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Abstract

Neural networks have complex structures, and thus it is hard
to understand their inner workings and ensure correctness. To
understand and debug convolutional neural networks (CNNs)
we propose techniques for testing the channels of CNNs. We
design FtGAN, an extension to GAN, that can generate test
data with varying the intensity (i.e., sum of the neurons) of a
channel of a target CNN. We also proposed a channel selec-
tion algorithm to find representative channels for testing. To
efficiently inspect the target CNN’s inference computations,
we define unexpectedness score, which estimates how simi-
lar the inference computation of the test data is to that of the
training data. We evaluated FtGAN with five public datasets
and showed that our techniques successfully identify defec-
tive channels in five different CNN models.

1 Introduction
Deep neural networks (DNNs) are used in many application
domains. As more DNN models are deployed, it becomes
more important to ensure that they function correctly and re-
liably. However, due to their complexity, it is difficult to an-
alytically verify the correctness of DNNs (Katz et al. 2017).

To practically test neural networks, test input generation
has been studied. Most well-known is adversarial exam-
ple generation that finds minimal perturbation to input to
deceive a target neural network (Goodfellow, Shlens, and
Szegedy 2014). The perturbed input, i.e. adversarial exam-
ples, may be used to assess the robustness of DNNs for ad-
versarial attack. While the techniques are effective in finding
adversarial examples, they focus on low-level neuron oper-
ations and do not examine, for example, the interactions of
the feature maps in convolutional neural networks (CNNs).

Testing is a widely studied topic in software engineering.
Many techniques have been developed to test the correctness
of software systems. For example, test input generation ex-
plores the ranges of certain variables such as array indices
and find the inputs to induce buffer overflow (Haller et al.
2013; Xie, Chou, and Engler 2003). Also, a common tech-
nique in software testing is to check for inconsistencies in
parts of larger systems (Engler et al. 2001); Researchers dis-
covered that implicit invariants exist for certain functions or
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modules, and their violations often result in invalid system
states (Ernst et al. 2007; Martin, Livshits, and Lam 2005).

In this paper, we employ these testing strategies in soft-
ware engineering for neural networks. In particular, we pro-
pose channel-wise testing of CNNs, which is a test genera-
tion technique for convolutional neural networks. The chan-
nels in CNNs are, to some extent, similar to the functions
and modules in software; they both are logical units of larger
systems. As with unit testing in software engineering, test-
ing individual channels in a modular manner helps to de-
bug and understand neural networks. We generate test data
to separately examine the behavior of individual channels
and check for their (in)consistencies. With this consistency
information, we rank the test data and report (potentially)
defect-inducing inputs and the corresponding channels.

With channel-wise testing, we aim to find defects in
CNNs (i.e., unintended inference outcome) that are caused
by channels having deviant behavior in high or low activa-
tion levels. To this end, we designed FtGAN, an extension
to GAN that tests the channels of target CNNs. FtGAN is
trained, in an unsupervised manner, to find the latent vari-
ables that are correlated with the CNNs’ channels. Using Ft-
GAN, we gradually vary the latent variables in the generated
test data, which then affects the correlated channels in the
tested CNNs. To identify inconsistent behavior of the chan-
nels with generated test data (compared to that with training
data), we define unexpectedness score that compares the in-
ference computations and estimates their inconsistency.

This paper proposes channel-wise testing of CNNs. Our
contributions are threefold: 1) we designed FtGAN to test
selected channels of CNNs (Section 3), 2) we developed
channel selection algorithm to find representative channels
for testing (Section 4), and 3) we identify defect-inducing
test data with unexpectedness score, which uses channel cor-
relations to estimate inconsistencies in the inference compu-
tation (Section 5). Our evaluation shows that FtGAN helps
to find real and synthetic defects in neural networks.

2 Related Work and Motivation
We describe existing studies that are closely relevant to our
work, that is, adversarial attacks, semantic image transfor-
mations, and coverage-guided testings. Then we discuss our
preliminary experiments that motivated this study.
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Adversarial Attacks. Neural networks are known to be sus-
ceptible to imperceptible perturbations. Deceiving neural
networks by exploiting this property is referred to as adver-
sarial attack (Szegedy et al. 2013). Techniques for adversar-
ial attack have been extensively studied,(Carlini and Wag-
ner 2017; Madry et al. 2017; Moosavi-Dezfooli, Fawzi, and
Frossard 2016). However, these techniques search only in
raw pixel space to find adversarial examples, and they can-
not handle certain realistic variations of attributes, such as
light conditions (Qiu et al. 2019). Recently, adversarial at-
tack techniques with distance metrics other than Lp norm
are studied (Kang et al. 2019; Xiao et al. 2018).
Semantic Image Transformation. To further explore di-
verse attacks on neural networks, techniques based on se-
mantic image transformations are studied (Bhattad et al.
2019; He et al. 2019; Joshi et al. 2019; Qiu et al. 2019).
Particularly, studies based on deep generative models are ex-
tensively conducted. For example, Bhattad et al. make use of
texture transfer models to attack neural networks. For more
general semantic adversarial attack, attribute-conditioned
image editing models are exploited (Dorta et al. 2020; He
et al. 2019; Wu et al. 2019; Xu et al. 2020). Joshi et al. lever-
aged an attribute-editing GAN to search over the range of at-
tributes to generate adversarial examples; Wu et al. proposed
RelGAN that progressively modifies attributes with its rel-
ative attributes. While these techniques effectively generate
semantic adversarial examples, they require manual annota-
tion of attributes, which is costly.
Coverage-Guided Neural Network Testing. In software
engineering, test coverage metrics, such as path coverage,
measure the fraction of code that is exercised by a test suite;
it also assesses the quality of test suites. Similar metrics
are recently proposed for neural networks (Gerasimou et al.
2020; Ma et al. 2018; Odena et al. 2019; Pei et al. 2017;
Riccio and Tonella 2020). DeepXplore introduced the no-
tion of neuron coverage that represents the fraction of neu-
rons activated by a set of test inputs. The metric is then used
to simulate domain specific perturbations (Pei et al. 2017).
Other metrics, such as neuron boundary coverage, are pro-
posed as test coverage metrics for neural networks (Ma et al.
2018; Sun et al. 2018; Xie et al. 2019). TensorFuzz adopted
coverage-guided fuzzing to efficiently find test input that vi-
olates certain properties in application domains (Odena et al.
2019).
Motivating Channel-Wise Testing. Odena et al. applied
coverage-guided testing for neural networks (2019). Their
technique, i.e. TensorFuzz, generates a corpus of test inputs
to find the inputs that violate certain domain properties. For
an efficient search over the input space, TensorFuzz records
the internal states (i.e., activation vectors) of the neural net-
work and creates the corpus consisting of dissimilar test in-
puts. They show that TensorFuzz can find error-inducing test
inputs for fault-injected models and real-world ones.

