as an augmentation direction to create more data sam-
ples to retrain the DNNs (Gao et al. 2020; Ren et al. 2020;
Yu et al. 2021; Ma et al. 2018; Zhang and Chan 2019; Sohn,
Kang, and Yoo 2019).

Despite the great efforts, the existing network repairing
methods encounter several drawbacks. Firstly, they required
retraining the whole DNNs and redeploying them at runtime
whenever faulty cases occur, causing a lot of overhead due
to their exceptional large sizes. Secondly, they need to re-
train personalized models for individual application whose
deployment environments varies from device to device, sub-
stantially increasing the difficulty of maintenance. Thirdly,
full model update will interrupt the AI services, inevitably
influencing the service reliability and user experience.

To address these challenges, we propose a novel light-
weight network repairing method called PatchNAS from
the architecture perspective, where we freeze the pretrained
DNNs (common module) and introduce a small patch net-
work (personalized module) to handle varying faulty cases
in runtime environment. Firstly, the proposed framework in-
troduces a neural network instrumentation method, similar
to program instrumentation in software engineering, that in-
serts probes into different stages of the neural network struc-
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ture to monitor its operation conditions and locate its weak
stages for the runtime failure samples. Then, a patch gate
module is trained to recognize faulty stages from the DNN,
and attached the faulty stages to a patch network module for
repairment. To cope with the difficulty of data annotation
at runtime, the patch structure is automatically learned with
an unsupervised neural architecture search (NAS) technique
using unlabeled data from the deployment environment. The
patch network is further trained with a small number of nor-
mal samples and failure samples, so that it learns to correct
error output from failure samples and enhances the ability
of the original model to combat with faulty cases. Since the
patch network does not take part in the forward propaga-
tion of all inputs and it only deals with the probable failure
samples detected by the patch gate, the proposed method is
light-weight and cost-efficient. The advantage of PatchNAS
is that the original DNN model remains intact during the re-
pairing process, and only a small patch network need to be
updated to deal with faulty cases from the deployment envi-
ronment. With the proposed PatchNAS, the performance of
DNNs on normal samples will not degrade, and their robust-
ness will be enhanced against varying faulty cases.

The contributions of our work are summarized as follows:

• We propose to repair DNNs in deployment from a
novel architecture perspective by adding a patch network
whose structure is searched unsupervisedly using the
neural architecture search (NAS) technique. The patch
network repairs the neural network by correcting the out-
put of the faulty stages in the DNNs. To the best of our
knowledge, we are the first to incorporate a patch struc-
ture with NAS to achieve light-weight network repairing.
• To locate the weak/faulty stages in the neural network

structure, we propose a novel network instrumentation
method where probes are inserted for each stage of the
DNN with a patch gate module trained to determine the
probable faulty areas. The PatchNAS design helps to
maintain network performance on normal samples and
enhance the robustness against failure samples with the
intervention of a small patch network structure.
• Extensive experiments showed that the proposed

PatchNAS method outperforms the state-of-the-art net-
work repairing methods on four widely-used DNN mod-
els across fifteen different types of noises, and the train-
ing and deployment costs are significantly reduced.

Related Work
We introduce the following three aspects that are related to
our work: neural network robustness, neural network repair,
and neural architecture search.

Neural Network Robustness Robustness has become a
crucial issue for the application of neural networks. Both
man-crafted adversarial noises (Goodfellow, Shlens, and
Szegedy 2014; Madry et al. 2017) and noises in the natu-
ral environment can mislead the network into making wrong
decisions, which imposes great threat to neural network ap-
plications like autonomous driving and traffic monitoring
(Tian et al. 2018; Hendrycks and Dietterich 2019). Recently,

neural network architecture has been found to be related to
network robustness and different architectures have different
resistance given a specific type of noise (Tang et al. 2021;
Devaguptapu et al. 2021).

