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Abstract

Noisy labels damage the performance of deep networks.
For robust learning, a prominent two-stage pipeline alter-
nates between eliminating possible incorrect labels and semi-
supervised training. However, discarding part of noisy labels
could result in a loss of information, especially when the cor-
ruption has a dependency on data, e.g., class-dependent or
instance-dependent. Moreover, from the training dynamics
of a representative two-stage method DivideMix, we iden-
tify the domination of confirmation bias: pseudo-labels fail
to correct a considerable amount of noisy labels, and conse-
quently, the errors accumulate. To sufficiently exploit infor-
mation from noisy labels and mitigate wrong corrections, we
propose Robust Label Refurbishment (Robust LR)—a new
hybrid method that integrates pseudo-labeling and confidence
estimation techniques to refurbish noisy labels. We show that
our method successfully alleviates the damage of both label
noise and confirmation bias. As a result, it achieves state-of-
the-art performance across datasets and noise types, namely
CIFAR under different levels of synthetic noise and Mini-
WebVision and ANIMAL-10N with real-world noise.

Introduction
Given certain capacity, deep networks have the capability of
fitting arbitrary complex functions (Cybenko 1989). How-
ever, the randomization tests on common architectures (Edg-
ington and Onghena 2007; Zhang et al. 2016; Arpit et al.
2017) show that they also easily fit training data with ran-
dom labels. This phenomenon naturally raises the question
of how deep learning continues to succeed in the presence
of label noise.

Recently, the state-of-the-art two-stage methods have sig-
nificantly improved noise robustness by incorporating Semi-
Supervised Learning (SSL) (Ding et al. 2018; Nguyen et al.
2019; Li, Socher, and Hoi 2020; Zhou, Wang, and Bilmes
2021). The pipeline of a representative algorithm DivideMix
(Li, Socher, and Hoi 2020) is shown in Fig. 1(a). In the first
stage, problematic labels are identified and removed accord-
ing to the per-example loss, i.e., the so-called “small-loss
trick”. Therefore, the noisy dataset is divided into a labeled
subset and an unlabeled subset. In the second stage, Di-
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videMix calls an SSL algorithm named MixMatch (Berth-
elot et al. 2019), which minimizes the entropy of predic-
tions on unlabeled examples through pseudo-labels. Such a
pipeline leverages mislabeled data, improving the robustness
to heavy and complex label noise.

However, we conclude that the two-stage pipeline suf-
fers from two drawbacks. On the one hand, according to
Vapnik’s principle (Vapnik 1998; Chapelle, Scholkopf, and
Zien 2006),1 discarding possible noisy labels to construct an
SSL setting is inefficient. Specifically, some correct labels
are wrongly filtered. What’s more, incorrect labels may also
contain knowledge about the targets (Yu et al. 2018; Ishida
et al. 2017; Kim et al. 2019; Berthon et al. 2021). For exam-
ple, when an airplane image is mislabeled as a bird, the noisy
label encodes the similarity information between the object
of interest and the “bird” class. On the other hand, when
introducing pseudo-labels during the SSL stage, confirma-
tion bias (Tarvainen and Valpola 2017; Arazo et al. 2020)
appears: Those confident but wrong predictions would be
used to guide subsequent training, leading to a loop of self-
reinforcing errors. Label noise, together with confirmation
bias, damage the performance.

To observe the erroneous pseudo-labeling, we draw the
training dynamics of a recent two-stage method DivideMix
(Li, Socher, and Hoi 2020) on the corrupted training set of
CIFAR-10 (Krizhevsky 2012) (under 90% synthetic sym-
metric noise). In every epoch, examples are grouped ac-
cording to the relationship between their predicted labels,
corrupted labels, and underlying ground-truth labels as in
Fig. 1(b). The yellow color indicates the examples whose
predicted labels agree with given noisy labels, i.e., III. pre-
dicted label = noisy label ̸= ground-truth. The small yellow
region at the bottom of Fig. 1(c) suggests that the model only
agrees with a small fraction of noisy labels. It’s because Di-
videMix would filter possible wrong labels and avoid fitting
them. On the other side, the red color indicates those predic-
tions which fail to correct the noisy labels, i.e., IV. predicted
label ̸= noisy label and predicted label ̸= ground-truth. From
the red region at the top of Fig. 1(c), incorrect corrections
comprise a large part throughout the training process. Con-
sidering the wrong pseudo-labels would be used for self-