TensorFuzz shows that coverage-guided test generation is
helpful for debugging and understanding neural networks.
While it employs internal neuron activations for the cover-
age metric, we considered higher-level metrics may be also
useful. Specifically we conjectured that CNNs’ trained fea-
tures (i.e. channels of hidden layers) are well-suited for the

coverage metric as they are activated in various degrees of
intensities for different inputs, where intensity denotes the
sum of the channel’s neuron values. Moreover, trained fea-
tures are higher-level measure than the neuron activations
and thus testing with feature intensities may give different
perspective in understanding neural networks.

Our preliminary experiments showed that TensorFuzz
cannot test the diverse channels of CNNs. The details are
discussed in Section 7.4 but TensorFuzz covers less than
35% of all features in tested CNNs; majority of the features
are not well tested. When we systemically test them, it un-
covers hidden issues in tested CNNs. Consider the data cor-
ruption problem (Jagielski et al. 2018) that may cause de-
fects vulnerable to input distribution shift. Specifically, in
a face identification task, assume that the training data is
corrupted such that faces with a certain attribute (e.g. green
hair) are all identified as a same person. Again the details are
in Section 7.2 but FtGAN successfully revealed the prob-
lem by identifying the channel that is correlated to the at-
tribute and generating defect-inducing test data. In contrast,
TensorFuzz is based on randomized fuzzing, and its noise-
augmented test data does not help to find the problem.

3 Taming GAN for Testing CNN’s Channels
3.1 Introducing FtGAN
GAN-based techniques have been studied to generate realis-
tic test input for neural networks (Bhattad et al. 2019; Joshi
et al. 2019). We also make use of GAN and propose FtGAN
for testing CNN’s channels. In particular, we use GAN’s ca-
pability to learn latent variables in the training data and gen-
erate images with varying the latent variables (Chen et al.
2016). However, instead of learning any latent variables, we
train FtGAN to learn those that are highly related to the se-
lected channels of a tested CNN (Huang and Belongie 2017;
Xu et al. 2020). Specifically, FtGAN is conditioned on an
auxiliary input I that indicates the intensity of the CNN’s
selected channel, i.e., the summation of the channel’s neu-
ron values. By varying I , we can control the generated im-
ages so that they activate the selected channel with varying
intensity levels. We use the channel intensity as the con-
trol input because CNN’s channel-wise mean and variance
are known to capture the styles and attributes of images (Xu
et al. 2020; Huang and Belongie 2017; Gatys, Ecker, and
Bethge 2016); also, the channel mean and variance are pre-
viously used to control style features such as textures in gen-
erator networks (Huang and Belongie 2017; Xu et al. 2020).

FtGAN consists of generator G and discriminator D as
shown in Fig. 1. FtGAN makes use of the target CNN T and
its selected channel c for its training. The encoder Genc is
optional, and if used, the generated output is reconstructed
from the input with the decoder’s transformation. The input
I is a scalar value that controls channel c’s intensity (Tc),
that is, the sum of c’s neuron values. The discriminator has
two parts; one that distinguishes real data from the generated
ones and another that infers the value of I . The target CNN
T , which is being tested, is used by FtGAN as a reference
point. Its selected channel’s intensity is directed to G, giving
the guidance to find the latent variable related to the channel.
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Figure 1: FtGAN Architecture (G: generator, D: discriminator, T : the target CNN, and Tc: its tested channel’s intensity).

3.2 Architecture of FtGAN
Our goal is to train a generator G that learns to generate
images with varying the intensity of target channel c. To
achieve this, we train G : (x, I) → x′ to transform input
image x into output image x′ that make the model T to have
Tc(x

′) ∼ I on target channel c. Tc is the function returning
the intensity of channel c and I is the target intensity calcu-
lated as I=Tc(x) · (1 + r) with a distortion rate r. We set r
such that 1+r ranges from 0.33 to 3 in our experiments. We
also have an auxiliary classifier in the discriminator to pre-
dict the channel intensity I . For training FtGAN we define
four loss terms, namely, adversarial loss, channel intensity
loss, auxiliary regression loss, and reconstruction loss. We
describe these four loss terms in the following.
Adversarial loss: For stable training, we adopt WGAN’s
adversarial loss (Arjovsky, Chintala, and Bottou 2017) that
minimizes the Wasserstein-1 distance between the real
and generated distributions. Let Dimg be the discriminator
which outputs the probability that its input is a real data.
Then the adversarial loss is

Ladv =Ex[Dimg(x)]−Ex,I [Dimg(G(x,I))] (1)
We also apply the gradient penalty for the Lipschitz con-

straint (Gulrajani et al. 2017).
Channel intensity loss: We control the intensity of the
channel c separately from the remaining channels in the
same layer L. Therefore, we employ the channel intensity
loss Lint for the generator to constrain the generated image
x′ to produce the desired channel intensity I , formulated as
follows (L is the set of all channels in layer L),

