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Abstract

Power grids, across the world, play an important societal
and economical role by providing uninterrupted, reliable and
transient-free power to several industries, businesses and
household consumers. With the advent of renewable power
resources and EVs resulting into uncertain generation and
highly dynamic load demands, it has become ever so impor-
tant to ensure robust operation of power networks through
suitable management of transient stability issues and local-
ize the events of blackouts. In the light of ever increasing
stress on the modern grid infrastructure and the grid opera-
tors, this paper presents a reinforcement learning (RL) frame-
work, PowRL, to mitigate the effects of unexpected network
events, as well as reliably maintain electricity everywhere on
the network at all times. The PowRL leverages a novel heuris-
tic for overload management, along with the RL-guided de-
cision making on optimal topology selection to ensure that
the grid is operated safely and reliably (with no overloads).
PowRL is benchmarked on a variety of competition datasets
hosted by the L2RPN (Learning to Run a Power Network).
Even with its reduced action space, PowRL tops the leader-
board in the L2RPN NeurIPS 2020 challenge (Robustness
track) at an aggregate level, while also being the top perform-
ing agent in the L2RPN WCCI 2020 challenge. Moreover,
detailed analysis depicts state-of-the-art performances by the
PowRL agent in some of the test scenarios.

Introduction
The infrastructure that defines the modern electricity grid is
largely based on centralized power generation units, such
as the fossil-fuel-fired power plants and nuclear power
plants (Wulf 2000). Through out its evolution, the primary
focus of grid development has largely been around safety, re-
liability, and resiliency to uncertain events. The ever increas-
ing penetration of centralized renewable generation units,
such as the hydroelectric dams, as well as the distributed en-
ergy resources (DERs), such as the solar or wind farms, has
resulted in significant variability in power generation. More-
over, the customers’ evolving energy usage patterns through
charging of electric vehicles (EVs), batteries, and accessibil-
ity to modern electrical appliances have furthered the uncer-
tainty and variability in the electric grid, not to mention the

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

occasional adversarial cyberattacks in order to disrupt reli-
able power delivery by causing blackouts.

Modernization of the electricity grid through innovative
hardware and software solutions involving peer-to-peer net-
works of power electric converters for enabling coordinated
response to adjust power generation and consumption can
partially alleviate some of the challenges (Baranwal et al.
2018; Arwa and Folly 2020). However, overhauling the en-
tire grid infrastructure, unfortunately, operates at its own
time-scale. This work addresses the challenge of leveraging
AI-driven solutions for extracting the maximum possible re-
siliency out of the current grid infrastructure in order to en-
sure smooth power delivery and provide ancillary services to
the grid operator. The challenge lies not only in dealing with
the uncertainty of power demand and generation, or the un-
certain events, such as electrical faults or adversarial attacks
on the grid, but also with the huge (combinatorially large)
action space even in a moderately-sized grid. From the per-
spective of the grid operator, devising a real-time strategy for
the robust management of power networks is beyond human
cognition. In most such scenarios, the grid operator relies
on his/her own experience or at best, some of the potential
heuristics whose scope is limited to mitigating only a certain
types of uncertainties.
Motivating example Fig. 1 represents a typical scenario in a
power network, where one of the transmission lines (shown
in red) is overloaded beyond its thermal capacity. If left un-
accounted, the overflow may result in permanent damage of
the transmission line resulting in significant delays in getting
the network back to its nominal state. Interestingly, an opti-
mal and real-time control strategy is to identify substations
where a bus-split action (as shown in the rightmost grid) re-
sults in immediate mitigation of line overflow through ap-
propriate changes in the underlying network topology. Find-
ing the most-suited topology control action among the list
of all possible topologies is not straightforward, especially if
the power network is equipped with many substations with
each substation consisting of multiple control elements.
Why RL? The penetration of DERs, EVs, and complex con-
nectivities between different substations is increasingly ren-
dering the traditional control strategies used by the elec-
trical engineers inadequate. On the other hand, recent ad-
vancements in machine learning (ML) may offer solutions
to such complex problems which are otherwise beyond hu-
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man cognition. A key feature of most power systems is that
the operating point, characterized by the net power gener-
ation and load demand, is highly dynamic. Consequently,
managing a power network reliably entails real-time sequen-
tial decision making, for which reinforcement learning (RL)
is most suited. Given the potential solutions that an RL-
based framework offers, the “Learning to run a power net-
work" (L2RPN) challenge was recently conceptualized to
model the sequential decision-making environments of real-
time power network operations. The challenge introduced a
realistically-sized network environment (based on the IEEE-
118 network), which is a reduced-order approximation of
the American Electric Power system (in the U.S. Midwest).
L2RPN is aimed at testing the feasibility of an RL-based ap-
proach towards developing a smart operation recommender
system for grid operators.