Neural Network Repair Network repair aims to repair a
trained neural network given runtime data samples misclas-
sified by the network. The works of CutMix and AugMix
(Yun et al. 2019; Hendrycks et al. 2020) introduced data aug-
mentation techniques to generate training samples following
a pre-defined pattern like randomly masking or shearing the
images, which can be used with failure samples to finetune
the network to enhance robustness. FSGMix adopted a sim-
ilar approach to AugMix by taking samples from a Gaus-
sian mixture model learned from the failure cases (Ren et al.
2020). Yu et al. introduced a style transfer model to learn the
unknown failure patterns from the runtime data and trans-
ferred the learned pattern to the existed training dataset to
retrain the network (Yu et al. 2021). Another line of works
repair the network by adjusting model weights according to
their roles in the decision of the faulty cases. Zhang et al. ad-
justed the direction and magnitude of the model weights to-
ward the average weight of a series identical models trained
with reduced subsets of the original training dataset (Zhang
and Chan 2019). Sohn et al. performed sensitivity based
fault localization to locate the faulty neurons and directly
optimized them with Particle Swarm Optimization until their
behaviors were corrected (Sohn, Kang, and Yoo 2019).

Neural Architecture Search Neural Architecture Search
(NAS) aims to search architectures that perform well on
target data and tasks. Despite early efforts to utilize time-
consuming reinforcement learning (Zoph et al. 2018) or evo-
lution algorithm (Real et al. 2019) to search the structure,
recent NAS methods usually adopt a more efficient way to
train a hyper network in the search phase (Liu, Simonyan,
and Yang 2019; Bender et al. 2018). The hyper network con-
tains all possible network structures in the search space, and
conducting NAS is to find the best sub-network from the
hyper network. Though most NAS methods conduct super-
vised task in the search phase, recent works showed that
structures searched using unsupervised tasks like rotation
prediction and colorization have comparable performance as
those searched with supervised task (Liu et al. 2020; Yan
et al. 2020; Duan et al. 2021).

Different from the previous works that rely on augmented
datasets for retraining and full model update, this paper pro-
poses a novel idea of repairing DNNs with a patch subnet-
work to correct varying failure cases at runtime, which pro-
vides a light-weight cost-efficient method to enhance model
robustness without retraining the predeployed networks.

PatchNAS Framework
The proposed PatchNAS framework is demonstrated in
Fig. 1. As shown in the top left, a DNN is trained with a
pre-collected dataset Dt, and then deployed into the real-
world environment. During runtime, the DNN is used for
inference on a set of unlabeled data Du from deployment
environment, among which a small set of failure samples
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Figure 1: The framework of PatchNAS. Given a few failure samples collected from deployment environment, we repair the
DNNs with three steps: (1) perform Neural Network Instrumentation to predict potential failure samples and locate the cor-
responding faulty stages; (2) search for a patch network structure against the noises in deployment using unsupervised NAS
technique; (3) apply the searched patch to correct the output of the faulty stages.

De are annotated by the operating engineers for model re-
pair. In PatchNAS, we freeze the pretrained DNN and attach
a small patch network architecture to repair the model, i.e.,
making the network’s output distribution p as close as that
of the ground truth with the aid of the failure samples.

PatchNAS mainly consists of three steps. Firstly, it per-
forms neural network instrumentation (step 1, top right of
Fig. 1) to determine the faulty areas by inserting probes into
each stage of the network structure. Modern convolutional
neural networks are typically composed of several stages
where each stage consists of several Conv-BN-ReLU lay-
ers or blocks as shown in the green square in Fig. 1. The
sizes of output feature maps are usually the same inside the
stage while shrinking between adjacent stages. In neural net-
work instrumentation, we intend to locate the stage that most
likely causes the incorrect output for failure samples in De,
and further train a patch gate module to determine whether
misclassification will occur for an input.