Lint =|Tc(x
′)−I|+ 1

|L|−1

∑
c′∈L∧c ̸=c′ |Tc′ (x

′)−Tc′ (x)| (2)
Auxiliary regression loss: Our goal is to transform an input
image x into a realistic image x′, which yields the intended
intensity on the target channel. Therefore we add an auxil-
iary regressor Daux that shares the convolution layers with
Dimg and define the auxiliary regression loss for both D and
G. The auxiliary regression loss for real images is defined as

Lreal
aux =Ex[− logQaux(x,Tc(x))] (3)

where Qaux(x, I) is modeled with a normal distribution
whose mean µaux(x) and variance σ2

aux(x) are estimated
by the auxiliary regressor Daux for input x. The log-normal
log[Qaux(x, I)] is calculated as

− 1
2 log(2πσ2

aux(x)+ϵ)− 1
2 (

I−µaux(x)
σaux(x)+ϵ )

2 (4)
where ϵ is a small positive value. By minimizing the objec-
tive, Daux learns to estimate the channel intensity Tc(x) of
a real image x. The pairs of real images x and their target
channel intensities (x, Tc(x)) are used to train Daux using
the above loss Lreal

aux .
Furthermore, the loss function for the auxiliary regression

with fake image x′, which is generated by G with the inten-
sity I = Tc(x) · (1 + r), is formulated as following:

Lfake
aux =Ex,I [− logQaux(G(x,I),I)] (5)

The above loss function is then used to train G to generate
images with the intended intensity I on the channel c. For
each input x in the training dataset and randomly selected
distortion rate r, we generate x′=G(x, Tc(x) · (1 + r)) and
the pair (x′, Tc(x) · (1 + r)) is then used for the training.
Reconstruction Loss: We use the reconstruction (He et al.
2019) loss to train the generator to produce images that are
similar to the original images, given the same channel inten-
sity. This is achieved by the following objective:

Lrec =Ex,Tc(x)[∥x−G(x,Tc(x))∥1] (6)
By minimizing this loss, the generator can produce images
that closely approximate the original images when the same
channel intensity is given as input.
Overall Objective: The final objective for the generator is

Lenc,dec =λadvLadv+λrecLrec+λintLint+λaux,fL
fake
aux (7)

and the objective for the discriminator/auxiliary classifier is
Ldis,aux =−λdisLadv+λaux,rL

real
aux +λgpGP (8)

We set the coefficients in Eqns. 7 and 8 to make the loss
terms be in the same order of magnitude (He et al. 2019;
Wu et al. 2019; Dorta et al. 2020). We set λadv= λdis=1,
λrec=100, λaux,∗=5, λgp=1 (for the gradient penalty GP );
the value of λint varies for the datasets (e.g. 0.5 for CelebA).

3.3 Reducing the Cost of Training FtGAN
To test a CNN’s channel, we need to train an FtGAN in-
stance. Although the cost of training FtGAN is not trivial,
it can be reduced with pre-training. That is, we pre-train Ft-
GAN to generate realistic images without the target CNN;
then we fine-tune FtGAN with the intensity loss from the tar-
get CNN. This way, we pre-train FtGAN once and fine-tune
it multiple times to test multiple channels. The cost of the
fine-tuning is less than a quarter of that of the pre-training.

4 Coverage-Guided Channel Selection
FtGAN generates realistic images for testing a CNN’s chan-
nels. However, recent CNN models have many layers and
channels, and thus it is not feasible to test all those channels
with FtGAN. Thus, we propose to test a subset of the chan-
nels that is representative of all or most of the channels. The
key idea is to exploit the correlations between CNN chan-
nel intensities (Bengio and Bergstra 2009; Rodrı́guez et al.
2016); i.e. we select a subset S of the channels having high
correlations (either positive or negative) with the channels
that are not in S. Then, testing the channels in S would have
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the effect of indirectly testing the other channels. We now
formally define the channel selection problem as follows.

Let corr(ci, cj) be the Pearson correlation between chan-
nel ci and cj . For given test inputs, corr(ci, cj) is computed
with the pairs of the intensities of ci and cj . We compute the
correlations for all pairs of the convolutional channels.

Let V be the set of all channels in the convolutional layers
of the target network. With subset S⊆V , we presume that a
channel ci /∈S can be indirectly tested by one of the channels
in S if its correlation with ci is larger than a given threshold.
We denote by corr(ci, S) the maximum correlation between
a channel in S and ci, i.e., maxγ∈S corr(γ, ci). Let θ be the
minimum correlation threshold to indirectly test the chan-
nels not in S. Then, the problem of finding the minimum
subset S for testing all channels in V is formulated as

argminS⊆V |S| s.t. minci∈V corr(ci,S)≥θ. (9)
In other words, our channel selection problem finds the

smallest set S such that for all channels ci in V , there ex-
ists at least a channel cj in S with corr(ci, cj)≥θ.
Proposition 4.1 Minimal channel selection (Eqn. 9) is equiv-
alent to the minimal hitting set problem.

Let δ(ci) for ci∈V denote the set of channels cj∈V with
corr(ci, cj)≥θ. That is, δ(ci) is a set of channels that can be
tested instead of ci as their correlations are higher than θ. A
feasible solution to the channel selection problem is the set
that has at least one channel in δ(ci) for all ci∈V . Formu-
lated in this way, this problem is equivalent to the minimal
hitting set problem (Ausiello, D’Atri, and Protasi 1980).

The minimal hitting set problem is NP-complete and
equivalent to the minimal set cover problem. Due to Propo-
sition 4.1, we can obtain a greedy approximate algorithm as
shown in Algorithm 1 whose approximation ratio is proven
to be ln(n) + 1 where n is the number of channels.