Statement of Contributions
In this work, we introduce an RL-based recommender sys-
tem, titled PowRL, for robust management of power net-
works subjected to adversarial attacks on transmission lines
(uncertain events), as well as temporal variations in de-
mand and supply. PowRL is built upon the Grid2Op (Don-
not 2020a) framework that facilitates users to plug in the
underlying simulator of a model of their choice. Below we
summarize the primary contributions of our work.

1. Grid management with reduced action-space The total
number of feasible topology actions in the reduced IEEE-
118 system are in the order of 70k. Working with such
a large action space is beyond the scope of any practical
RL-agent. Following the work in (Zhou et al. 2021; Yoon
et al. 2021), we identify important substations and a sig-
nificantly reduced action set (comprising of 240 unique
actions) through extensive simulations in order to facili-
tate faster learning by agents.

2. Combining heuristics with deep-learning Traditional
control of electrical grids is often based on a supervi-
sory rule-based strategy. We augment a novel rule-based
scheme with the RL agent during both training and in-
ference phases in order to develop a coordinated control
response to uncertain events (see Fig. 3).

3. SOTA performance on benchmark datasets PowRL is
benchmarked on several L2RPN competition datasets,
and is shown to significantly outperform the classical
heuristics, as well as other RL agents.

4. Post-hoc analysis and insights We also analyze the se-
quences of control actions adopted by the PowRL agent
across various scenarios, and observe that unlike other
RL agents, the action sequences of PowRL are more di-
versified suggesting improved learning behavior.

Preliminaries
A power network comprises of several substations con-
nected with each other through transmission lines. Each sub-
station is equipped with electrical elements, such as gener-
ators and/or loads. For instance, the network in Fig. 1 con-
sists of 4 substations (nodes), 5 transmission lines (edges),
2 generators (P1 and P2), and 2 loads (P3 and P4). The

generators produce power, only to be consumed by the net-
work loads and through transmission losses. The power lines
are subjected to maximum current (power) carrying capac-
ities, and an excess flow through power lines for a sizable
duration results in permanent damage and eventual discon-
nection from the network. A substation acts as a router in the
network and determines where to transmit power. Addition-
ally, a substation is also equipped with multiple conductors,
known as buses. The last subfigure in Fig. 1 represents a
scenario where the network at the fourth substation is routed
through 2 separate buses.

The Grid2Op Environment
The L2RPN challenge is built upon an open-source simula-
tor, Grid2Op, for power grid operation. Grid2Op offers flex-
ibility to work with realistic scenarios, execute contingency
events, and test control algorithms subjected to several phys-
ical and operational constraints. The challenge scenario con-
sists of industry standard synthetic IEEE-118 network with
36 substations, 59 lines and 22 generators (see Fig. 2). The
remainder of the IEEE-118 network is represented as a time-
varying load. Grid2Op considers 2 buses per substation, also
known as the double busbar system. Grid2Op environment
is also equipped with realistic production and consumption
scenarios, as well as adversarial attacks on the network man-
ifested as forced line failures. The agents can take remedial
actions subjected to following constraints:
(a) Deterministic events, such as maintenance, and adversar-
ial events, such as meteorological conditions, can disconnect
lines for substantial duration
(b) Each power line has a maximum flow capacity, and gets
disconnected automatically if overloaded for too long
(c) Disconnected lines cannot be immediately reconnected
(d) Agents cannot act too frequently on the same line, gen-
erator or substation in order to avoid asset degradation
The episode terminates when the total load demand is not
met or during incidents of wide-area blackout

States, Actions and Rewards
The problem of controlling power networks can be cast as
a Markov Decision Process (MDP). An MDP is denoted by
the tuple ⟨S,A,PA, r⟩, where S and A represent the finite
set of states and actions, respectively. For each s, s′ ∈ S ,
the probability of transition from s → s′ under the effect
of an action a ∈ A, is denoted by pa(s, s