1When solving a problem of interest, do not solve a more gen-
eral problem as an intermediate step.
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Figure 1: Two-stage pipeline fails to correct a large proportion of wrong labels, evidenced by the training dynamics. Underlying
ground-truth label, noisy label, and predicted label are denoted as y, ỹ, ŷ respectively. In every epoch, the examples are divided
into four groups as shown in (b): I. The predicted labels agree with the clean labels. II. The predicted labels correct the noisy
labels. III. The predicted labels agree with the noisy labels. IV. The predicted labels fail to correct the given labels. In (c) and
(d), the x-axis denotes the epoch, and the y-axis denotes the proportion of different groups. Best viewed in color.

training, it causes the confirmation bias problem, affecting
performance adversely.

Our work begins by suggesting that better robustness can
be achieved by sufficiently exploiting the information in
the noisy labels and mitigating the side-effect of SSL. We
observe one of the recent two-stage methods as Fig. 1(c):
The pseudo-labels dominate the given noisy labels during
training. We propose a hybrid method named Robust LR
to address the problem. It estimates the label confidence by
modeling the per-example loss and then accordingly refur-
bishes noisy labels through a dynamic convex combination
with pseudo-labels. Robust LR improves upon the two-stage
pipeline by leveraging all noisy labels and constructing tar-
get labels in a more fine-grained manner. To further allevi-
ate confirmation bias: 1). Two models are trained simulta-
neously, where each model interacts with its peer through
pseudo-labeling and confidence estimation. 2). Different
augmentation strategies are deployed for loss modeling and
learning following recent findings (Chen et al. 2020b; Nishi
et al. 2021). For comparison, we draw Fig. 1(d) using our
method under the same setting. Compared with Fig. 1(c),
the red region, which indicates wrong corrections, are much
smaller. It shows that our approach alleviates the damage of
wrong pseudo-labels while combating label noise. To sum
up, we highlight the contributions of this paper as follows:

• We analyze the inefficiency of the two-stage pipeline and
suggest that there is a loss of information when trans-
forming the label noise problem into SSL. Moreover, the
visualization of the training dynamics helps us identify
the domination of confirmation bias (see Fig. 1(c)).

• To address this, we propose a hybrid method named
Robust LR. By integrating pseudo-labeling and confi-
dence estimation techniques into label refurbishment, it
successfully leverages all noisy labels and alleviates the
damage of both label noise and confirmation bias.

• We experimentally show that our method advances state-
of-the-art results on CIFAR with synthetic label noise,
as well as the real-world noisy dataset Mini-WebVision

and ANIMAL-10N. Besides, we systematically study the
components of Robust LR to examine their impacts.

Related Work
The label noise is ubiquitous in real-world data. When the
noise rate is insignificant, it can be implicitly dealt with. For
example, the noise labels in MNIST, CIFAR, and ImageNet
(some of them are reported in https://labelerrors.com/),
are usually neglected. Regularization techniques, including
Dropout (Srivastava et al. 2014), weight decay (Krogh and
Hertz 1992), and the inherent robustness in deep networks
(Zhang et al. 2016) combat label noise.

The damage of noisy labels gradually appears as noise
becomes non-negligible. Some methods assume a class-
dependent (or instance-independent) label noise, i.e., the dis-
tribution of noisy labels only dependent on the ground-truth
label:

p(ỹ = j | y = i,X = x) = p(ỹ = j | y = i) (1)
The corruption process thus can be modeled by a label tran-
sition matrix T ∈ [0, 1]C×C where Tij := p(ỹ = j | y = i)
and C is the number of classes. Webly learning (Chen and
Gupta 2015) adds an extra noise adaptation layer on top of
the base model to mimic the transition behavior. The base
model is first trained on easy examples, and then the en-
tire model is trained on the noisy dataset. Backward cor-
rection (Patrini et al. 2017) estimates the label transition
through the outputs of a network trained on the noisy dataset.
Then it trains another network with weighted loss, where the
weights are from the estimated label transition matrix. For-
ward correction (Patrini et al. 2017) does the same to obtain
the matrix. But it instead corrects the outputs during for-
ward pass when trains a new network. To better estimate
the transition matrix, Dual T (Yao et al. 2020) factorizes
it into two easy-to-estimate matrices. The effectiveness of
these approaches depends on whether the transition matrix
is accurate. Besides, the noise type could be more complex
in real-world, e.g., instance-dependent:

p(ỹ = j | y = i,X = x) = Ti,j(x)p(y = j | y = i) (2)
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Method Label Refurbishment Two-Stage Robust LR

Fully explore
inputs
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Complex & Heavy Noise

Table 1: Comparison of training schemes.

where Ti,j(x) is the instance-dependent noise model. The
aforementioned methods have difficulty in modeling such
complex noise.

A large part of the methods achieves robustness by rely-
ing on the internal noise tolerance of deep networks. They
mainly differ in the example selection, loss weighting, or
label refurbishment strategies (Frénay and Verleysen 2013;
Algan and Ulusoy 2021; Song, Kim, and Lee 2019). Boot-
strapping (Reed et al. 2014) uses the interpolation of la-
bels and model predictions for training. Decouple (Malach
and Shalev-Shwartz 2017) updates two predictors with only
disagreed examples. Activate bias (Chang, Learned-Miller,
and McCallum 2017) emphasizes high variance examples.
MentorNet (Jiang et al. 2018) weights examples using a
pre-trained teacher network. Co-teaching (Han et al. 2018)
maintains two models where one selects examples with
small losses to update another. Based on Co-teaching, Co-
teaching+ (Yu et al. 2019) prevents two models from con-
verging to a consensus by only considering disagreed exam-
ples. D2L (Ma et al. 2018) adopts a measure called local in-
trinsic dimensionality. Labels are refurbished to prevent the
increase of intrinsic dimension. SELFIE (Song, Kim, and
Lee 2019) only considers examples with consistent predic-
tions for refurbishment. TopoFilter (Wu et al. 2020) adopts
a different selection criteria by exploring the latent repre-
sentational space. Self-adaptive training (Huang, Zhang, and
Zhang 2020) uses the exponential moving average of predic-
tions as pseudo-labels. SEAL (Chen et al. 2020a) retrains a
model with the average predictions of a teacher model. How-
ever, these methods may suffer from big performance drops
under heavy noise due to inaccurate correction, weighting,
or refurbishment.

Recently, the two-stage pipeline has gained much atten-
tion. SELF (Nguyen et al. 2019) first uses the ensemble of
predictions to filter problematic labels. In the second stage,
it performs an SSL method named Mean Teacher (Tarvainen
and Valpola 2017). DivideMix (Li, Socher, and Hoi 2020)
uses the Gaussian Mixture Model (GMM) to separate exam-
ples with small and big losses, and they are treated as clean
and noisy examples, respectively. Then the SSL method
MixMatch (Berthelot et al. 2019) is used to leverage the fea-
ture information. RoCL (Zhou, Wang, and Bilmes 2021) se-
lects clean examples according to the consistency of the loss
and output, followed by a self-training method. This type of
method utilizes SSL to leverage mislabeled examples. How-
ever, we suggest that they fail to exploit all noisy labels and
suffer from wrong corrections. The proposed method Ro-
bust LR leverages possible noisy labels. It preserves label
information in a soft manner by adopting successful ideas
from the two-stage pipeline and SSL into the classic label

refurbishment process, as shown in Table 1. Furthermore,
Robust LR is dedicated to alleviating confirmation bias. Dif-
ferent augmentation strategies and co-training are combined
to form a hybrid method.