5 Testing Channels with Unexpectedness
Canonical correlation analysis (CCA) has been used to an-
alyze and understand the latent representations, i.e., fea-
tures in channels, of neural networks (Hardoon, Szedmak,
and Shawe-Taylor 2004; Li et al. 2015; Morcos, Raghu,
and Bengio 2018; Raghu et al. 2017). The method finds
linear transformations that maximize the correlations be-
tween multidimensional variables (Hotelling 1992). Re-
cently, Raghu et al. applied CCA to ResNet models and
demonstrated that the correlation of the hidden neurons to
different labeling classes are distinctly different.

We use CCA to analyze the target CNN’s inference com-
putation for generated test data and find inconsistent channel
behavior. Since FtGAN varies the intensity of tested chan-
nels, we apply CCA at a channel level and compute the cor-
relation of channel intensities. Also, because CCA is very
expensive to compute (Raghu et al. 2017), we approximate
it by computing pair-wise channel correlations and use them
as the reference points of the inference computation. That
is, we calculate the pair-wise channel correlations using the
training data labeled as a same class, and find the top-k
channel pairs of maximum correlation coefficients. Then we
use them as the reference point for the class and compare
them to the correlations computed with generated test data

Algorithm 1: Greedy channel selection algorithm.

Input: ∀ci∈V, δ(ci)={cj ∈ V |corr(ci, cj) ≥ θ}
Output: Channel set S
1: Initialize C ← ∅ and S ← ∅;
2: while C ̸= V do
3: c∗←argminci∈V −C |δ(ci)/C|;
4: C←C ∪ δ(c∗); S←S ∪ {c∗};
5: end while

of the same class. Our experiments (similar to the one by
Raghu et al. and not described due to space limit) show that
the comparison reflects the similarity (or unexpectedness)
of their inference computations. We do not claim that unex-
pectedness score accurately measures the similarity (or in-
consistency) of inference computations; we argue with ex-
periments that the score helps to identify deviant channel
behavior. This is similar to many testing techniques in soft-
ware engineering that rank the test results (potential bugs) by
certain evaluation scores and report the higher-ranked ones.

More formally, for testing a selected channel in layer
L, we define unexpectedness score as the L1 distance of
L’s top-k channel correlations with the training data to
those with the generated test data of a same class; i.e., the
unexpectedness score is

∑
(ci,cj)∈TopK |corrX(T )(ci, cj) −

corrX′(T )(ci, cj)|, where X(T ) and X ′(T ) are the training
data and generated test data in class T , corrX(T ) is the corre-
lation computed with X(T ), and TopK is the set of channel
pairs in L with top-k correlations for the training data; we
set k=5% in our evaluation. After we generate test data for
selected channels, we measure and rank the unexpectedness
of the generated data in each class. Then we report the tested
channels, the classes, and the test data of the classes ranked
by their unexpectedness with highlighting the test data that
changed the inference outcome.

6 Discussion
Limitation. Testing with FtGAN is limited by the capabil-
ity of GAN. That is, FtGAN learns the attributes that are
present in the training dataset. Thus we can only test with
those attributes in the dataset that are correlated to the se-
lected channels of target CNNs. This limits the types of bugs
that our technique can detect. However, testing is generally
considered to be opportunistic, and similar limitations ex-
ist in many testing tools, especially in those that check de-
viant runtime behaviors (Engler et al. 2001; Ernst et al. 2007;
Haller et al. 2013). It is more important for a testing tool to
find real bugs in practice, which we show in our evaluation.

Another limitation is that our testing requires human ex-
amination of the test results. We minimize this by computing
unexpectedness scores and ranking the results by the scores.
Thus only a small subset of the test results needs to be exam-
ined. This is similar to many software testing tools that rank
test results (potential bugs) by certain scores (Engler et al.
2001; Ernst et al. 2007; Haller et al. 2013). In all our ex-
periments, buggy channels are in top-5 by unexpectedness
score, which made human intervention reasonably small.
Multi-Channel Testing. Although FtGAN tests a single
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Dataset Model Task
MNIST/SVHN LeNet & AlexNet Digit recognition
VGG Face VGG-16 & ResNet-50 Face identification
CelebA AlexNet Face attribute detection
CARLA CARLA-CNN Autonomous driving

Table 1: Evaluated Datasets and Models.

channel at a time, we observed that its generated test
data incorporates the changes of other correlated (or anti-
correlated) channels. Hence those correlated channels are
collectively tested in effect.

Moreover, testing multiple (non-correlated) channels is
supported with FtGAN by chaining multiple FtGAN in-
stances. That is, if we want to test two channels c1 and c2,
we can direct the output of the FtGAN trained for c1 as the
input of another FtGAN trained for c2. We have tested mul-
tiple channels in this way for a subset of our experiments,
which we describe in Section 7.2. Chaining multiple GANs
in a similar manner was previous studied for generating high
resolution images (Zhang et al. 2017) or transforming poses
and expressions of facial images (Zheng et al. 2017).

7 Evaluation
We evaluated whether FtGAN can effectively test CNNs’
channels with three sets of experiments: 1) one for mak-
ing realistic (and error-inducing) attribute variations (Sec-
tion 7.1), 2) another for finding the channels that are cor-
related to error-inducing attributes in bug-injected and real-
world CNN models (7.2 and 7.3), and 3) the last for ensuring
the test coverage of our greedy channel selection (7.4). Com-
plete analysis, experimental results, and supplementary ma-
terial are in the paper’s extended version (Choi et al. 2023).

