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Abstract

As the complexity of artificial pacemakers continues to grow,
the importance of capturing its functional correctness re-
quirement formally cannot be overestimated. The pacemaker
system specification document by Boston Scientific provides
a widely accepted set of specifications for pacemakers. As
these specifications are written in a natural language, they
are not amenable to automated verification, synthesis, or
reinforcement learning of pacemaker systems. This paper
presents a formalization of these requirements for a dual-
chamber pacemaker in duration calculus (DC), a highly ex-
pressive real-time specification language. The proposed for-
malization allows us to automatically translate pacemaker re-
quirements into executable specifications as stopwatch au-
tomata, which can be used to enable simulation, monitoring,
validation, verification and automatic synthesis of pacemaker
systems. The cyclic nature of the pacemaker-heart closed-
loop system results in DC requirements that compile to a de-
cidable subclass of stopwatch automata. We present shield re-
inforcement learning (shield RL), a shield synthesis based re-
inforcement learning algorithm, by automatically construct-
ing safety envelopes from DC specifications.

Introduction
The human heart is arguably the most important real-time
safety-critical system. In an average life-span of 70 years,
the human heart beats more than 2.5 billion times. Each
heartbeat is a complex chemical reaction that starts at the
sinoatrial node in the right atrium and sweeps down through
the ventricles. The cells of the myocardium have unique
properties that regulate the speed of this chemical reaction
to synchronize each chamber’s beat with the hemodynamics
of the cardiac cycle (Kay and Shepard 2017). Any disruption
in the cellular chain can cause the heart to beat improperly.
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A common cardiac arrhythmia, known as heart block or
AV block, is a condition where the electrical signal con-
trolling the ventricular contractions are partially or com-
pletely blocked (Vijayaraman and Ellenbogen 2017). De-
pending upon the severity of this block, pacemaker therapy
may be indicated. A pacemaker is an implantable electronic
device that sends electrical impulses to the heart to regu-
late the heartbeat. The correctness of the pacemaker-heart
closed-loop system is time-critical: it should not only pro-
vide supportive pacing when needed, it must ensure that the
heart is not sent into unnaturally fast heart beats. Further-
more, there are secondary requirements to improve the qual-
ity of life such as detecting and supplying increased rates
when the patient exercises (rate-adaptive pacing) and maxi-
mizing battery longevity (2.2% risk of infection; 0.4% mor-
tality rate per pacemaker replacement (Polyzos, Konstan-
telias, and Falagas 2015)).

Over sixty years of research and development in design-
ing artificial cardiac pacemakers has resulted in remark-
able robustness, convenience, and acceptance of these de-
vices. As the number of patients using pacemakers contin-
ues to rise (Greenspon et al. 2012), so are the expectations
on the invisibility of its design resulting in ever-increasing
demands on improved functionality, size shrinkage, power
consumption, battery performance and adaptability to in-
dividual cardiac arrhythmias (Gomes 2020; Finkelmeier
1991). The medical device industry continues to meet these
challenges by extending its design with more sensors (e.g.,
for rate augmentation, sleep apnea, and haemodynamic sta-
tus) (Lau, Siu, and Tse 2017) resulting in ever-increasing
complexity of the device software.

While manual design, supported by exhaustive model-
based development, has served well for previous generations
of devices, the need for adaptability without sacrificing the
basic functional correctness is ever-present (Maisel et al.
2001). This paper proposes a correct-by-construction rein-
forcement learning (RL) paradigm to design cardiac pace-
makers by integrating formal requirements in RL.
Example 1 (The need for Adaptive Pacemaker). Mobitz II
second-degree AV block (Langendorf and Pick 1968) is a
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condition where the atrioventricular node does not transmit
all atrial depolarizations to the ventricle and is manifested
as a pattern of dropped beats. A 3:2 block drops every third.
While the standard pacing algorithms fill in these missing
beats providing patient support, the timing of the needed
ventricular paces are aimed towards satisfying the safety re-
quirements and do not attempt to match the intrinsic heart
rate. As the patients can feel this difference in heartbeats,
their quality of life can be enhanced by adapting the time to
provide for a missing beat to the patient intrinsic rhythm.