Method
Overview of Robust LR
Robust LR refurbishes the noisy labels before training. To
reduce the marginalized effect of wrong labels, the refur-
bished label y∗ ∈ ∆C−1 (where ∆C−1 is the probability
simplex) comes from a dynamic convex combination of the
noisy label ỹ (one-hot label over C classes) and the soft
pseudo-label ŷ (predicted probability distribution over C
classes).

y∗ = wỹ + (1− w)ŷ (3)
The pseudo-label ŷ is obtained from the models’ prediction.
The weight w, i.e., the clean probability, is estimated using a
two-component GMM fitted on the per-example loss. To fur-
ther alleviate confirmation bias, two models are simultane-
ously trained, where one model contributes to another’s con-
fidence estimation and pseudo-labeling process. They have
the same structure but different parameters θ(0), θ(1). The
overall pipeline of Robust LR is shown in Fig. 2 and Algo-
rithm 1. In every training round, the confidence estimation
and pseudo-labeling are performed first. Then the model is
trained with the refurbished labels.

Warm-Up
As shown in (Arpit et al. 2017), deep models tend to fit clean
examples first. Therefore, Robust LR warms two models
up by shortly training them on the noisy dataset. The com-
monly used mini-batch gradient descent algorithm is per-
formed to update the parameters. For illustration, we denote
this process as Train(dataset, parameters, number of itera-
tions). Thus, the warm-up process is:

Train(D̃, θ(m), Iwarm) for m = 0, 1 (4)

where Iwarm is a small number of iterations so that the train-
ing ends before models fitting too many noisy labels.

Main Training Round
Confidence estimation It has been shown that models are
prone to present smaller losses on clean examples (Arpit
et al. 2017; Chen et al. 2019; Han et al. 2018; Li, Socher, and
Hoi 2020). Therefore, Robust LR estimates the label confi-
dence based on the loss value. Specifically, the per-example
cross-entropy loss H between the noisy label and the predic-
tion is first calculated,

ℓi = H(ỹi, p(y | xi; θ
(1−m))) (5)

Then a two-component one-dimensional GMM is used to
model the distribution of per-example loss,

W = GMM({(ℓi)}Ni=1) (6)

where W = {wi}Ni=1 is the label confidence which equals
to the probability of each loss value belonging to the GMM
component with a smaller mean. The parameters of GMM
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Figure 2: Pipeline of Robust LR. The visualization of fitted
GMM can be found in the appendix.

are determined using the expectation-maximization algo-
rithm. The procedure follows the standard practice, so we
don’t elaborate on the details here. Note that, to alleviate
confirmation bias, the label confidence for the current model
m comes from the predictions of another model 1−m.

Pseudo-labeling To correct the noisy labels with accurate
pseudo-labels, two models’ predictions are averaged and
then sharpened,

ŷi = Sharpen(
p(y | xi; θ

(m)) + p(y | xi; θ
(1−m))

2
) (7)

where the sharpening function scales the categorical distri-
bution with a hyper-parameter T ,

Sharpen(p)i =
p

1
T
i∑C

j=1 p
1
T
j

(8)

where C is the number of classes. pi is the probability of i-th
class of input distribution p.

Model training After label refurbishment using the es-
timated confidence and pseudo-labels according to Equa-
tion 3, current model m is trained with the refurbished labels
for I iterations,

Train({(Aug(xi), y
∗
i )}Ni=1, θ

(m), I) (9)

where Aug(·) is the data augmentation function introduced
in the next section. The cross-entropy between the soft la-
bels and predictions is used as loss fucntion here. After the

Algorithm 1: Robust LR

Input: Noisy dataset D̃ = {(xi, ỹi)}Ni=1, # itera-
tions for warm up Iwarm, # iterations in main train-
ing round I , # training rounds R, training strategy
Train(dateset, parameters, # iterations).
Output: model’s parameters θ(0), θ(1)

1: Randomly initialize θ(0), θ(1)

2: Train(D̃, θ(m), Iwarm) for m = 0, 1 ▷ warm up
3: for r = 1 to R do
4: for m = 0 to 1 do ▷ train two models separately
5: for i = 0 to N do
6: ℓi = H(yi, p(y | xi; θ

(1−m)))
7: ▷ obtain per-example loss
8: end for
9: W = GMM({(ℓi)}Ni=1) ▷ fit GMM

10: for i = 0 to N do
11: ŷi = Sharpen( p(y|xi;θ

(m))+p(y|xi;θ
(1−m))

2 )
12: ▷ pseudo-label
13: y∗i = wiỹi + (1− wi)ŷi ▷ refurbish
14: end for
15: Train({(Aug(xi), y

∗
i )}Ni=1, θ

(m), I)
16: end for
17: end for

training of model m, another model 1 − m is trained simi-
larly. This process proceeds until reaching a fixed number of
training rounds.