We evaluated our technique with five datasets in four do-
mains; they are MNIST, SVHN, VGG Face, CelebA, and
CARLA (Codevilla et al. 2018). MNIST and SVHN are
for digit recognition, VGG Face is for face identification,
CelebA is for face attribute recognition, and CARLA is for
autonomous driving. Table 1 shows the datasets. Moreover,
we tested with five models – LeNet, AlexNet, VGG-16,
ResNet-50, and CARLA-CNN (a custom CNN model for
autonomous driving). LeNet/AlexNet are trained to classify
the categories in the dataset (MNIST/SVHN) or to detect a
subset of the attributes in the dataset (CelebA); VGG/ResNet
are trained to detect the identities in the VGG Face dataset.
We used NVIDIA Titan XP for all the experiments. On a
single Titan XP, the fine-tuning of FtGAN for one channel
takes ten minutes for SVHN and an hour for CelebA.

We mainly evaluated our testing techniques qualitatively.
This is similar to the evaluation of software testing tech-
niques that analyze program behavior to infer implicit in-
variants and report their violations (Elbaum et al. 2006; En-
gler and Ashcraft 2003; Flanagan et al. 2002; Gligoric et al.
2010; Hangal and Lam 2002, 2009; Saxena et al. 2009).

7.1 Efficacy of FtGAN’s Test Data Generation
We first evaluate whether FtGAN generates realistic images
that induce the tested channels with varying intensities. Then

we examine the unexpectedness scores of the generated data
and discuss the validity of the scores. For this evaluation, we
mostly used the face datasets and the corresponding CNN
models. We run greedy channel selection to select twenty
channels for each CNN instance. Then we trained FtGAN
for the selected channels and generated test data using the
images in the test sets as the seeds. We set the intensity input
I to be between 0.33 and 3 times that of the seeds for the test
data generation. We show some of the generated test data in
Fig. 2. As we vary the intensity input I , the correlated latent
attributes are gradually changing in all the generated test im-
ages. We also observed that some of the latent attributes for
the channels are human recognizable (a–d in Fig. 2) and oth-
ers are not (e–h). The attributes that are human recognizable
are, namely, hair color, face mask, face color, and age, re-
spectively for a–d; we call these channels by their correlated
attribute names, e.g. age channel. We can see that the test
data for these attributes show realistic variations.
Validity of Unexpectedness Score. We analyzed the unex-
pectedness scores of the channels for Fig 2. Due to the space
limit, we do not discuss the details here, but our analysis
shows that the higher scores generally indicate inconsistent
inference computations. The channels a–c in Fig 2 have high
unexpectedness scores and we observed several inconsis-
tent behaviors for them. For example, testing the face color
channel with the pale-skin class data generated pink-ish face
data, which confused the classification of the age attribute;
i.e., the generated images are classified as not young even
though the seed images are labeled as such. Fig. 2(c, right)
shows an example; with the pink-ish skin she is incorrectly
classified as not young. Also, the hair color channel shows
similar behavior and confused pale-skin classifier.

7.2 Finding Data Corruption Bugs with FtGAN
We evaluate if FtGAN helps to find bugs in bug-injected
CNN instances. We trained two CNN models to have de-
fects (of being vulnerable to input attribute distribution
shift) on purpose by corrupting the training dataset. For
the defect injection, we use Morpho-MNIST, which ex-
tends MNIST with morphometric transformations such as
“thickening” or “swelling” (Castro et al. 2019). We trained
two AlexNet models with the combined dataset of MNIST
and Morpho-MNIST, one with the thickening and another
with the swelling transformation. The images in Morpho-
MNIST are given a same incorrect label (i.e., 0) so that the
two AlexNets have the defects of incorrectly classifying the

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 2: Test data made by FtGAN. The latent attributes for
a–d are human-recognizable and those for e–h are not.
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(b)

(a)

Generated by FtGAN Generated by FtGANReal Real

Figure 3: Testing defective CNN instances that misclassify
(a) swollen digits or (b) faces with green hair or pale skin.

Real FtGAN T’Fuzz Sem Adv Real FtGAN T’Fuzz Sem Adv

Figure 4: Test images by FtGAN, TensorFuzz, and semantic
adv attack for VGG-hair (left) & ResNet-skin (right).

thickened or swollen digits. The accuracy of the models is
99% for the normal digits. For the thickened or swollen dig-
its, the models are only 2% and 1% accurate, respectively.

For the two AlexNet instances, namely AlexNet-TH(ick)
and AlexNet-SW(ell), 1) we apply the greedy channel selec-
tion and train FtGAN with the twenty selected channels, 2)
generate test images with the channel intensity from 0.33 to
3 times of the original, and 3) measure the unexpectedness
scores for the channels; we rank by the score the test data for
the channels and examined top-5 channels’ test data in de-
tail. For both AlexNet-TH and AlexNet-SW, we noticed that
for one particular channel, namely thick channel and swollen
channel, its test data result in incorrect inference outcome at
a high rate. Table 2 shows the rate of the generated test data
for thick and swollen channels resulting in mis-classification
for varying intensity input I; the table also shows the ranking
of those channels by the score in parentheses in the header.

Fig. 3 (a) shows the images that are generated for AlexNet
-SW for the swollen channel. The generated images with
three different intensity are shown for each digit; images
in Morpho-MNIST are also shown (marked as “Real”).
The generated images have swollen strokes like those in
Morpho-MNIST. The swelling is subtle in our test data but
it is sufficient for the classifier to output incorrect labels; the
orange boxes in Fig. 3 indicate that the samples are incor-
rectly classified by AlexNet-SW. The prototype of FtGAN
is publicly available at our repository1.

We also tested the interactions of two channels of
AlexNet-SW by feeding the output of FtGAN that is trained
for one channel as the input of another FtGAN that is trained
for a different channel. We tested the pairs of top-5 channels
by their unexpectedness scores. Fig. 5 shows the results with
comparing the test data generated for both channels (denoted
by Both) with the data generated for one channel (denoted by
ch. followed by the channel id). The data is generated with
1.5× channel intensity; data generated with 2.25× chan-
nel intensity is also shown for comparison. The orange box
denotes that the sample is mis-classified by AlexNet-SW.