Next, a small patch network module is constructed with a
patched neural network architecture search algorithm (step
2, the bottom left of Fig. 1). Though different failure inputs
can be traced down to different network stages, we share
the patch network for all weak stages to form a light-weight
patch module. We create a hyper network patch and train
all its sub architectures on several self-supervised tasks to
determine the suitable patch structure.

After obtaining the patch network, patched-based net-
work repair (step 3, the bottom right of Fig. 1) can be applied
to correct the output of failure samples. Given an input fail-
ure sample x, the patch gate will determine the faulty area
in the forward propagation of DNN stages and activate the

patch network to intervene its own output with the stage’s
output to repair the erroneous feature map.

Detailed Method
Neural Network Instrumentation
Inspired by program instrumentation (Huang 1978) that in-
serts probes into the program to monitor the running states
in execution, we propose a neural network instrumentation
method to locate the most faulty stage inside the network.
As demonstrated in the top right of Fig. 1, we insert probes
into each stage of the network and acquire the information of
useful features extracted by each stage. In DNNs, the probe
is in the form of a neural network consisting of a Conv-BN-
ReLU layer and a fully-connected (FC) layer. It takes the
output feature maps of the stage as input and uses them on
classification task to evaluate their contributions to the final
results. The process is formulated as:

pcls(Si, x) = softmax(Wfc
i ∗CBR(Mi,W

CBR
i )), (1)

where i is the index of the stage; Si represents stage i with
output feature maps Mi given input sample x; pcls(Si, x)
is the output distribution of probe i; CBR(·) represents a
Conv-BN-ReLU layer, and Wfc

i , WCBR
i are the weights of

the ith probe. The probes are updated with normal samples
from the original training datasetDt with the following loss:

min
Wfc

i ,WCBR
i

∑
x∈Dt

CE(Y, pcls(Si, x)), (2)

where CE(·) is the standard cross entropy loss.
With the probes, we monitor the network’s information

extraction process and locate faulty stage of failure samples.
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Faulty Stage Localization We define the faulty stage of a
network as the most related stage that generates incorrect
output for the failure samples. Specifically, we adopt the
Fisher Information (Cramér 1999) to estimate the relative
importance of each stage on repairing the network. Fisher
Information (FI) measures the amount of information that
an observable random variable carries about an unknown
parameter of a target distribution, (Xu et al. 2021), which
is defined as the variance of the score function (the gradient
of log-likelihood) with respect to parameter θ:

s(θ) = ∇θ log p(y|θ), (3)

F = Ep(y|θ)[∇ log p(y|θ)∇ log p(y|θ)T], (4)
where s is the score function, θ is the parameter that models
distribution p(y|θ), and F is the Fisher Information Matrix.
In neural networks, Fisher Information measures the impor-
tance of the parameters in the network towards the given
tasks. Given a network parameter θ, the Fisher Information
Matrix is defined as:

F (θ) = E[(
∂ log p(y|x; θ)

∂θ
)(
∂ log p(y|x; θ)

∂θ
)T]. (5)

In practice, Fisher Information of the network parameter is
computed through the diagonal elements of the empirical
Fisher Information Matrix. For any model parameter θ ∈ Si,
its FI in a given batch of the data is computed as:

f(θ, x) =
1

|B|
∑

(x̂,ŷ)∈B

(
∂ log p(ŷ|x̂; θ;Wfc

i ;WCBR
i )

∂θ
)2,

(6)
where Wfc

i ;WCBR
i are the weights of probe i; (x, y) is a

pair of samples in the data batch B.
We define a stage’s FI to be the average FI of its own

parameters. Hence, the process is formulated as:

f(Si, x) =
1

|Si|
∑
θ∈Si

f(θ, x), (7)

where Si represents stage i. The higher a stage’s FI is, the
more importance it is to the network output.

With the above formulation, the stage with the largest FI,
argmax

i
(f(Si, x)), is considered as the faulty stage for the

failure sample x.