During implementation, a regularization loss term is used
as in (Tanaka et al. 2018; Arazo et al. 2019; Li, Socher, and
Hoi 2020). It encourages the network to output uniform dis-
tribution across examples in the mini-batch.

Lreg =
∑
c

πclog(
πc

p̄c
)

p̄c =
1

B

B∑
i=1

p(y = c | xi; θ)

(10)

where π is the uniform prior distribution, we set πc =
1
C .

For asymmetric noise, we add a negative entropy loss term
during warm-up following (Pereyra et al. 2017; Li, Socher,
and Hoi 2020).∑

c

p(y | x; θ)log(p(y | x; θ)) (11)

The Different Augmentation Strategies
Due to the lack of accurate supervised information, improv-
ing the generalization ability is the core task of learning with
label noise. Data augmentation is a common technique that
approaches such a problem via applying stochastic transfor-
mation on images.

In Robust LR, forward pass serves three purposes: loss
modeling, pseudo-labeling, and learning. We use basic im-
age augmentation for loss modeling and pseudo-labeling but
stronger augmentations for learning. This design is based on
two recent findings: 1). In learning with label noise, using
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Dataset CIFAR-10 CIFAR-100

Noise type Sym. Asym. Sym.

Method/Noise ratio 20% 50% 80% 90% 40% 20% 50% 80% 90%

F-correction (Patrini et al. 2017) Best 86.8 79.8 63.3 42.9 87.2 61.5 46.6 19.9 10.2
Last 83.1 59.4 26.2 18.8 83.1 61.4 37.3 9.0 3.4

Co-teaching+ (Yu et al. 2019) Best 89.5 85.7 67.4 47.9 - 65.6 51.8 27.9 13.7
Last 88.2 84.1 45.5 30.1 - 64.1 45.3 15.5 8.8

P-correction (Yi and Wu 2019) Best 92.4 89.1 77.5 58.9 88.5 69.4 57.5 31.1 15.3
Last 92.0 88.7 76.5 58.2 88.1 68.1 56.4 20.7 8.8

Meta-Learning (Li et al. 2019) Best 92.9 89.3 77.4 58.7 89.2 68.5 59.2 42.4 19.5
Last 92.0 88.8 76.1 58.3 88.6 67.7 58.0 40.1 14.3

M-correction (Arazo et al. 2019) Best 94.0 92.0 86.8 69.1 87.4 73.9 66.1 48.2 24.3
Last 93.8 91.9 86.6 68.7 86.3 73.4 65.4 47.6 20.5

DivideMix (Li, Socher, and Hoi 2020) Best 96.1 94.6 93.2 76.0 93.4 77.3 74.6 60.2 31.5
Last 95.7 94.4 92.9 75.4 92.1 76.9 74.2 59.6 31.0

AugDesc∗ (Nishi et al. 2021) Best 96.1 - - 89.6 - 78.1 - - 36.8
Last 96.0 - - 89.4 - 77.8 - - 36.7

Ours Best 96.5 95.8 94.3 92.8 94.4 79.1 75.3 66.7 37.5
Last 96.4 95.7 94.2 92.8 93.7 78.6 74.6 66.2 37.3

Table 2: Comparison with state-of-the-art methods on CIFAR10 and CIFAR-100 with synthetic noise. Sym. and Asym. are
symmetric and asymmetric for short, respectively. The results of other methods are from (Li, Socher, and Hoi 2020). The best
results are indicated in bold. *AugDesc uses the same augmentation technique (RandAugment) as our method.

different augmentations for loss modeling and learning is
more effective (Nishi et al. 2021). 2). Unsupervised learn-
ing benefits from stronger data augmentation (Chen et al.
2020b), and we find the same preference can also be ex-
tended to this problem.