The overarching objective of this industrial collaboration
is to formalize the requirements in a rigorous, formal lan-
guage capable of precisely capturing the requirements of a
cardiac pacemaker. The key requirements on a pacemaker
include maintaining a minimum heart rate, avoiding pacing
during the ventricular repolarization, not increasing the heart
rate excessively, and not disturbing the natural rhythm of the
heart. The precise algorithms to implement these require-
ments require robust detection of various events as well as a
careful accounting of a number of timers to provide the con-
trol logic. Pacemaker System Specification document (Labo-
ratory 2007) by Boston Scientific provides a refined version
of the basic specifications of the pacemaker design in a nat-
ural language. A key contribution of this paper is capturing
these time-critical requirements for the dual-chamber pace-
maker in a real-time formal logic.

Previous Efforts. Research into using pacemakers as a ve-
hicle for applying formal methods to medical device de-
sign traces back to the Pacemaker Grand Challenge in 2007.
The challenge was kicked off with the release of a generic
dual chamber pacemaker specification (Laboratory 2007)
from Boston Scientific detailing the functional correctness
requirements on the system. Before release, Boston Scien-
tific removed references to proprietary algorithms leaving
only the high level intention of such features. The Pace-
maker Challenge: Developing Certifiable Medical Devices
was presented as a Schloss Dagstuhl seminar in 2014 (Méry,
Schätz, and Wassyng 2014). In 2018, Bonfanti et al. (Bon-
fanti, Gargantini, and Mashkoor 2018) reviewed the usage
of formal methods in medical devices. Table 4 of (Bon-
fanti, Gargantini, and Mashkoor 2018) provides a break-
down of 48 papers related to pacemaker research into cat-
egories of modeling, model verification and validation, soft-
ware validation, and code generation. A number of efforts
have focused on capturing these specifications using for-
mal languages or extensions of those languages such as
AADL (Larson 2014) and Z (Gomes and Oliveira 2009).
There have been attempts to model a dual-chamber pace-
maker with advanced features using timed automata (Jiang
et al. 2012). Timed automata are useful in capturing key fea-
tures of closed-loop systems and enable the use of tools like
UPPAAL in verification. While timed automata based rep-
resentations are amenable to formal analysis, the translation
to such specifications is manual and in the process lose in-
terpretability; moreover, timed automata are not expressive
enough to capture several properties of interest. On the other
hand, expressive specification languages limit automation.

Our Choice of Logic. We propose the use of Dura-

tion Calculus (DC) (Chaochen, Hansen, and Sestoft 1993;
Chaochen, Hoare, and Ravn 1991) in expressing hard real-
time constraints on pacemakers. DC is a real-time logic de-
signed to express complex, time-critical properties of hy-
brid dynamical systems (Chaochen, Hoare, and Ravn 1991;
Dole, Gupta, and Krishna 2020). The duration modalities∫
P ▷◁ c as well as ℓ ▷◁ c in DC allows one to capture

the accumulated duration of time when some event P has
been holding, as well the real time duration ℓ of interest.
These modalities make DC very expressive. The expressive-
ness of DC, on the negative side, contributes to undecid-
ability of key decision procedures such as emptiness and
model checking against real-time models such as timed au-
tomata (Chaochen, Hansen, and Sestoft 1993); on the other
hand, there has been work in exploring decidable sub classes
of DC (Pandya 2002; Dole, Gupta, and Krishna 2020). There
are also tools, such as DCVALID (Pandya 2001), to com-
pile discrete DC specifications to automatic structures. To
the best of our knowledge, most timed logics (other than
DC) cannot model real time properties having durations. DC
naturally has this modality. Circumventing the undecidabil-
ity of DC by limiting the expressiveness which still is good
enough to capture specifications of safety critical systems
(such a the pacemaker) is a key challenge in developing
correct-by-construction synthesis.