1https://github.com/mlsys-seo/FtGAN

Seed Both
(1.5  )

ch.234
(1.5  )

ch.234
(2.25  )

ch.359
(1.5  )

ch.359
(2.25 )

Swollen
(Morp.MNIST) × × × × ×

Figure 5: Testing of two channels in AlexNet-SW.

From the results, we observed that for some seed inputs the
swelling is more noticeable (hence more mis-classifications)
when the intensities of both channels are adjusted. Although
our focus in this paper is modular testing of individual CNN
channels, this experiment shows that FtGAN can be used to
jointly test multiple CNN channels.

Moreover, we simulated the data corruption bugs with the
VGG Face dataset. We trained two VGG-16 networks to
identify the faces in the dataset but we injected certain bugs.
For one instance (namely VGG-hair) we trained it to mis-
classify any faces with green hair as a certain target person;
for another one (namely VGG-skin) we made it to infer any
faces with pale skin as another target identity. We have re-
peated the process in a similar manner to train two faulty
ResNet instances (ResNet-{hair,skin}). For ResNet though,
we only considered 3x3 convolutional layers for the testing
as 1x1 convolutions are mainly designed to control the com-
putational complexity by reducing or expanding the channel
dimensions (Szegedy et al. 2015; He et al. 2016).

To test the faulty CNN instances, we selected forty chan-
nels (or sixty for ResNet) with the greedy selection in Al-
gorithm 1 and tested them with FtGAN. We examined the
test data of top-5 unexpected channels in detail and identi-
fied one most defective channel for each of the instances.
Let us describe the details of the manual examination for the
VGG models. We describe the case for VGG-skin, and the
case for VGG-hair is not described as it is similar and also
due to the space limit. Among the five channels with high
unexpectedness scores, four channels are related to human-
recognizable attributes (nose-color, liver-spots, pale-skin-a,
and pale-skin-b); we refer these channels as semantic chan-
nels. The fifth channel adds grid patterns to the images. For
the five channels, we examined how the inference outcome
changes as the intensity changes. The inference outcomes
for all five channels changed in a biased manner towards the
target identity that VGG-skin is trained for. For the three se-
mantic channels (except the pale-skin-b channel), 20–30%

Range of
Intensity I

Model (score rank / tested channels)
AlexNet-TH

(2/20)
AlexNet-SW

(4/20)
VGG-hair

(3/40)
0.9 - 2.0 31.8% 16.8% 56.7%
0.7 - 3.0 67.8% 56.2% 80.4%
0.5 - 4.0 84.8% 85.2% 87.4%
0.4 - 4.5 89.0% 90.2% 89.4%

Table 2: The rate of mis-classified test data generated for the
defective channels. The rankings of the channels by their un-
expectedness scores are shown in parentheses in the header.
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(b)

(a)

Figure 6: Test images generated by FtGAN for CARLA-
CNN. We observe (a) the center line wear-out and road tex-
ture changes, and (b) the color tone changes.

of the incorrect outcomes are inferred as the target iden-
tity. For the pale-skin-b channel, 60% of the incorrect out-
comes are inferred as the target identity. Fig. 3 shows an ex-
ample of generated test data. Again with our testing tech-
niques we successfully identified the defect in VGG-skin.
For other channels having low unexpectedness scores among
the forty selected ones, we did not observe such biased in-
ference changes.

If we test the faulty models with TensorFuzz or seman-
tic adversarial attack (Joshi et al. 2019), the defects are not
detected. Fig. 4 shows the generated images of FtGAN and
the two techniques. TensorFuzz generates noise-augmented
images; the semantic attack inconsistently changes a few at-
tributes. Most importantly, the images made by the two tech-
niques are not identified as the target person, thus they did
not find the defect but simply generated adversarial exam-
ples. We also applied other adversarial example generation
techniques (Carlini and Wagner 2017; Moosavi-Dezfooli,
Fawzi, and Frossard 2016), but they generated minimally
perturbed images (that are not identified as the target per-
son) and thus we do not show them here. Furthermore, we
used Grad-CAM (Selvaraju et al. 2017), the state of the art
XAI technique, to FtGAN’s test images and confirmed that
the changes made by FtGAN caused the inference changes.
For additional details on the results, please refer to the ex-
tended version of the paper (Choi et al. 2023).

7.3 Finding Bugs in a Public CNN Model
We further evaluated FtGAN with a pre-trained, publicly-
available CNN instance for autonomous driving that is de-
veloped and trained by Codevilla et al. (Codevilla et al.
2018). This CNN instance, which we call CARLA-CNN,
has eight convolution layers and two dense layers. We tested
the channels of the convolution layers in the same way as
the previous experiments. The images generated for a sub-
set of the channels have certain semantic variations such
as the center line wear-out, road texture changes, or color
tone changes. Fig. 6 shows the generated images; these chan-
nels generally have high unexpectedness scores. The white
arrows on the images are the steering decision made by
CARLA-CNN. We can see that the variations caused by the
intensity changes make CARLA-CNN to make wrong steer-
ing decision (marked by orange boxes).