′) ∈ PA. Finally,
the step-reward associated with each state-action pair (s, a)
is depicted by r(s, a). Below, we summarize the set of all
possible states, actions and reward:
States Agents can access the entire state of the power net-
work at each time-step, including the demand forecast at the
next step, load flow and status of power lines, voltages at
each busbar, production at each generator, and various oper-
ational constraints
Actions Grid2Op is equipped with two kinds of actions: (a)
combinatorial (or discrete), (b) continuous. Discrete actions
are related to inexpensive topological actions, such as line
disconnection/reconnection, or actions at the busbar. Addi-
tionally, the generators can be redispatched through prede-
fined continuous actions using costly production changes.
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Figure 1: Reliable operation through bus-splitting: instead of disconnecting the overloaded line, a simpler and effective solution
is to alter the underlying network topology.

Figure 2: Synthetic IEEE-118 network consisting of 36 sub-
stations, 59 lines, 22 generators.

For the reduced IEEE-118 system, there are nearly 70k dis-
crete actions and 40 continuous actions.
Rewards The L2RPN challenge is equipped with a compe-
tition specific reward, however, Grid2Op also facilitates in-
clusion custom reward functions. More details on the exact
reward structure are included in (Marot et al. 2021).

Challenges in Controlling Power Network
Combinatorially many actions The primary challenge with
executing remedial topological reconfiguration actions is
that the number of discrete actions at a substation scales ex-
ponentially with the number of elements connected to the
substation. For instance, the substation 16 in Fig. 2 com-
prises of 17 elements (12 lines, 4 generators, 1 load). The
number of topologies at this substation for a double bus-
bar system is 65,505. The Proposition below enumerates all
valid topologies for a double busbar substation.
Proposition 1. The number of valid topological reconfig-
urations for a double busbar substation comprising of Nline
lines, Ng generators, and Nload loads is 2Ntot−1−2Ng+Nload +
1, where Ntot := Nline +Ng +Nload.

Proof : See Technical Appendix for details.
Uncertainty with renewables Renewable energy sources,
such as solar or wind, depend heavily on the weather con-
ditions. Thus, while the current topology may be adept at
handling the net load demand, a significant change in power
generation due to change in weather conditions may force
the operator to take immediate remedial action in order to
avoid transmission loss failures or eventual blackouts.

Adversarial attacks The L2RPN challenge operates with a
heuristically designed opponent to mimic the N − 1 secu-
rity criterion in power networks (Zhao et al. 2018); it acts
in an environment parallel to the RL agent and affects the
power grid through forced contingencies, by disconnecting
some of the targeted tensed lines at random times. The lines
remain disconnected for maintenance and the agent can only
reconnect them once the maintenance is over.

Related Works
Among the most standard practices for managing contin-
gency events is the ‘N − 1’-criterion (Ren, Dobson, and
Carreras 2008), which requires that the network should con-
tinue to operate in the safe state even if one of the elements
(productions, lines, transformers, etc.) is disconnected. The
criterion is usually enforced through solving a complex op-
timization problem that encode several physical constraints,
as well as the fundamental laws of electricity (Wang and Mc-
Calley 2013; Dehghanian et al. 2015; Alhazmi et al. 2019).
Due to the limitations with the traditional approaches, there
is a shift towards adopting AI guided approaches as po-
tential solution methodologies for robust control of power
networks. One of the foundational works along this direc-
tion (Donnot et al. 2017) introduces a deep-learning based
approach for remedial actions comprising of line discon-
nection/reconnection in a fixed-topology network. As such,
their approach does not explore combinatorial topological
actions. In the subsequent works, the authors proposed an
expert system for topological remedial actions (Marot et al.
2018) for the IEEE-14 system, which was further improved
using a simple RL-based framework (Marot et al. 2020)
through introduction of the Grid2Op simulator and the first
power grid management competition in 2019.