In particular, the basic image augmentation for loss mod-
eling and pseudo-labeling consists of random crop and ran-
dom horizontal flip. The strong transformation Aug(·) con-
sists of RandAugment (Cubuk et al. 2020) and Cutout (De-
Vries and Taylor 2017). RandAugment first randomly se-
lects a given number of operations from a pre-defined set
of transformations. The set consists of geometric and pho-
tometric transformations, such as affine transformation and
color adjustment. In the next, these operations are applied
with given magnitudes. Cutout randomly masks out square
regions of images. These augmentations are sequentially ap-
plied to the input images. The settings of RandAugment are
reported in the supplementary material.

Experiment
Comparison with State-of-the-Art Methods
We benchmark the proposed method on experimental set-
tings using CIFAR-10, CIFAR-100 (Krizhevsky 2012) with
different levels of synthetic noises, as well as the real-world
noisy dataset Mini-WebVision (Li et al. 2017), ANIMAl-
10N (Song, Kim, and Lee 2019).

Synthetic label noise on CIFAR-10, CIFAR-100 Follow-
ing previous methods (Kim et al. 2019; Li, Socher, and Hoi

2020), two types of synthetic noises are experimented: sym-
metric and asymmetric noise. Symmetric noise is generated
by assigning examples to random classes with the same
probability. The noise rate ranges from 20% to 90% (note
that the noise labels are randomly distributed throughout C
classes, and the true labels may be maintained after corrup-
tion). Asymmetric noise is generated by randomly corrupt-
ing labels according to a pre-defined transition matrix. Ex-
amples would only be corrupted to similar classes, such as
deer to horse. 40% asymmetric noise is experimented (50%
being indistinguishable).

We report the average performance of Robust LR over 3
trials with different random seeds for generating noise and
parameters initialization. The backbone structure is PreAct
Resnet (He et al. 2016). The training details are reported in
the supplementary material. Following previous work, the
best test accuracy across all epochs and the averaged test
accuracy over the last 10 epochs are both reported. A val-
idation set with 5,000 examples is drawn from the noisy
training set for hyper-parameters tuning. We find that two
main hyper-parameters in Robust LR, namely temperature
value and the weight for regularization term (Tanaka et al.
2018; Arazo et al. 2019), don’t need to be heavily tuned.
Specifically, there are only two sets of hyper-parameters for
light and heavy noise, respectively. For light noise, namely
CIFAR-10 under 20% to 80% symmetric noise, 40% asym-
metric noise, and CIFAR-100 under 20% symmetric noise,
the temperature is 1, and the coefficient for the regulariza-
tion term is 2. For heavy noise, namely CIFAR-10 under
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Method Mini-WebVision ILSVRC12

top-1 top-5 top-1 top-5

F-correction 61.12 82.68 57.36 82.36
Decoupling 62.54 84.74 58.26 82.26
D2L 62.68 84.00 57.80 81.36
MentorNet 63.00 81.40 57.80 79.92
Co-teaching 63.58 85.20 61.48 84.70
Iterative-CV 65.24 85.34 61.60 84.98
DivideMix 77.32 91.64 75.20 90.84
Robust LR 81.84 94.12 75.48 93.76

Table 3: Comparison with other methods on Mini-
WebVision. The results of other methods are from (Li,
Socher, and Hoi 2020).

SELFIE PLC NCT Robust LR

81.8 83.4 84.1 88.5

Table 4: Comparison with other methods on ANIMAl-10N.
The results of other methods are from (Chen et al. 2021).

90% symmetric noise and CIFAR-100 under 50% to 90%
symmetric noise, the temperature is 1/3, and the coefficient
for regularization term is 10.

As shown in Table 2, our method consistently outper-
forms previous best results on all the settings. The improve-
ment is substantial, especially when the noise is heavy. For
example, Robust LR obtains 92.8% accuracy on CIFAR-10
under 90% noise, surpassing the previous best by more than
3%. We remark that previous methods underperform under
heavy noise because they fail to avoid confirmation bias.
It’s worth noting that Robust LR outperforms AugDesc even
with the same augmentation. It shows that our improvement
also comes from other components.