Patch Gate Module Intuitively, faulty cases reveal the in-
trinsic weakness of the neural network. They contain some
features that the neural network is vulnerable to. If we can
detect such features and locate the faults in forward prop-
agation, we can intervene in the network’s propagation to
correct the potential failure cases.

Therefore, we propose a patch gate module to detect faults
and their locations in the forward propagation of the net-
work. We reuse the Conv-BN-ReLU layer of the probe and
replace the original FC layer with a new one WfcG

i ∈
RCin×1, where Cin is the number of input channels deter-
mined by the feature map size. For a given input x, the patch
gate predicts the normalized FI of a network stage as:

pFI(Si, x) = ReLU(WfcG
i ∗CBR(Mi,W

CBR
i ))), (8)

pool

Output
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Input
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……
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Figure 2: The architecture of a search cell.

where Mi is the output feature maps of stage i given data x.
The patch gate is trained by:

min
{WfcG

i }i≤N

1

N

N∑
i=1

(f(Si, x)− pFI(Si, x))2, (9)

where f(Si, x) is the FI of stage i computed through Eq. 7,
pFI(Si, x) is the prediction of patch gate for FI of stage i,
and N is the number of stages in the DNN. In practice, we
use equal number of failure samples and normal samples to
train the patch gate.

If
∑
i≤N p

FI(Si, x) exceeds a pre-defined thresh-
old σ, we consider that the current forward propaga-
tion contains potential fault and the inference of stage
argmax

i
(pFI(Si, x)) should be intervened.

Patched Neural Architecture Search
As network robustness for certain noise is affected by its ar-
chitecture (Tang et al. 2021), the pre-defined network struc-
ture doesn’t always suit for varying deployment environ-
ments. We resolve this issue by using a patch network to
adjust the output of the faulty stage in the network to en-
hance its robustness. Since annotating data is infeasible at
runtime, we adopt an unsupervised NAS technique to search
for the structure of the patch network.

Patch Structure and Search Space As shown in lower
left of Fig. 1, we attach a patch network module to all faulty
stages detected by neural network instrumentation to correct
the output for failure samples. The main body of the patch is
a stem containing two cells. These cells are served to extract
proper features in noisy environment, whose structures are
determined by an unsupervised NAS method.

The initial cell is a fully-connected directed acyclic graph
consisting of M nodes {v1, v2, ...vM} and M · (M − 1)/2
directed edges as depicted in Fig. 2. The nodes represent 3-d
tensors and edges represent computation operations (e.g.,
3×3 convolution) which direct from the input tensors to the
output tensors. For nodes vi, the output is the sum of com-
putation results of its predecessors, which is computed as:

vi =
∑
j<i

norm(e(j,i)(vj)), (10)

norm(x) =
x− µx√
σ2
x + ε

, (11)

where the function norm(·) performs normalization to the
inputs, and e(j,i) is the edge from vj to vi representing a
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compound operation. Each edge contains operations sam-
pled from an operation pool O ( 1×1 and 3×3 conv., 1×1
and 3×3 depth-wise separable conv., 3×3 max pooling, 3×3
average pooling, identity), which is calculated as:

e(j,i)(x) =
∑
i

norm(oi(x)), (12)

where oi is a sampled operation. The output of the cell is the
concatenation of all nodes except for the input. The goal of
NAS is to determine the exact operations for each edge.

Architecture Search and Evaluation As labeled data is
hard to collect in real deployment environment, we search
for the structure of the patch in an unsupervised manner.