Correct-by-Construction Synthesis via RL. Correct-by-
construction synthesis (Baier and Katoen 2008) is an ap-
proach to safety-critical system design that advocates the
integration of the formal proof-of-correctness of the de-
signed system by automatically refining formal specifica-
tions. It takes an adversarial view of the environment and
employs tools from competitive game theory to design the-
oretically optimal, if over-cautious, systems. Reinforcement
learning (Sutton and Barto 2018) (RL) paradigm offers an
alternative view of the environment as a stochastic player
with unknown strategy and proposes an adaptive sampling-
based approach to converge towards the optimal policy.
While RL adapts to the changes in the environment, it re-
quires strong assumption on the nature of the environment
(Markovian assumption) and lacks guarantees on the safety
of the system during learning. Shielding (Alshiekh et al.
2018; Könighofer et al. 2020) is an approach to RL that
combines guarantees from the correct-by-construction syn-
thesis with adaptive nature of reinforcement learning. By fo-
cusing on cardiac pacemaker as our case-study, we develop
shielding-based RL for a subclass of DC specifications.

Contributions. The contributions of this paper are sum-
marized below.

1. We express DDD pacemaker requirements from (Labo-
ratory 2007) in Duration Calculus.

2. We observe that due to the cyclic nature of the
pacemaker-heart closed-loop system, the aforementioned
requirements belong to bounded-time fragment of DC.
We show that for bounded-time DC, the formulae can
be compiled into a decidable class of (acyclic) stopwatch
automata (Cassez and Larsen 2000), providing a set of
executable specification. We show that the emptiness or
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acyclic stopwatch automata is NP-COMPLETE.
3. We implemented these translations using an extension of

DCVALID (dcvalid) that compiles DC specifications into
stopwatch, timed, and finite-state automata.

4. We validate the behavior of the executable specifications
(automata) obtained from the DC requirements for the
pacemaker by showing their performance over two chal-
lenging scenarios.

5. We provide a proof-of-concept in using formal pace-
maker requirements in DC to generate an RL-shield (Al-
shiekh et al. 2018) to restrict the behavior of the RL agent
to enable safe learning. We sketch the design of an adap-
tive pacemaker via RL that adapts its behavior in accor-
dance to the natural rhythm of the patient.

All of the relevant artifacts (tool and benchmarks) can be
found at (Dole et al. 2022).

Preliminaries
Duration Calculus. Duration Calculus (Chaochen,
Hansen, and Sestoft 1993) is a highly expressive and
succinct logic, which can capture specifications involving
durations. The chop modality (⌢) contributes to its suc-
cinctness and enables compositional specification, while
the measurement constructs (ℓ ▷◁ c) and (

∫
P ▷◁ c) enable

duration measurements.

Definition 1 (DC: Syntax). Given a set Var of real time
signals, we define the syntax of DC formulae as follows:

P ::= false | true | x ∈ Var | P ∧ P | ¬P
D ::= ⌈P ⌉ | ⌈P ⌉• | D ∧D | ¬D | D⌢D |M

M ::= ℓ ▷◁ c |
∫
P ▷◁ c |

∑
P ▷◁ c

where ▷◁ ∈ {<,≤,=,≥, >}.

Definition 2 (DC: Semantics). Let σ be a timed trace
⟨(s0, τ0), (s1, τ1), . . . , (sn, τn)⟩ where each si is a state (a
set of propositional variables Var ) and τi is its time stamp.
For the timed trace σ and a propositional logic formula P
over Var , we say (σ, i) |= P iff si |= P . A timed trace σ
satisfies a DC formula ψ in an interval I = [b, e] (where
b ≤ e and b, e ∈ N range over the indices of a timed trace),
and we write (σ, [b, e]) |= ψ, if:

• (σ, [b, e]) |= ⌈P ⌉ iff b<e, and (σ, t) |= P for all b<t<e;
• (σ, [b, e]) |= ⌈P ⌉• iff b=e and (σ, b) |= P ;
• (σ, [b, e]) |= D1∧D2 iff (σ, [b, e]) |= D1, D2;
• (σ, [b, e]) |= ¬D iff (σ, [b, e]) ̸|= D;
• (σ, [b, e]) |= D⌢

1 D2 iff there is b≤z≤e s.t. (σ, [b, z]) |=
D1 and (σ, [z, e]) |= D2;

• (σ, [b, e]) |= ℓ ▷◁ c iff (τe − τb) ▷◁ c holds;
• (σ, [b, e]) |=

∫
P ▷◁ c iff

∑
{τi+1−τi | (σ, i) |= P} ▷◁ c;

• (σ, [b, e]) |= ∑
P ▷◁ c iff | {i : (σ, i) |= P} | ▷◁ c;

One can derive operators ⇒ (conditional) and ⇔ (bicon-
ditional) in the usual manner. Moreover, the temporal logic
modalities eventually ♢D

def
= true⌢D⌢true and the globally

□D
def
= ¬♢¬D can be derived from the basic syntax.