7.4 Coverage Gain by Greedy Channel Selection
Metric for channel coverage. With a test coverage metric,
we aim to quantify the fraction of the channels in a target
CNN that satisfy the test condition for a test suite made

2 3 3 5 5 7 9 10 11 13 15 17 19 20 22
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Figure 7: Channel boundary coverage of FtGAN (greedy &
random selection), IGSM, and TensorFuzz. θ below the x-
axis is the correlation threshold for the channel selection.

by a test image generator. Borrowing the concept of neu-
ron boundary coverage (Ma et al. 2018), we define chan-
nel boundary coverage. Let Tc(x) be the intensity of chan-
nel c when image x is given as input to target network T .
Given training dataset X for T , let Iupperc be the maximum
intensity of the channel c for X; i.e., Iupperc =maxx∈X Tc(x).
For the channel c, if Tc(x) for a test image x from the
test suite T is larger than Iupperc , the boundary of c is said
to be covered by T. Let V denote the set of all channels
to be tested in T . The boundary coverage is then defined
as |{c∈V |∃x∈T,Tc(x)>Iupper

c }|
|V | , that is, the ratio of channels

whose boundaries are covered by at least an image in T.
Coverage evaluation. With varying the minimum corre-
lation θ from 0.2 to 0.5 in Algorithm 1, we selected test
channels of the target networks trained for SVHN (LeNet)
and CelebA (AlexNet). For the baselines, we selected the
same number of test channels with random selection. For
the two networks, we then generated 2, 000 test images per
channel based on the seed dataset using FtGAN and plot-
ted the boundary coverage of each test in Fig. 7. We also ap-
plied two other techniques, IGSM (adversarial example gen-
eration based on iterative gradient sign method) (Kurakin,
Goodfellow, and Bengio 2016) and TensorFuzz, to generate
the same number of test images for each experiment; we can-
not apply semantic adversarial attack as its execution time is
too long, taking more than a few seconds to generate a sin-
gle image. The graphs show that the test suite obtained by
our greedy algorithm achieves the highest coverage in both
networks and verify that the channels selected by our greedy
algorithm efficiently cover for the untested channels.

8 Conclusion
This paper proposes techniques for testing the channels of
CNNs. We designed FtGAN, an extension to GAN that gen-
erates realistic test data for a target CNN with varying its
selected channels intensities. We developed a channel selec-
tion algorithm that finds a subset of a CNN’s representative
channels by using the correlations between the channels. To
investigate inconsistency in the target CNN’s inference with
FtGAN’s test data, we defined unexpectedness score and
rank the test data by this score. In our evaluation, we inves-
tigated five CNN models that are trained with five datasets.
By applying our testing techniques, we successfully found
defects in both synthetic and real-world CNN instances.
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Codevilla, F.; Müller, M.; López, A.; Koltun, V.; and Doso-
vitskiy, A. 2018. End-to-end Driving via Conditional Imita-
tion Learning. In ICRA, 4693–4700.
Dorta, G.; Vicente, S.; Campbell, N. D. F.; and Simpson,
I. J. A. 2020. The GAN That Warped: Semantic Attribute
Editing With Unpaired Data. In CVPR, 5356–5365.
Elbaum, S.; Chin, H. N.; Dwyer, M. B.; and Dokulil, J. 2006.
Carving differential unit test cases from system test cases. In
SIGSOFT’06/FSE-14, 253–264.
Engler, D.; and Ashcraft, K. 2003. RacerX: Effective, static
detection of race conditions and deadlocks. ACM SIGOPS
Operating Systems Review, 37(5): 237–252.
Engler, D.; Chen, D. Y.; Hallem, S.; Chou, A.; and Chelf,
B. 2001. Bugs as deviant behavior: A general approach to
inferring errors in systems code. ACM SIGOPS Operating
Systems Review, 35(5): 57–72.
Ernst, M. D.; Perkins, J. H.; Guo, P. J.; McCamant, S.;
Pacheco, C.; Tschantz, M. S.; and Xiao, C. 2007. The

Daikon system for dynamic detection of likely invariants.
Science of Computer Programming, 69(1-3): 35–45.
Flanagan, C.; Leino, K. R. M.; Lillibridge, M.; Nelson, G.;
Saxe, J. B.; and Stata, R. 2002. Extended static checking for
Java. In PLDI, 234–245.
Gatys, L. A.; Ecker, A. S.; and Bethge, M. 2016. Image Style
Transfer Using Convolutional Neural Networks. In CVPR,
2414–2423.
Gerasimou, S.; Eniser, H. F.; Sen, A.; and Cakan, A. 2020.
Importance-driven deep learning system testing. In ICSE,
702–713. IEEE.
Gligoric, M.; Gvero, T.; Jagannath, V.; Khurshid, S.; Kun-
cak, V.; and Marinov, D. 2010. Test generation through pro-
gramming in UDITA. In ICSE, 225–234. IEEE.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572.
Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; and
Courville, A. C. 2017. Improved training of wasserstein
gans. In NIPS, 5767–5777.
Haller, I.; Slowinska, A.; Neugschwandtner, M.; and Bos,
H. 2013. Dowsing for Overflows: A Guided Fuzzer to Find
Buffer Boundary Violations. In USENIX Security, 49–64.
Hangal, S.; and Lam, M. S. 2002. Tracking down software
bugs using automatic anomaly detection. In ICSE, 291–301.
IEEE.
Hangal, S.; and Lam, M. S. 2009. Automatic dimension in-
ference and checking for object-oriented programs. In ICSE,
155–165. IEEE.
Hardoon, D. R.; Szedmak, S.; and Shawe-Taylor, J. 2004.
Canonical correlation analysis: An overview with applica-
tion to learning methods. Neural Computation, 16(12):
2639–2664.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR, 770–778.
He, Z.; Zuo, W.; Kan, M.; Shan, S.; and Chen, X. 2019.
Attgan: Facial attribute editing by only changing what you
want. IEEE TIP, 28(11): 5464–5478.
Hotelling, H. 1992. Relations between two sets of variates.
In Breakthroughs in statistics, 162–190. Springer.
Huang, X.; and Belongie, S. 2017. Arbitrary style transfer
in real-time with adaptive instance normalization. In ICCV,
1501–1510.
Jagielski, M.; Oprea, A.; Biggio, B.; Liu, C.; Nita-Rotaru,
C.; and Li, B. 2018. Manipulating machine learning: Poi-
soning attacks and countermeasures for regression learning.
In SP, 19–35. IEEE.
Joshi, A.; Mukherjee, A.; Sarkar, S.; and Hegde, C. 2019.
Semantic adversarial attacks: Parametric transformations
that fool deep classifiers. In ICCV, 4773–4783.
Kang, D.; Sun, Y.; Hendrycks, D.; Brown, T.; and Stein-
hardt, J. 2019. Testing robustness against unforeseen ad-
versaries. arXiv preprint arXiv:1908.08016.
Katz, G.; Barrett, C.; Dill, D. L.; Julian, K.; and Kochen-
derfer, M. J. 2017. Reluplex: An efficient SMT solver for
verifying deep neural networks. In CAV, 97–117. Springer.