Specifically, we construct a set of self-supervised tasks
(e.g., predicting image rotation angle, solving jigsaw puzzle)
to train the initialized/hyper patch with unlabeled samples.
Firstly, we preprocess the raw data according to given task
(e.g., random rotated) and feed them into the original DNN.
Then we compute the input feature maps of the ith stage of
the network and feed them to the patch. The output of the
patch network is further fed to the classifiers to solve the
given self-supervised tasks. The process is formulated as:

Ui(Mi) = Wun
i ∗Kπ(O)(Mi), (13)

whereUi(Mi) is the patch’s outputs of the unsupervised task
on stage i given inputs Mi, Wun

i is the weight of the classi-
fier on stage i, π(O) represents the sampled operations from
operation poolO, and Kπ(O)(·) calculates the results of the
patch given sampled operations. The objective of training is:

min
W∈π(O),{Wun

i }i≤N

CE(Y,Softmax(
N∑
i=1

Ui(Mi)),

(14)
where Y is the corresponding label of the self-supervised
task, W ∈ π(O) is the weights in the sampled operations
which will be trained by gradient descent.

We train a hyper patch network by randomly sampling
sub-patches and update weights of the chosen operations
with current data batch. In our implementation, we adopt
the same sampling strategy as in (Bender et al. 2018).

After training the hyper patch network, we randomly sam-
ple 200 sub-patch structures with the sampling probability
1
|O| and evaluate their performance. The structure of the sub-
patch with the best overall performance, denoted by O′ , is
chosen as the final structure of the patch network.

Patch-Based Network Repair
After acquiring patch gate and the searched patch structure,
we incorporate the searched patch to correct the output of
the predicted faulty stage of the network.

Repair Method Given an input sample x, the patch gate
calculates pFI(Si, x) for every stage based on Eq. 8. If
the sum of the predicted FI exceeds a pre-defined thresh-
old σ, the patch will intervene the forward of stage i =
argmax(pFI(Si, x)). The input of stage i will be fed into
the patch and the output of both the patch and stage i will be
added up as the input of the next stage i+ 1, i.e.,

M ′i+1 =Mi+1 +KO
′
(Mi), (15)

where Mi and Mi+1 are the input and output feature maps
of stage i, M ′i+1 is the repaired output of stage i as well as
the input of stage i+ 1. Notably, the output of the patch and
the stage may have different shapes. To solve the problem,
we simply add another 1×1 convolution layer after the patch
to align the feature maps by its stride and out channels like
the projection shortcuts in ResNet (He et al. 2016).

As the structure of the patch has been trained for feature
extraction on unsupervised tasks, it could be applied to dis-
tinguish the valid information from noisy environment and,
in turn, to compensate the forward of the faulty stage.

Patch Training Given a set of training samples, the patch
module is trained by minimizing the cross entropy loss be-
tween the neural network’s final output and the true label
through gradient descent. We use both failure samples De

and the samples in Dt that trigger the patch gate to train
the patch for repairment. Since the proportion of samples
that trigger the patch gate is quite small (see Evaluation),
the training cost of patch network is efficient.

While we update weights in the patch, the original net-
work remains intact during the whole process, which means
that it maintains its performance on the normal samples that
are not triggered by patch gate in deployment. This charac-
teristic is helpful to repair one big powerful network with
a specialized small patch for varying deployment environ-
ments (e.g., snowy arctic areas and moist rain-forest areas).
Moreover, the deployment cost of the repair is significantly
reduced as only small modules need to be transferred to the
target environment rather than the full model.

Evaluation
Implementation
Dataset and DNN Models We adopt CIFAR-10
(Krizhevsky, Hinton et al. 2009) and Tiny-ImageNet1

to evaluate the performance of different repairing methods.
Following the works of (Hendrycks and Dietterich 2019;
Yu et al. 2021), 15 types of noises 2 in natural environment
are added to the datasets’ original test images. Each type of

1https://tiny-imagenet.herokuapp.com/
2Gaussian noise(GN), shot noise(SN), impulse noise(IN), defo-

cus blur(DN), glass blur(GN), motion blur(MB), zoom blur(ZB),
snow(SO), frost(FR), fog(FOG), brightness(BR), contrast(CO),
elastic transform(ET), pixelate(PL), Jpeg compression(JC)
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Model Methods Type of Noise Avg.
GN SN IN DB GB MB ZB SO FR FOG BR CO ET PL JC