The winner of the first challenge (Lan et al. 2020), used
pre-training to generate a good optimal control policy, fol-
lowed by guided exploration in the large action space to se-
lect a top-few legal control actions at each time step through
extensive simulations. They designed a dueling deep Q-
network (DDQN) (Wang et al. 2016) with prioritized replay
buffer (Schaul et al. 2016), only to act in contingency situa-
tions. Authors in (Yoon et al. 2021) adopted a graph neural
network (GNN) based actor-critic method to find the goal
topology of the network given the current state. Their so-
lution, though, was ranked first in the L2RPN WCCI chal-
lenge, did not perform nearly as well when applied to more
complex scenarios as part of the L2RPN NeurIPS challenge.
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The last L2RPN NeurIPS 2020 challenge saw new RL-
based solutions that were significant improvements over
the previously reported approaches (Marot et al. 2021).
The third-place winner, lujixiang (Zhihong et al. 2020),
used a DDQN approach for topological actions, very sim-
ilar to (Lan et al. 2020), however, with a reduced action
space of 885 actions. The authors also included a base
agent to handle remedial actions involving line disconnec-
tion/reconnection and generator redispatch. The second-
place winner, binbinchen (Hu, Chen, and Tang 2021),
used a novel ‘Teacher-Tutor-Junior-Senior-Student’ frame-
work for warm-start their proximal policy optimization
(PPO) (Schulman et al. 2017) model comprising of 208
unique remedial actions identified through extensive simula-
tions. The top performing entry, rl_agent, from Baidu (Zhou
et al. 2021) relied on their PARL framework and Baidu’s
computational resources to train a very deep policy using
evolutionary black-box optimization (Lee et al. 2020).

Our Approach: PowRL
Obtaining Reduced Action Space
Even with AI-guided solutions, working with very large ac-
tion space (comprising of nearly 70k actions) is impractical.
More importantly substations, such as the ones indexed by
9, 16, 23 and 26 (Fig. 2) consist of relatively larger number
of control elements, and understandably offer greater flexi-
bility in terms of control of power networks. Through exten-
sive simulations, we identify a much smaller of 240 actions
that appeared to have most impact on network control, i.e.,
|A| = 240. The action set consists of only topological con-
trol. Costly generation production actions are excluded in
our approach, as the inexpensive topological changes alone
responded well to several contingency events.

Heuristic-Guided Topological Actions
Other than building an RL agent to select a top-performing
(electrically) valid action from the set A, we also introduced
some baseline heuristics to support the RL agent. These
heuristics include: (a) disengage RL agent during ‘accept-
able’ grid operation, (b) manually disconnect a line during
sustained periods of overflow in order to avoid permanent
damage, as well as allowing PowRL to reconnect the line
back soon after the cooldown period ends, (c) any network
reconfigurations are restored to original state as soon as the
contingency ends, (d) reconnect the line back soon after the
scheduled maintenance period is over, (e) do not disconnect
lines that result in network bifurcation.

Proximal Policy Optimization (PPO)-Guided
Reinforcement Learning Framework
In order to learn to perform optimal sequential decision mak-
ing, we train an on-policy PPO agent with a prioritized
replay buffer defined over the set of network states. The
state of the agent St ∈ S at time-step t consists of: (a)
the time-step information t including the month, date, hour,
minute and day of week information. (b) generator features
Fgen comprising of active (Pgen) and reactive (Qgen) gen-
eration, and the voltage magnitude Vgen. (c) load features

Fload comprising of active (Pload) and reactive (Qload) con-
sumption, and the voltage magnitude Vload. (d) line features
Fline which include active (Por, Pex) and reactive (Qor, Qex)
power flows, as well as the bus voltages (Vor, Vex) and cur-
rent flow (aor, aex), at both ends of the line. The other im-
portant line features are the power flow capacity ρ a ratio to
capture the amount of overflow in a line, timestep overflow
tof to depict the duration of time steps since a line has over-
flowed, and line status Il to indicate if the line is connected
or disconnected in the network. (e) Additionally, the state
space also includes the topological vector status Itopo_vect to
indicate on which bus each object of the power grid is con-
nected in the substation. (f) The grid operator may have to
wait for some time steps before a line or a substation can be
acted upon, denoted by the line cooldown time step tl and
substation cooldown time step ts. (g) Power lines can go un-
der some planned maintenance; the information of the time
of next planned maintenance tnm and its duration td is also
included in the input features, and as an agent can’t oper-
ate on lines under maintenance. In summary, the state of the
PPO agent is given by:

St := [t, Fgen, Fload, Fline, Il, ρ, Itopo_vect, tof, tl, ts, tnm, td].

The step reward for training the PPO agent is designed to
incur additional penalty when the maximum overflow ratio
ρmax is beyond the safety threshold of 0.95, i.e.,

r =

{
2− ρmax, if ρmax < 0.95,
2− 2ρmax, else.

Additionally, we incentivize the agent through an episodic
reward of 500 upon surviving the entire episode. Premature
termination of the episode due to any illegal action, or grid
blackout is penalized through an episodic reward of -300.