Stopwatch Automata. Alur and Dill (Alur and Dill 1994)
generalized the theory of finite state automata to model time-
constrained evolution of systems. The resulting formalism,
known as timed automata, express time constraints by us-
ing a finite set of non-negative real-valued variables called
clocks that work as timers in that they grow with uniform
rate and can be reset to 0 to remember the time since some
given event. These clocks can be used in guard expressions
on the transitions using the following grammar:

φ := x ▷◁ c | x− x′ ▷◁ c | φ ∧ φ (1)

where ▷◁∈ {≤, <,=, >,≥}, x and x′ are clock variables
and c is a natural number. Let G(X) be the set of guard
expressions over the set of clocks X . The stopwatch au-
tomata (Cassez and Larsen 2000) generalize timed automata
by allowing the clocks to be paused (it is customary to refer
to pausable clocks as stopwatches); however, adding this ex-
pressiveness results in undecidability of the emptiness prob-
lem. See Figure 2 for a stopwatch automata having a clock
y and a stopwatch variable xp.
Definition 3 (Stopwatch Automata). A stopwatch automa-
ton is a tuple T = (Q, q0,Σ, X, γ,E, δ) where: Q is the
finite set of locations; q0 ∈ Q is the initial location; Σ
is a finite alphabet of actions; X is the finite set of clock
variables; γ : Q → 2X is the set of paused clocks per
location; E : Q × Σ → G(X) is the action guard, and
δ : Q× Σ → D(2X×Q) is the transition function.

The DC specifications can compiled into an “executable
specification” of stopwatch automata. We omit the details of
this translation due to a lack of space.
Theorem 2. For every DC formula ϕ, one can effectively
construct a stopwatch automaton Aϕ that accept the same
set of timed traces.

On a negative side, the satisfiability of DC (Chaochen,
Hansen, and Sestoft 1993) as well as its emptiness (Hen-
zinger et al. 1995) of stopwatch automata is undecidable.

Bradycardia Pacing in DC
The goal of cardiac pacing is to replace a biological com-
ponent of the cardiac cycle that has failed, is operating in-
termittently, or to mitigate an incorrect conduction path-
way that is causing irregular heartbeats. We provide a brief
overview of the hear conduction system (Kay and Shepard
2017).

A heart beat begins at the sinoatrial node (SA node), caus-
ing a depolarization of cells in atrium, which compresses
the atrium and forces blood into the ventricle. This phase is
depicted as P-wave in Figure 1. The atrioventricular node
(AV node) then delays the passage of repolarization signal
to ventricle. This prevents the premature ventricular con-
traction (PVC) and allows blood to fill the ventricle. Then,
the depolarization continues down the ventricle, causing it
to compress and push the blood through the body. On the
EGM, this depolarization is seen as the QRS complex. Re-
polarization of the ventricular cells produces a larger signal
in surface EGM and is called a T-wave.

Irregular heartbeats caused by a malfunctioning of SA or
AV are known as bradycardia. A malfunction of the SA can
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Figure 1: EGM: Cardiac Segments

lead to conditions where the heart beats slowly, irregularly,
drops beats, beats rapidly, or pauses. When the AV node fails
to pass the signal through the ventricle, it can result in heart
block, resulting in dropped beats to complete blockage of
all signals. Finally, myocardial infarction (heart attacks) can
lead to the death of heart cells along the conduction path.