A
llC

on
vN

et CutMix 35.98 24.80 38.07 18.41 15.06 18.29 17.36 14.74 14.66 16.48 17.86 24.24 15.55 17.73 16.53 20.38
AugMix 47.58 41.12 44.88 13.96 29.15 20.04 16.74 19.05 25.59 17.43 19.40 43.32 14.63 21.72 17.48 26.14
FSGMix 17.95 14.14 25.77 19.73 19.39 17.01 22.47 17.43 19.75 28.36 21.11 56.73 19.88 14.74 20.83 22.35

DeepRepair 41.77 37.17 45.70 19.90 31.42 22.40 22.25 25.92 34.49 32.78 20.18 67.03 21.03 20.05 25.11 31.15
PatchNAS 58.48 54.86 52.11 23.53 46.43 25.57 25.79 31.18 43.76 37.84 15.37 67.12 18.66 39.60 20.32 37.38

W
R

N
-4

0-
2 CutMix 35.44 25.54 29.26 26.80 20.45 25.48 25.26 26.34 15.05 26.17 30.57 24.15 21.31 23.87 23.67 25.29

AugMix 26.45 33.54 34.71 23.35 20.93 22.63 23.47 18.55 22.46 21.78 22.50 23.19 19.41 31.17 18.79 24.20
FSGMix 15.14 16.53 37.72 31.53 27.94 29.65 30.60 26.01 27.91 31.86 33.88 47.05 25.99 24.56 24.30 28.71

DeepRepair 40.09 35.60 46.73 26.84 29.61 25.91 27.63 27.87 35.91 32.19 27.52 49.03 25.52 19.41 29.02 31.93
PatchNAS 56.66 50.24 39.85 23.52 32.85 31.33 26.65 29.33 39.28 32.67 24.12 49.12 21.97 47.63 21.70 35.13

D
en

se
N

et

CutMix 39.16 38.13 35.66 25.81 24.36 19.67 20.53 25.92 19.74 21.68 29.91 24.23 19.61 20.13 19.06 25.57
AugMix 43.39 39.36 22.80 21.30 28.02 17.27 20.12 19.13 21.80 17.78 21.81 31.96 16.78 39.01 18.83 25.57
FSGMix 36.55 29.94 36.32 29.48 29.14 27.47 30.99 26.31 31.84 33.83 32.17 49.30 24.56 30.88 26.24 31.67

DeepRepair 42.30 44.51 43.44 25.11 30.30 24.40 26.23 28.21 36.36 31.64 28.53 53.31 25.53 15.26 28.32 32.23
PatchNAS 55.13 50.42 31.70 23.63 33.16 29.18 26.14 31.30 38.09 33.46 23.72 45.12 24.72 47.58 22.20 34.37

M
ob

ile
N

et
V

2

CutMix 26.27 25.51 23.66 23.07 18.04 21.60 25.47 16.63 16.23 13.28 19.05 16.86 20.04 24.34 23.80 20.92
AugMix 25.61 23.39 23.49 25.12 20.05 23.26 27.42 16.24 17.25 13.99 17.49 17.15 22.28 22.04 23.77 21.24
FSGMix 15.29 15.31 14.25 23.50 18.06 24.48 26.77 17.84 19.93 17.00 18.15 23.23 21.18 21.26 23.19 19.96

PatchNAS 22.98 23.20 20.54 29.42 18.61 29.00 30.51 19.53 20.48 24.39 26.35 17.73 24.58 19.36 22.21 23.26

Table 1: Comparison of test accuracy on failure samples (i.e., Ds) with single type of noise for AllConvNet, WRN-40-2 and
DenseNet for CIFAR-10 and MobileNet-V2 for Tiny-ImageNet.

noises contains five severity levels. We use four well-known
DNNs in the experiments: AllConvNet (Springenberg
et al. 2014), Wide-ResNet (Zagoruyko and Komodakis
2016), DenseNet (Huang et al. 2017) for CIFAR-10, and
MobileNet-V2 (Sandler et al. 2018) for Tiny-ImageNet.