Optimal Action Selection
Controlling a power network using random exploratory ac-
tions may result in power grid collapse/blackout within a
few steps. On the other hand, the do-nothing action that
does not make any modifications to the existing grid topol-
ogy or to the generator production, is no good either. In fact,
the expected survival rate with the do-nothing action on the
L2RPN NeurIPS 2020 challenge set is only ∼ 24%. Recall
that under nominal operating conditions, it is preferable to
continue to operate with the starting topology. This makes
it challenging to decide when to sample actions from the
RL agent so that the deviation from the initial grid topolog-
ical configuration is the least for better survival. We achieve
this by combining heuristics with the action recommenda-
tion by the RL agent. Fig. 3 explains the structured optimal
action selection of the PowRL framework. Given the cur-
rent state St of the power system and overflow status of all
power lines, the agent first simulates (not implements) the
do-nothing action and obtains the simulated ρdo-nothing. If
ρdo-nothing is within the safety threshold, then the agent imple-
ments either the do-nothing action or the recovery ac-
tion in case the current topology is different from the initial
topology. In an event of overflow with ρdo-nothing exceeding
the safety threshold, the PowRL framework implements the
action recommended by the RL agent in conjunction with
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Figure 3: Schematic of PowRL: PowRL combines RL-agent with a threshold based heuristic scheme

Method NeurIPS (Online) NeurIPS (Offline) WCCI # actions (|A|) Run-time (s)

Do_Nothing 0 0.34 50.09 NA 0.54
expert_heuristic 22.53 51.44 50.1 NA 9.76

lujixiang 45 53.96 NA 885 824.58
binbinchen 52.42 3.96 51.1 208 + 1255 503.88
rl_agent 61.05 61.06 96.4 232 + 500 + redispatch 358.82

PowRL (Ours) 61.48 59.69 96.4 206 + 34 353.36

Table 1: Performance on L2RPN Challenge Datasets

any possible line reconnection action. The performance of
the PowRL agent depends on the choice of safety thresh-
old ρthreshold. In scenarios where the network is under severe
attack from the adversaries, the PowRL framework needs
to perform aggressive topological reconfiguration actions by
frequently invoking the RL agent. This can be achieved by
setting a smaller value of the safety threshold.

Experiments
Datasets The dataset used for training PowRL is part of
the small dataset included with the L2RPN NeurIPS 2020
challenge (Robustness track) starting kit (Donnot 2020b).
It consists of power grid data worth 48 years spaced out
at an interval of 5 minutes amounting to a total training
data of 4,644,864 steps. The dataset is based on the reduced
IEEE-118 system (see Fig. 2) with 22 generators, 36 sub-
stations, 37 loads, and 59 power lines. some of the loads in
this dataset represent interconnection with another grid. This
dataset uses the Grid2Op framework to facilitate sequential
decision-making process.

The L2RPN NeurIPS 2020 (Robustness track) uses two
different datasets - (a) an offline dataset included with the
starting kit for participants to evaluate the performance of
their trained models, (b) an online dataset that is hidden from
the participants. The participants can directly upload their
trained models on the competition Codalab to get them eval-
uated and ranked. Both these datasets contain 24 episodic
weekly scenarios resolved at a 5-minute interval. The hid-
den dataset was carefully picked to offer the different lev-
els of toughness that might not have been observed during
the training phase, even though both the datasets were gen-
erated from a similar statistical distribution. The previous
version of this competition, the L2RPN WCCI 2020 chal-
lenge, differs only in terms of an adversary opponent. While
the online submissions to the WCCI challenge are no longer