The comparison between Robust LR and other methods is
shown in Table 2. Our method outperforms the previous best
method by over 1%. The distribution of asymmetric noise in
the corrupted training set is shown in the appendix. Robust
LR resists the mimicked class-dependent noise and correctly
predicts most of them.

Real-world label noise on Mini-WebVision and ANIMAl-
10N To verify the effectiveness of our approach on the
real-world large-scale noisy dataset, we then conduct exper-
iments on Mini-WebVision and ANIMAl-10N. WebVision
is crawled from Flickr and Google using the same 1,000
classes as the ImageNet ILSVRC12 dataset for querying.
The estimated noise rate is 20%. Following the setting of
previous work (Chen et al. 2019; Li, Socher, and Hoi 2020):
The first 50 classes of the ImageNet ILSVRC12 dataset are
compared, and its validation set is used. In terms of the
hyper-parameters, the temperature is 3, and the coefficient
for the regularization term is 1. ANIMAL-10N consists of
50000 train animal images and 10000 test animal images in
10 classes, with an 8% estimated error rate. The temperature
is 1, and the coefficient for the regularization term is 2.

For comparison, results of F-correction (Patrini et al.
2017), Decoupling (Malach and Shalev-Shwartz 2017), D2L
(Ma et al. 2018), MentorNet (Jiang et al. 2018), Co-teaching
(Han et al. 2018), Iterative-CV (Chen et al. 2019), Di-
videMix (Li, Socher, and Hoi 2020), SELFIE (Song, Kim,
and Lee 2019), PLC (Zhang et al. 2021), NCT (Chen et al.
2021) are reported.

As shown in Table 3, Robust LR improves the perfor-
mance by a considerable margin, namely, 4.5% top-1 ac-
curacy against the previous best on the test set of Mini-
WebVision and 4.4% on ANIMAL-10N. The results verify
that our method can cope with complex real-world noise.

Ablation Study
We further study the components of Robust LR. Specifically,
we analyze the results of:

1. To study the effect of label refurbishment, we remove
label refurbishment and directly use either given noisy
labels or pseudo-labels. When the probability of being
clean is larger than 0.5, the noisy label is used. Other-
wise, the pseudo-label is used.

2. To study the effect of strong augmentation, we replace it
with basic transformation.

3. To study the effect of GMM for dynamic confidence es-
timation, we replace it with 0.5 fixed confidence.

4. To study the effect of co-training, we only use one model.

The results on CIFAR-10 with four levels of symmetry
noise are reported. From Table 5, other training schemes suf-
fer from different degrees of performance drops. This veri-
fies that the incorporation of the components in Robust LR
is effective. In the next, we analyze each component.

Label refurbishment The label refurbishment alleviates
the marginalized effect of wrong labels and thus, contributes
to the final performance. Under light noise, i.e., when the
noise is insignificant or can be corrected easily, the gain is
limited. Under heavy noise, e.g., 90% noise rate, the model
is much more sensitive to its absence.

To understand the large gap between the best and last per-
formance (73.8% vs. 23.9%) under heavy noise, we further
observe models’ behaviors. We find that the training is un-
stable under heavy noise, e.g., the GMM may not converge
in some rounds and assigns more than 95% of examples
with bigger clean probabilities. The bad confidence estima-
tion would affect later training in return. The training can be
stabilized after further tuning the hyper-parameters, such as
the learning rate. For consistency, we only report the perfor-
mance under the same hyper-parameters.

Data augmentation Replacing the strong augmentation
makes the model fails to converge. We remark that it’s be-
cause Robust LR is a holistic method. Strong data augmen-
tation not only serves the common purpose of regularization
(Shorten and Khoshgoftaar 2019), but also is part of the dif-
ferent augmentation strategies (Nishi et al. 2021).