Modern pacemakers have mechanisms for monitoring
heart intrinsic activity, transmitting generated pacing pulses
and sensing the synchronization on intrinsic heart activity. A
pacemaker that adds sensing and synchronization in the ven-
tricle has the code VVI (for pace in the ventricle (V), sense
intrinsic cardiac activity in the ventricle (V), and inhibit (I)
a scheduled pace if a valid intrinsic ventricular event oc-
curs). Dual chamber pacemakers (NASPE (Bernstein et al.
2002) with code DDD) pace in both the atrium and ventricle
(D), sense in both chambers (D), and individual paces may
be inhibited or triggered based on intrinsic activity (D). In
standard pacing therapy, it is desired to pace only for the
minimum required and rely on the patient’s natural heart
rhythm when present. This is both physiologically better for
the patient and conserves the pacemaker battery for better
longevity. In the absence of intrinsic activity, the pacemaker
outputs a pulse to the relevant chamber at a specified rate.

At the core of pacemaker lies its ability to detect improper
activity by comparing sensed intrinsic activity with the sta-
tus of various period and interval timers. This helps it to de-
cide when intrinsic events should be accepted, or to generate
a pace in the future to maintain proper heart rhythm.

Due to the cyclic nature of the heart and pacemaker inter-
actions (every atrial pace or sense restarts the timing obli-
gations and each duration is bounded by an upper-rate in-
terval), we observe that the pacemaker requirements fall
into time-bounded fragment of DC. Motivated by the gen-
eral principle of time bounded verification, (Ouaknine, Ra-
binovich, and Worrell 2009), and the nature of specification
needed for the DDD pacemaker, we study duration calculus
whose models are evaluated over bounded timed traces.

Bounded Semantics for Duration Calculus
In this section, we focus on a subclass of DC whose
models are evaluated over bounded timed traces. That is,
DC formulae are evaluated over words of the form σ =
(s0, τ0)(s1, τ1) . . . (sn, τn) for some fixed and bounded n
and an interval [b, e]. Apart from this, the DC semantics is
as before. We refer to this semantics bounded semantics.

A key step in developing correct-by-construction learning
(and synthesis) for this subclass is its reduction to an exe-
cutable specification (stopwatch automata). From this reduc-
tion, we derive the decidability of the satisfiability (reacha-
bility) and controller synthesis (safety game) problems.

From DC to Stopwatch Automata
For a DC formula D under the bounded semantics for a
bound n, we construct a timed or stopwatch automaton
A[0,n]

D which accepts all timed traces of length n satisfy-
ing D. This is done inductively by building automata A[i,j]

φ

for 0≤i≤j≤n and subformulae φ of D. These automata ac-
cept timed traces of length j−i satisfying φ. Depending on
the subformula φ, A[i,j]

φ is either a timed or a stopwatch au-
tomata. For instance if φ has the duration construct

∫
P ▷◁ c,

then we require stopwatches to measure accumulated dura-
tions, and otherwise, a timed automata suffices. In all cases,
A[i,j]

φ is an acyclic since it accepts behaviours of bounded
length. The automaton construction is inductive, and we
sketch key steps next.

Let Var be the set of propositional variables in D. For
a Boolean combination P of variables in Var , let VarP
denote all subsets of Var which satisfy P . For exam-
ple, if Var = {p, q, r}, and P = ¬p ∧ q ⇒ r, then
{q, r}, {p}, {r}, {p, r}, ∅ ∈ VarP . We illustrate the con-
struction of A[i,j]

D for the cases when D is one of
∫
P ▷◁ c

or D⌢
1 D2. The other cases are omitted for lack of space.

1. Let D =
∫
P ▷◁ c. Here, A[i,j]

D is a stopwatch automata.
Let xP be the stopwatch variable used. From each loca-
tion, we have two transitions : one on VarP and another,
on Var¬P . If we have a transition decorated with VarP ,
then the rate of xP is set to 1 in the target location and the
rate of xP is set to 0 in the target otherwise. It is easy to
see that xP accumulates the real time duration of P be-
ing true. After j−i transitions along a path, we take the
last transition to the final location, and check for xP ▷◁ c.
If (xP ▷◁ c) does not hold, we do not reach the final loca-
tion. The length to any accepting location is exactly j−i
and each location has a single incoming transition.