available, an offline evaluation dataset is included with the
WCCI starting kit (Donnot 2020c). This third test dataset
consists of 10 different 3-day-long (864 steps) episodic sce-
narios, picked in order to offer different levels of difficulty.
In this work, we benchmark the PowRL framework on all
three publicly available datasets.
Experimental setup PowRL runs on Grid2Op, which uses
the Gym interface to interact with an agent. This Grid2Op
platform emulates the sequential decision-making in the
power system, where each episode is divided into a list of
states each corresponding to a time step of 5 minutes. Each
of these states is described by the power flow at any given
time step, which in turn is described by the amount of elec-
tricity supplied or consumed by the generators and loads,
respectively. This data on power flow in each state is pro-
vided in the form of power network architecture, consump-
tion, and generation by the RTE. We have also used the
lightsim2grid (Donnot 2020d) backend to the Grid2Op plat-
form in order to accelerate the computation. The model was
trained on a large shared facility comprising of 3 Tesla P100
GPUs, with a maximum job duration of 120 hours.
Neural network architecture and training For the PowRL
framework, an RL agent based on clipped PPO was trained
on the L2RPN NeurIPS robustness track data. As the name
suggests, the clipped PPO architecture (Schulman et al.
2017) clips the objective function (ratio between the new
and the old policy scaled by the advantages), to remove in-
centives if the new policy gets too far from the older policy.
The clipped PPO architecture consists of actor and critic net-
works; the actor produces the logits/ probability distribution
of all possible actions, and the critic evaluates the goodness
of the action suggested by the actor. For the actor network,
we used four fully connected layers (with ReLU activation)
of dimensions [1000, 1000, 1000, 208]. The output layer is a
linear layer of a dimension equal to the number of discrete
actions (2 out of 208 actions were deemed illegal since they
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(a) (b)

Figure 4: Survival percentages of various agents on the L2RPN NeurIPS 2020 challenge dataset (a) Online, (b) Offline.

bifurcated the network into two smaller groups). The critic
network uses a single hidden layer (with ReLU activation)
of dimension 64. The output dimension of the critic network
is 1 and it uses the Gumbel-max trick to sample an action
from the logits/probability distribution. The clipped PPO al-
gorithm is implemented in PyTorch using Adam optimizer
with a learning rate of 0.003, clip range of 0.2, rate/discount
factor (γ) of 0.99, and generalized advantage estimation (λ)
of 0.95. A single PPO agent was trained on the 36 paral-
lel environments inside Grid2Op. The RL agent is engaged
only when the maximum line overflow exceeds the safety
threshold. Any such transition is stored in the prioritized re-
play buffer, and a long sequence of transitions is sampled
(around 20k) in each epoch during the training.
Baseline algorithms We benchmark the PowRL framework
against the other popular baseline approaches for power grid
control. Readers are advised to refer to the section on Re-
lated Works for more details on the baseline algorithms.
1. Do_Nothing The most basic of all algorithms, it contains
only a single action of do-nothing, which is passed on to
the environment at every step for all the scenarios.
2. expert_heuristic This approach uses a combination of
different actions collected based on the expert experience
for the given power grid, where specific actions are taken in
accordance with different situations faced.
3. lujixiang, the 3rd-place winner in NeurIPS 2020 chal-
lenge. This approach used ‘guided exploration’, where the
top-5 Q-value actions were sampled and simulated, and the
action with best simulated reward was selected.
4. binbinchen the 2nd-place winner in NeurIPS 2020 chal-
lenge. It uses an imitation learning framework, where a sim-
ple feed-forward neural network (‘Junior’ student) is trained
to imitate an expert agent, while a PPO-based ‘Senior’ stu-
dent is developed using the ‘Junior’ student as the Actor.
5. rl_agent, the winner of both the tracks in NeurIPS 2020
competition. It uses a black-box optimization approach to
find optimal policies. In addition, for specific scenarios, such

as in the month of March, the agent uses additional genera-
tor redispatch guided by the prior experience to survive some
critical attacks in those scenarios.
Results The aim of the RL agent is to explore the flex-
ibilities offered by cheap topology actions meant to sup-
port human decision-making operations. The performance
of the proposed PowRL agent with baselines is evaluated
over the three different test datasets mentioned above. Each
scenario is evaluated/scored based on the operation cost and
the losses due to blackout, hence we have used both survival
steps and scenario score as the evaluation criterion.

We first benchmark the PowRL on NeurIPS 2020 online
test dataset which is 24 different weekly episodic scenar-
ios. Fig. 4a reflects the scenario-wise performance of our
approach along with the other baselines. Both the PowRL
and the rl_agent fully survive the highest number of 16
scenarios, while the binbinchen and expert heuristics are
able to survive fully only in 13 and 6 scenarios, respec-
tively. It was found that a set of scenarios (January, Febru-
ary, November, December) looked tough, and required some
new flexibilities, such as voltage control and load shed-
ding, however, they were not made available in the environ-
ment. The dec_16.2 scenario has one of the strongest power
grid attacks (Marot et al. 2021) and only our approach is
able to survive successfully in this scenario. The other sce-
nario is aug_02.1 where the PowRL and binbinchen suc-
cessfully survive the full episode. The other difficult sce-
nario is mar_39.2, where our agent survives nearly 96.3%
only through topological actions. Though the rl_agent sur-
vives the full episode, it uses forced costly generator dis-
patch along with topology actions. Interestingly, while the
rl_agent, and the binbinchen were the eventual winners in
the competition (announced in Nov’20), our approach now
sits at the top of the challenge leaderboard, outperforming
all other agents (see Table. 1).