To simulate runtime environments, we randomly select
half samples from each noisy dataset as non-labeled dataset
Du, and use the rest noisy samples to test the DNNs well-
trained following (Hendrycks et al. 2020). Based on the re-
sults, we partition the failure samples into two sets: a small
number of failure samples (100 for CIFAR-10 and 2000 for
Tiny-ImageNet) are used as labeled training set De, and the
rest failure samples are used as test set Ds to evaluate the
performance of repair algorithms.

Baselines We compare the proposed PatchNAS against
two types of baselines: finetune-based methods (CutMix
(Yun et al. 2019), AugMix (Hendrycks et al. 2020))
and specifically designed network-repair methods (FSGMix
(Ren et al. 2020), DeepRepair (Yu et al. 2021)). For
finetune-based methods, failure cases De and original train-
ing datasetDt are combined to finetune the neural networks.
For network-repair methods,De andDt serve their roles ac-
cording to specific methods in the literature.

Configuration of PatchNAS The number of nodes M in
each cell is set to 4. We adopt three commonly-used unsu-
pervised tasks to search for the architecture of the patch:
rotation prediction (Gidaris, Singh, and Komodakis 2018),
colorization (Zhang, Isola, and Efros 2016) and solving jig-
saw puzzles (Noroozi and Favaro 2016). The structure with
best average performance on three tasks is chosen as the ar-
chitecture of the patch. The experiments are conducted on a
server with 2 NVIDIA GeForce RTX 3090.

Performance Comparison

Ability of Repairing a Single Type of Noise We compare
the performance of different algorithms on repairing with a
single type of noise in the test dataset Ds. Each experiment
is repeated three times and the average results are shown
in Tab. 1. PatchNAS achieves the best overall results on all
DNNs where the performance on failure samples improves
up to 82.32% against the second best method. Notably,
PatchNAS achieves bigger improvement on noises that cre-
ate more failure samples like Gaussian noise and glass blur.
Some environmental noises like brightness can be effec-
tively resolved by data-augmentation (e.g., FSGMix per-
forms best on BR), and they are less sensitive to DNN struc-
ture with a tiny patch. The average performance gain ranges
from 6.64% to 20.00% compared with the SOTA method
(DeepRepair on CIFAR-10), and a 9.51% performance boost
is observed against AugMix on Tiny-ImageNet.

Ability of Repairing Mixture of Noises We then test the
algorithms’ ability to repair a mixture of different types
of noises, and the results are shown in Tab. 2. PatchNAS
achieves the best overall results in the experiments where
around 25% performance boost can be found against the
baselines. It demonstrates that the variety of noises makes
it difficult for one single neural network architecture to fit
with. Nevertheless, PatchNAS significantly outperforms the
baselines in repairing mixture of noises.

Robustness We further use the combined clean and noisy
test set to evaluate the robustness of repaired DNNs, average
accuracy is compared in Fig. 4. Again, PatchNAS has the
highest accuracy on all networks and achieves the biggest
improvement on the least robust network (AllConvNet).
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Model Method Number of Different Noises
All 15 4 3 2

A
llC

on
vN

et CutMix 28.60 26.54 26.73 26.90
AugMix 31.05 33.57 37.11 35.84
FSGMix 26.27 24.09 25.21 18.11

DeepRepair 30.41 32.92 36.19 32.18
PatchNAS 36.88 37.06 39.34 40.46

W
R

N
-4

0-
2 CutMix 33.73 29.16 28.89 27.45

AugMix 34.61 27.38 26.54 30.00
FSGMix 34.09 26.24 24.88 20.67

DeepRepair 29.94 30.61 32.33 30.74
PatchNAS 30.28 31.59 34.37 35.73

D
en

se
N

et CutMix 34.65 32.21 33.01 34.78
AugMix 34.01 34.38 35.39 36.90
FSGMix 38.32 33.44 33.65 31.04

DeepRepair 36.58 33.48 35.89 34.97
PatchNAS 38.42 38.01 37.91 39.30

Table 2: Comparison of test accuracy on failure samples
(i.e., Ds) with multiple noises.