2. Let D = D⌢
1 D2. In this case A[i,j]

D is given by⋃
k[A

[i,k]
D1

·A[k,j]
D2

] for i ≤ k ≤ j. Here A[i,k]
D1

·A[k,j]
D2

fuses

the final state of A[i,k]
D1

with the initial location of A[k,j]
D2

,
and the idea is to obtain the union of such concatenations
for all k ∈ [i, j]. The concatenation of all behaviours of
length k−i satisfyingD1 over an interval I1 followed by
all possible behaviours of length j−k satisfyingD2 over
an interval I2 gives all behaviours of length j − i satis-
fying D⌢

1 D2 over an interval I obtained as the fusion of
intervals I1, I2.

The constructed A[i,j]
D is (i) acyclic, (ii) each location has

at most one incoming transition, and (iii) the length of any
path in A[i,j]

D is j−i. Our goal is to obtain A[0,n]
D for some

bound n. This final automaton is obtained by taking the
product of component automata, or fusing them as above,
or in some cases, taking a complement. Complementation is
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Figure 2: A stopwatch automaton over the alphabet Σ =
2Var where Var = {p, q}. We have a stopwatch variable xp
and a clock y. The rate of xp is 0 at locations q0, q2, q4, q5. It
can be seen that the accumulated duration of time for which
p is true is some t > 2 on reaching q2, q3 via q1. Thereafter,
on reaching q5, this duration is in (t + 1, t + 2) for t > 2.
Note that no duration is accumulated in location q2 where 4
units of time are spent.

not a problem here since we deal only with acyclic automata
and bounded length behaviours.

Emptiness Problem
In this section, we show that checking emptiness of an
acyclic stopwatch automaton is decidable. The key idea is
to encode the transitions and paths of such an automaton
as QF LRA formulae, which are Boolean combinations of
propositional variables and linear constraints over real vari-
ables, and check for satisfiability.

Theorem 3. Acyclic stopwatch (timed) automata as ob-
tained above have a decidable reachability.

Consider an acyclic stopwatch automata A as above, con-
sisting of k locations s1, . . . , sk. Each of the k − 1 edges
in any path is decorated by some VarP . Being acyclic,
the whole automaton can be encoded as a disjunction of
finitely many QF LRA formulae, depending on the number
of branches/paths the automaton has : each path leading to
an accepting state is encoded by a QF LRA formula. Then
A[i,j]

D has an accepting path iff we can satisfy the QF LRA
formula.

The linear constraints used in the QF LRA formulae are
x−y ▷◁ c,

∑
i xi ▷◁ c for real variables xi, x, y and c∈N.

x−y ▷◁ c are useful in encoding the difference between real
valued variables representing time elapses while

∑
i xi ▷◁ c

is useful in encoding the accumulated duration of a proposi-
tion P across several states (variable xi encodes time elapse
in a state i). The Boolean combinations of propositional
variables allowed in our QF LRA formulae are handy to en-
code the labels on the transitions.

Checking the satisfaction of the QF LRA formula
amounts to checking if we have an interpretation which sat-
isfies all the constraints. Substituting a fresh propositional
variable for each distinct constraint in this QF LRA for-
mula, we obtain a propositional logic formula ζ over an ex-
tended set of variables Var ′ ⊃ Var . If we obtain a satis-
fying assignment for the variables in Var ′, which satisfies
this formula, then we also know that the original QF LRA
formula is satisfiable. Guessing such an assignment non-
deterministically, we can verify if it forms a satisfying as-

signment or not. The size of ζ is linear in the size of our
QF LRA formula, hence checking if the guessed assignment
satisfies ζ takes time linear in the size of the QF LRA for-
mula. This way we get a non-deterministic polynomial time
procedure to check satisfiability of the QF LRA formula,
and hence the non emptiness of our automaton also. It is
easy to see that we cannot have a polynomial time algo-
rithm to check satisfiability of QF LRA, since it subsumes
propositional logic, whose satisfiability is known to be NP-
complete.
Theorem 4. DC under the bounded semantics has a decid-
able satisfiability.

Starting from a formula in DC under the bounded seman-
tics, we first construct the timed or stopwatch automaton
corresponding to it as described above. This construction is
such that any bounded timed trace satisfying the formula is
accepted by the constructed automata. The decidability of
emptiness checking in the constructed automata is shown
using Theorem 5, and is NP-complete.