We next evaluate the different approaches on NeurIPS
2020 offline test dataset (see Fig. 4b). Interestingly, the lu-
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(a) (b)

Figure 5: (a) Survival percentages of various agents on the L2RPN WCCI 2020 challenge (Offline). (b) Diversity of remedial
actions distributed across multiple substations.

jixiang agent, which was the eventual 3rd place winner in the
competition, survives the most 12 scenarios, while PowRL
and the rl_agent survive 11 and 10 scenarios, respectively.
Note that the source code included with the lujixiang appears
broken and hence, a scenario-wise analysis for the online
data could not be obtained. However, the offline scenario-
wise analysis was obtained from their talk during the winner
announcement. Despite surviving a fewer number of sce-
narios, PowRL still outperforms the lujixiang agent indicat-
ing that our model requires less operational cost and tries to
avoid losses due to blackouts. The PowRL is able to survive
the highest number of steps in the dec_2, feb11, and jan25.2
scenarios. In the Aug07.2 scenario, only the expert heuristic
is able to survive the attack, as they are designed with the
simple heuristic based on the generator dispatch and topo-
logical actions, rl_agent deploys additional heuristic gener-
ator redispatch, which results in the best performance in the
march scenario in comparison to other algorithms. The sce-
nario named dec_19 comprises of one of the strongest ad-
versarial attacks and only PowRL survives it successfully.
The binbinchen agent fares very poorly on this dataset and
is unable to survive even a single scenario.

Finally, we evaluate the agents on the WCCI offline test
dataset (see Fig. 5a). The PowRL agent and the rl_agent
successfully survive all the scenarios present in this dataset,
which is expected since this test dataset aims primarily with
congestion management (no adversaries). Nonetheless, it is
interesting to note that the performance of the binbinchen
agent drops significantly when tested on this test dataset, too,
which clearly indicates overfitting issues during its training.
All the results are summarized in Table. 1. It is also worth
noting that the PowRL agent uses the least number of ac-
tions compared to other learning based agents. Despite using
a much smaller action set, it is still able to achieve state-of-
the-art-performance on all datasets. Additionally, the run-
time with PowRL agent evaluated on the NeurIPS Online

challenge is the least among all RL agents (see Table. 1).
Post-hoc analysis We also analyzed the action sequences
utilized by the PowRL agent on the NeurIPS online dataset.
Fig. 5b shows the frequency with which an action at a sub-
station is utilized by the PowRL agent in response to dif-
ferent attacks. We found out that the PowRL uses a total
of 146 different actions spread across 25 different substa-
tions, which is notably diverse than the agents binbinchen
(20 subs), rl_agent (18 subs), and lujixiang (16 subs) (Marot
et al. 2021). Evidently, the most frequent actionable substa-
tions are 4, 16, 23, and 28 because of the availability of large
number of potential topological combinations. Additionally,
the PowRL agent also engages substations 11, 18, 19, 20,
and 22, though they have relatively fewer number of ele-
ments. Unlike the rl_agent that encodes fixed sequences of
actions on three substations that need to be acted on during
instances of heavy overload, our PPO framework is capable
of learning the optimal sequence combinations during the
training phase itself. For instance, our analysis finds out the
most frequently occurring combinations of substations dur-
ing events of critical attacks in January: [9 → 13 → 23 →
16], [7 → 16 → 23 → 13], [23 → 9 → 7 → 13 → 16], and
in December: [21 → 23 → 16].

Conclusion
This study proposes a heuristic-guided RL framework,
PowRL, for robust control of power networks subjected to
production and demand uncertainty, as well as adversarial
attacks. Using a careful action selection process, in combi-
nation with line reconnection and recovery heuristics, equips
PowRL to outperform SOTA approaches on several chal-
lenge datasets even with reduced action space. PowRL not
only diversifies its actions across substations, but also learns
to identify important action sequences to protect the network
against targeted adversarial attacks.
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