14781



Kurakin, A.; Goodfellow, I.; and Bengio, S. 2016. Ad-
versarial examples in the physical world. arXiv preprint
arXiv:1607.02533.
Li, Y.; Yosinski, J.; Clune, J.; Lipson, H.; Hopcroft, J. E.;
et al. 2015. Convergent learning: Do different neural net-
works learn the same representations? In Proceedings of the
1st International Workshop on Feature Extraction: Modern
Questions and Challenges at NIPS 2015, 196–212.
Ma, L.; Juefei-Xu, F.; Zhang, F.; Sun, J.; Xue, M.; Li, B.;
Chen, C.; Su, T.; Li, L.; Liu, Y.; et al. 2018. Deepgauge:
Multi-granularity testing criteria for deep learning systems.
In ASE, 120–131.
Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and
Vladu, A. 2017. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083.
Martin, M.; Livshits, B.; and Lam, M. S. 2005. Finding
application errors and security flaws using PQL: a program
query language. Acm Sigplan Notices, 40(10): 365–383.
Moosavi-Dezfooli, S.-M.; Fawzi, A.; and Frossard, P. 2016.
Deepfool: a simple and accurate method to fool deep neural
networks. In CVPR, 2574–2582.
Morcos, A.; Raghu, M.; and Bengio, S. 2018. Insights on
representational similarity in neural networks with canonical
correlation. In NIPS, 5732–5741.
Odena, A.; Olsson, C.; Andersen, D.; and Goodfellow,
I. 2019. Tensorfuzz: Debugging neural networks with
coverage-guided fuzzing. In ICML, 4901–4911.
Pei, K.; Cao, Y.; Yang, J.; and Jana, S. 2017. Deepxplore:
Automated whitebox testing of deep learning systems. In
SOSP, 1–18.
Qiu, H.; Xiao, C.; Yang, L.; Yan, X.; Lee, H.; and Li,
B. 2019. SemanticAdv: Generating adversarial examples
via attribute-conditional image editing. arXiv preprint
arXiv:1906.07927.
Raghu, M.; Gilmer, J.; Yosinski, J.; and Sohl-Dickstein, J.
2017. Svcca: Singular vector canonical correlation analysis
for deep learning dynamics and interpretability. In NIPS,
6078–6087.
Riccio, V.; and Tonella, P. 2020. Model-based exploration of
the frontier of behaviours for deep learning system testing.
In ESEC/FSE, 876–888.
Rodrı́guez, P.; Gonzalez, J.; Cucurull, G.; Gonfaus, J. M.;
and Roca, X. 2016. Regularizing cnns with locally con-
strained decorrelations. arXiv preprint arXiv:1611.01967.
Saxena, P.; Poosankam, P.; McCamant, S.; and Song, D.
2009. Loop-extended symbolic execution on binary pro-
grams. In ISSTA, 225–236.
Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.;
Parikh, D.; and Batra, D. 2017. Grad-cam: Visual expla-
nations from deep networks via gradient-based localization.
In ICCV, 618–626.
Sun, Y.; Huang, X.; Kroening, D.; Sharp, J.; Hill, M.; and
Ashmore, R. 2018. Testing deep neural networks. arXiv
preprint arXiv:1803.04792.

Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.;
Anguelov, D.; Erhan, D.; Vanhoucke, V.; and Rabinovich,
A. 2015. Going deeper with convolutions. In CVPR, 1–9.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2013. Intriguing proper-
ties of neural networks. arXiv preprint arXiv:1312.6199.
Wu, P.-W.; Lin, Y.-J.; Chang, C.-H.; Chang, E. Y.; and
Liao, S.-W. 2019. RelGAN: Multi-Domain Image-to-Image
Translation via Relative Attributes. In ICCV, 5914–5922.
Xiao, C.; Zhu, J.-Y.; Li, B.; He, W.; Liu, M.; and Song, D.
2018. Spatially transformed adversarial examples. arXiv
preprint arXiv:1801.02612.
Xie, X.; Ma, L.; Juefei-Xu, F.; Xue, M.; Chen, H.; Liu, Y.;
Zhao, J.; Li, B.; Yin, J.; and See, S. 2019. Deephunter: A
coverage-guided fuzz testing framework for deep neural net-
works. In ISSTA, 146–157.
Xie, Y.; Chou, A.; and Engler, D. 2003. Archer: using sym-
bolic, path-sensitive analysis to detect memory access er-
rors. In ESEC/FSE, 327–336.
Xu, Q.; Tao, G.; Cheng, S.; Tan, L.; and Zhang, X. 2020.
Towards feature space adversarial attack. arXiv preprint
arXiv:2004.12385.
Zhang, H.; Xu, T.; Li, H.; Zhang, S.; Wang, X.; Huang,
X.; and Metaxas, D. N. 2017. Stackgan: Text to photo-
realistic image synthesis with stacked generative adversarial
networks. In ICCV, 5907–5915.
Zheng, Z.; Yu, Z.; Zheng, H.; Wang, C.; and Wang, N.
2017. Pipeline generative adversarial networks for facial
images generation with multiple attributes. arXiv preprint
arXiv:1711.10742.

14782