Safety Games
When DC specifications concern the choices of two agents
(the controller and the environment), the set of signals can be
paritioned into controllable and uncontrollable signals. The
corresponding translation to stopwatch automata gives rise
to two-player safety game (or minimax reachability games)
on stopwatch automata. In order to compute the maximally-
permissive set of actions of a pacemaker, we need to solve a
safety game on the resulting stopwatch automata. Similar to
Theorem 4, we get the decidability of the reachability games
Theorem 5. Safety games on acyclic stopwatch (timed) au-
tomata can be solved effectively.

This safety region can be computed using controllable-
predecessor opertaor and defines a set of maximally per-
missive actions for the pacemaker. When the underlying
system model is timed automata, the winning region can
be computed using UPPAAL-Tiga (Behrmann et al. 2007),
and for a stopwatch automata it can be computed using
Phaver+ (Benerecetti, Faella, and Minopoli 2013).

Once the safety region for the DC requirement has been
computed, it can be used to block unsafe actions of the
RL agent. This is the crux of shielding based reinforcement
learning (Alshiekh et al. 2018).

Experimental Results
We have implemented DC to stopwatch automata construc-
tion in an extension of DCVALID (dcvalid) with some op-
timizations and derived operators. DCVALID in turn uses
MONA (Klarlund and Møller 2001) and provides a validity
checker and visualizer for DC Formulae.

Validation of Pacemaker Requirements
We have written the specification of pacemaker in DC logic.
We present the full list of requirements. We used DCVALID
to compile the pacemaker specification into automata and
validated their correctness using two requirements (see ex-
tended version at (Dole et al. 2022)). In order to simulate the
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Figure 3: Ventricular Safety Pacing

Figure 4: Upper Rate Holdoff

pacemaker, we compiled each requirement into an automa-
ton, resulting in a large number of implicitly conjuncted au-
tomata. Since explicitly computing their product is neither
practical nor necessary for the simulation, we implemented
an on-the-fly simulation algorithm.

The simulation algorithm begins by determining a topol-
ogy of the automata through ordering them with respect to
their inter-dependency. The inputs to the system are pro-
vided by simulating the intrinsic atrial and ventricular heart
beats, and each automaton is simulated in the order deter-
mined by the topology, which in turn generates the output
events of atrial and ventricular pacing. Here are the results of
our simulation on two scenarios found at (Dole et al. 2022).

Test Case 1 (Ventricular Safety Pacing). Atrial paced
events are followed by a Ventricular Safety Pace (VSP) pe-
riod (shown as signal SAFE in Figure 3). Any VS detected
while this signal is asserted will trigger a VP when the signal
ends. As seen in the figure, safeV P indeed occurs on the
falling edge of SAFE showing the VSP functionality.

Test Case 2 (Upper Rate Hold-off). The scenario de-
picted in Figure 9 in (Dole et al. 2022) is slightly complex:
if VP is triggered at the precise time, the upper and lower
rate requirements could be violated. The presented test case
in Figure 4 shows satisfaction of this complicated situation.

Since the first ventricular sense in the example occurs

within the refractory period, it can be ignored and thus it
does not change any pacing timing. Meanwhile, the sub-
sequent atrial sensed event, AS, occurs quite early. If the
ventricular sensed event was not ignored, a new VA interval
would have started causing the AS to fall into refractory in-
terval PVARP. This would have ignored the AS setting the
subsequent VP to occur at LRL. However, as seen in Fig-
ure 4, PV AR does not get restarted after the refractory VS
(the first pulse on the V S trace.) Additionally, the AS did
cause assertion of the SAV signal showing the start of a
new AV interval. This too would not have occurred if the re-
fractory VS had been misclassified. Finally, because of the
early arrival of the AS, the upper rate URL signal is still
asserted and thus, the scheduled VP must be held off till the
URL ends. Once URL completes, signal lateV P is asserted
showing correct hold-off.

Design of an Adaptive DDD Pacemaker
Consider the Mobitz II second-degree AV discussed in Ex-
ample 1. Figure 5a shows a short timeline of 3:2 heart block
pacing. The pacemaker does not look for the underlying in-
trinsic rate and will pace at the end of the lower rate interval.
Since the patients can feel this difference in heartbeats, we
design an adaptive pacemaker that finds an optimal time to
provide for a missing beat matching the intrinsic rhythm.