Figure 4: Comparison of accuracy on combined test sets.

Repair and Deployment Overhead

Repair Overhead There are four modules to train in
PatchNAS: the probes, the patch gate, the hyper patch, and
the searched patch. The training of probes and hyper patch
don’t require failure samples and they can be prepared in ad-
vance. If failure samples are found, it can simply repair the
network by training the patch gate and the patch network
instantly. We compare the average repair time of different
methods and the results are shown in Fig. 5. While many
baselines take several hours to retrain the model, the pro-
posed PatchNAS can repair most DNNs within 10 minutes.

The repair efficiency of PatchNAS stems from two as-
pects: less training samples and smaller model to train. As
illustrated in Tab. 3, while other methods adopt the whole
original training dataset to finetune the network, PatchNAS
only requires a few samples to train the patch network,
which is about 5% of the original dataset.
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Figure 5: Comparison of repairing time.

Network Baseline PatchNAS
#Samples % #Samples %

AllConvNet 50100 100% 2847 5.68%
WRN-40-2 50100 100% 2675 5.34%
DenseNet 50100 100% 1682 3.36%

MobileNet-V2 102000 100% 5495 5.39%

Table 3: Training samples used to repair DNNs.

Model
Number of Parameters Overhead

Original
Model

Probes &
Patch Gate Patch Baseline PatchNAS

AllConvNet 1.41M 0.09M 0.10M 100% 13.21%
WRN-40-2 2.24M 0.06M 0.11M 100% 7.59%
DenseNet 0.77M 0.11M 0.07M 100% 23.18%

MobileNet-V2 2.48M 0.12M 0.08M 100% 8.06%

Table 4: Deployment overhead of different methods.

Deployment Overhead Unlike other repair methods that
need to transfer the entire repaired DNN back to deployment
environment, PatchNAS only transfers several patch mod-
ules. We compare the amount of parameters updated by dif-
ferent methods, and the results are in Tab. 4. The parameter
size of PatchNAS is down to 7.59% of those of the baselines,
which is light-weight and favorable for fast deployment.

Performance of Patch Gate
We test the performance of patch gate to detect failure sam-
ples from the noise datasets. We draw the ROC curves of
patch gate and calculate its AUC value for different types of
noises. As illustrated in Fig. 6, the patch gate excels in distin-
guishing failure samples where most AUC values are above
0.9. The worst case is BR noise for AllConvNet where AUC
still reaches 0.8, which shows the effectiveness of patch gate.

GN SN IN DB GB MB ZB SO FR FOG BR CO ET PL JC
0.80

0.85

0.90

0.95

1.00

AU
C AllConvNet

WRN-40-2
DenseNet
MobileNet-V2

Figure 6: AUC of the patch gate in detecting failure samples.

Conclusion
In this paper, we proposed a patch based method called
PatchNAS to repair DNNs in deployment. PatchNAS froze
the pretrained DNNs and introduced a small patch network
to correct failure samples at runtime. It adopted a network
instrumentation method to determine the faulty stage of
the network and applied an unsupervised NAS technique
to search the optimal patch structure in deployment envi-
ronment. The patch network repaired the DNNs by cor-
recting the output feature maps of the faulty stage and
maintained network performance on normal samples to en-
hance robustness. Extensive experiments showed that the
proposed PatchNAS significant outperformed the state-of-
the-arts with much lower deployment overhead.
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