One may still argue that the augmentation is more impor-
tant than other components. We show that other components
all improve upon the Robust LR with strong augmentation
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ship (auto.)
ID:29868

deer (dog)
ID:5347

bird (airp.)
ID:25095

cat (dog)
ID:17455

dog (bird)
ID:36782

dog (cat)
ID:38775

cat (deer)
ID:6430

airp. (auto.)
ID:11734

bird (deer)
ID:21321

dog (horse)
ID:33079

Figure 3: Some mislabeled or indistinguishable examples in the training set of CIFAR-10 found by Robust LR. The wrong
annotations, the predicted classes (in the parentheses), and the IDs of images are shown. The airp. and auto. are airplane and
automobile for short.

Method/Noise ratio 20% 50% 80% 90%

Robust LR Best 96.5 95.8 94.5 92.8
Last 96.4 95.7 94.2 92.8

1. w/o LR Best 96.3 95.8 94.5 73.8
Last 96.2 95.6 94.1 23.9

2. w/o strong aug. Best 92.6 88.1 65.3 48.7
Last 92.5 72.7 36.5 24.3

3. w/o GMM Best 94.6 91.4 88.0 87.6
Last 92.7 80.3 43.4 31.1

4. w/o co-training Best 96.4 95.7 94.3 82.8
Last 95.6 94.4 93.1 79.9

Table 5: Ablation study. Results on CIFAR-10 with different
levels of symmetry noise are reported.

in Table 5. Besides, as shown in Table 2, our method out-
performs AugDesc, a method with the same augmentation
Robust LR uses.

GMM The GMM is also essential, and removing the dy-
namic confidence estimation damages the performance. We
also notice that, for four levels of corruption, GMM assigns
18%, 44%, 70%, 78% examples bigger noisy probability
(w < 0.5) at the end of training, respectively. It is an ac-
curate estimation of the real noise rate (for 20%, 50%, 80%,
90% noise rate, there is actually 18%, 45%, 72%, 81% noisy
labels). For Mini-WebVision, the GMM assigns 18% exam-
ples bigger noisy probability in the end, which is also ap-
proximate to the reported noise rate 20% (Li et al. 2017).
We envision this could be used to estimate the noise rate in
real-world datasets.

Co-training Removing co-training leads to considerable
drops in performance. It is also noteworthy that our single
model’s performance already surpasses previous co-training
methods, such as DivideMix or Co-teaching. We suggest
that co-training alleviates confirmation bias, and the ensem-
ble of two models also produces better self-training signals.

Finding the Noisy Labels in CIFAR-10
Apart from combating label noise, Robust LR can be directly
used to find the noisy labels in the training set. Standard
empirical risk minimization would easily fit the training set
with only a small amount of noisy labels. Instead, Robust
LR could avoid the fitting on the possible noisy labels. We
use CIFAR-10 to illustrate how we can use Robust LR to
find noisy labels in a mostly correctly labeled dataset.

We first train Robust LR on the CIFAR-10 training set
(without corruption) for 100 epochs without modifying the
algorithm. In the next, examples with top-50 big losses are
selected and hand-picked. We successfully find some mis-
labeled or indistinguishable examples in the training set as
in Figure 3 (note that there is no ground-truth or high-
resolution originals, we can only subjectively tell whether
the noisy labels are right or wrong). Some of them are
mislabeled probably because of the similarity between two
classes, such as 25095 (bird vs. airplane), 38775 (dog vs.
cat). Some classes don’t usually consider similar, but images
in these classes can still be ambiguous, e.g., image 36782
(dog vs. bird) and 33079 (dog vs. horse). These verify that
the noise we are facing in the real world could be complex.

Conclusion
In this paper, we study the problem of learning with label
noise. We analyze the drawbacks of the two-stage pipeline
and identify its confirmation bias problem by visualizing
the training dynamics. The observation motivates us to pro-
pose Robust LR, a new training algorithm that dynamically
refurbishes labels using confidence estimation and pseudo-
labeling techniques. We demonstrate that our approach com-
bats both confirmation bias and label noise. As a result,
it significantly advances the state-of-the-art. We then con-
duct ablation experiments to study the effects of the compo-
nents. Finally, we attempt to find the mislabeled examples in
CIFAR-10 with Robust LR. In future work, we are interested
in further incorporating ideas from weakly supervised learn-
ing into hybrid methods and continuing to combat complex
label noise.
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