For this case-study, we start from the DC specification of
the DDD pacemaker with one exception. In a standard pace-
maker, the timing of the ventricular pace is fixed in time,
occurring at the termination of the AV interval. For this ex-
ample, this requirement was relaxed, allowing the pace to
occur any time in the AV interval. The modified pacemaker
specification is available at (Dole et al. 2022). By embody-
ing all the pacemaker requirements, the automaton guards
against incorrect RL actions, rejecting those that would vio-
late a non-permissive requirement. We designed an RL agent
with the information of the safety region of the resulting
specification, thus eliminating unsafe choices from the RL
agent. The RL agent was rewarded based on how closely it
matched the intrinsic rhythm of the heart model. To general-
ize the learning to different environments, we extended the
state information with the history of the last 10 AV intervals.

For this case-study, we created a simple heart model with
a 3:2 heart block. In addition, the heart model was permitted
to randomly accelerate and decelerate with a 10% chance in
either direction. Figure 6a summarizes the timing of the in-
trinsic and paced events by a standard pacemaker over a run
of 5000 time points. In this figure, regardless of the vary-
ing intrinsic ventricular rate represented by the dark grey
bars, all standard pacemaker provided beats (VP) occur at
the lower rate time period 15 which is represented by the
single light grey bar. Figure 6b summarizes the timing of
the intrinsic and paced events by a permissive pacemaker.
The black bar represents the total atrial contractions. The
dark grey and light grey bars are the total ventricular intrin-
sic beats (VS) and the pacemaker induced (VP) respectively
over 5000 time points. The pacemaker lower rate was set to
pace to 15 in lieu of any intrinsic ventricular activity. The
RL agent learned that the optimal time to pace was two time
points after the missing intrinsic beat and on the chart each
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(a)

(b)

Figure 5: Timeline segments of cardiac activity during test runs (a) Non-permissive pacemaker synthesized via RL pacing heart
with 3:2 heart block; (b) An adaptive pacemaker learned via RL, shield from safety specifications, heart with 3:2 heart block.

dark grey bar is paired with a light grey bar approximately
half its size and to the right. It is desired to always allow the
heart to intrinsically beat if possible, thus, two time periods
of delay was enforced by the reward generator to assure the
pacemaker does not begin to pace over the heart. The pace
totals are not exactly half as the agent needs to recognize the
intrinsic rate change. The optimal time for an intrinsic beat
at 6 here is at 9 because pacing at 8 would violate the pace-
maker’s URL requirement so it had to be held off until the
Upper Rate Limit had been satisfied.

Figure 5 shows part of a timeline of the experiment run.
An example of the optimal timing can be seen by looking at
a sequence starting at time 834 with an atrial sense. The ven-
tricle intrinsically beats at 841. This pattern repeats at times
859 and 866. The next atrial event at 884 does not have an
intrinsic beat at 891. This is the dropped beat. The RL agent
provides support at 893 or two increments later as expected.
This timeline also demonstrate the utility of the safety shield
in action. In many cases, atrial senses are followed imme-
diately by the agent attempting to pace. This time is the
blanking period and is not permitted by the pacemaker re-
quirements. These actions, denoted by an ‘S’ symbol, were
prevented from occurring by the shield.

Discussions
We looked at the generalizing nature of RL to create new and
unique features in medical devices and other real-time con-
trol systems. We presented an improvement in patient com-
fort by regulating pacing to match the intrinsic heart rate of
heart block patients. A major concern while deploying RL
in safety critical systems is that allowing unfettered explo-
ration to find optimal paths may exceed safety parameters.
Shielding the exploration by limiting the RL’s action choice

(a)

(b)

Figure 6: Timing with a) Standard Pacemaker and b) Per-
missive Pacemaker; 3:2 heart block

to remain in safety zones allows the RL agent to safely train.
Once trained, the agent can be deployed with no further
learning while still constrained by the shield to prevent any
possible future erroneous actions. When constrained to spe-
cific problems, RL agents trained using locally permissive
requirements guarded from exceeding safety parameters can
provide a way to add new features to safety critical systems.
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