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Abstract

Safe exploration is a common problem in reinforcement learn-
ing (RL) that aims to prevent agents from making disastrous
decisions while exploring their environment. A family of ap-
proaches to this problem assume domain knowledge in the
form of a (partial) model of this environment to decide upon
the safety of an action. A so-called shield forces the RL agent
to select only safe actions. However, for adoption in various
applications, one must look beyond enforcing safety and also
ensure the applicability of RL with good performance. We
extend the applicability of shields via tight integration with
state-of-the-art deep RL, and provide an extensive, empirical
study in challenging, sparse-reward environments under par-
tial observability. We show that a carefully integrated shield
ensures safety and can improve the convergence rate and final
performance of RL agents. We furthermore show that a shield
can be used to bootstrap state-of-the-art RL agents: they re-
main safe after initial learning in a shielded setting, allowing
us to disable a potentially too conservative shield eventually.

1 Introduction
Reinforcement learning (RL) (Sutton and Barto 1998) is a
technique for decision-making in uncertain environments.
An RL agent explores its environment by taking actions
and perceiving feedback signals, usually rewards and ob-
servations on the system state. With success stories such as
AlphaGo (Silver et al. 2016) RL nowadays reaches into ar-
eas such as robotics (Kober, Bagnell, and Peters 2013) or
autonomous driving (Sallab et al. 2017).

A significant limitation of RL in safety-critical environ-
ments is the high cost of failure. An RL agent explores the
effects of actions – often selected randomly, such as in state-
of-the-art policy-gradient methods (Peters and Schaal 2006) –
and will thus inevitably select actions that potentially cause
harm to the agent or its environment. Thus, typical appli-
cations for RL are games (Mnih et al. 2013) or assume the
ability to learn on high-fidelity simulations of realistic scenar-
ios (Tao et al. 2019). The problem of unsafe exploration has
triggered research on the safety of RL (Garcıa and Fernández
2015). Safe RL may refer to (1) changing (“engineering”) the
reward function (Laud and DeJong 2003) to encourage the
agent to choose safe actions, (2) adding a second cost function
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(“constraining”) (Moldovan and Abbeel 2012), or (3) block-
ing (“shielding”) unsafe actions at runtime (Alshiekh et al.
2018). This paper falls into the last category.

Safe RL in partially observable environments suffers from
uncertainty both in the agent’s actions and perception. Such
problems, typically modeled as partially observable Markov
decision processes (POMDPs) (Kaelbling, Littman, and Cas-
sandra 1998), require histories of observations to extract a
sufficient understanding of the environment. Recent deep RL
approaches for POMDPs, including those that employ recur-
rent neural networks (Hausknecht and Stone 2015; Wier-
stra et al. 2007), learn from these histories and can generate
high-quality policies with sufficient data. However, these ap-
proaches do not guarantee safety during or after learning.
While shielding for Markov decision processes (MDPs) is
rather well-studied (Könighofer et al. 2017; Alshiekh et al.
2018; Fulton and Platzer 2018; Bouton et al. 2019), there is—
to the best of our knowledge—no approach that integrates
shielding with deep RL.

We contribute a thorough study, implementation, and ex-
perimental evaluation on integrating state-of-the-art RL for
POMDPs with shields. We demonstrate effects and insights
using several typical examples and provide detailed infor-
mation on RL performance as well as videos showing the
exploration and training process. In particular, we integrate
various RL algorithms from Tensorflow (Guadarrama et al.
2018) with a shield that guarantees safety regarding so-called
reach-avoid specifications, a special case of temporal logic
constraints (Pnueli 1977). The computation of the shields is
based on satisfiability solving (Junges, Jansen, and Seshia
2021) and requires only a partial model of the environment.
Specifically, we need to know all potential transitions in the
POMDP, while probabilities and rewards may remain unspec-
ified (Raskin et al. 2007).

Approach. Fig. 1 shows the outline of the safe RL setting.
The gray box shows a typical RL procedure. The environment
in the partially observable setting is described by a POMDP
model that may not be fully known. A shield in this setting
(implicitly) requires access to a form of state estimation to
account for a safety specification. This estimator uses the
partial model of the environment to track in which states the
model may be, based on the observed history. We see the
shield and the state estimator as two knowledge interfaces
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Figure 1: Safe RL with two knowledge interfaces for the
agent: A state estimator and a shield, based on a partial model
of the environment.

for the agent that may be used in conjunction or separately.
A shield may be too conservative and overly protective, and
therefore restrict the performance of RL in general. Alter-
natively, we investigate if (only) access to a state estimator
may serve as a lightweight alternative to a shield. We show
that, while the RL agent may indeed benefit from this addi-
tional information, the shield provides more safety and faster
convergence than relying on just the state estimator. After
learning, we may gently phase out a shield and still preserve
the better performance of the shielded RL agent. Then, even
an overly protective shield helps to bootstrap RL.

Summarized, our study demonstrates the following effects
of shielding in a partially observable setting.
• Safety during learning: Exploration is only safe when the

RL agent is provided with a shield. Without the shield,
the agent makes unsafe choices even if it has access to the
state estimation. Even an unshielded trained agent still
behaves unsafe sometimes.

• RL convergence rate: A shield not only ensures safety,
but may also significantly improve the convergence rate
of modern RL agents by avoiding spending time to learn
unsafe actions. Other knowledge interfaces like state esti-
mators do help to a lesser extent.

• Bootstrapping: Due to the improved convergence rate,
shields are a way to bootstrap RL algorithms, even if they
are overly restrictive. RL agents can learn to mimic the
shield by slowly disabling the shield.

Further related work. Several approaches to safe RL in
combination with formal verification exist (Hasanbeig, Abate,
and Kroening 2020; Könighofer et al. 2017; Alshiekh et al.
2018; Jansen et al. 2020; Fulton and Platzer 2018; Bouton
et al. 2019). These approaches either rely on shielding, or
guide the RL agent to satisfy temporal logic constraints. How-
ever, none of these approaches take our key problem of partial
observability into account. Recent approaches to find safe
policies for POMDPs with partial model knowledge either do
not consider reinforcement learning (Cubuktepe et al. 2021)
or require the agent to take catastrophic actions before learn-
ing from them (Shperberg, Liu, and Stone 2022).

2 Problem Statement
We introduce POMDPs as the standard model for sequential
decision-making under partial observability. We distinguish
the learning goal of an agent by expected rewards, and the
safety constraints via reach-avoid safety specifications.

2.1 POMDPs
A (discrete) partially observable Markov decision process
(POMDP) is a tupleM = (S, I,Act , O, Z,P,R) where S
is a finite state space. I is the initial distribution that gives
the probability I(s) that the agent starts in state s ∈ S, and
Act is a finite space of actions. Z is a finite observation
space and O(z|s) is the probability of observing z when the
environment is in state s. The transition model P(s′|s, a)
represents the conditional probability of moving to a state
s′ ∈ S after executing a ∈ A in s ∈ S. When executing
a ∈ Act in s ∈ S, the agent receives a scalar rewardR(s, a).
As not every action may be available in every state, we define
the set of available actions in s as Act(s). We remark that
POMDPs may have dead-ends from which an agent cannot
obtain positive rewards (Kolobov, Mausam, and Weld 2012).

As the current state of a POMDP is not observable, agents
may infer the probability of being in a certain state based
on the history so far. This probability distribution is the be-
lief b : (Z × Act)∗ × Z → Distr(S). A policy π : b →
Distr(Act) for the agent decides upon a distribution over ac-
tions based on the current belief. A (fully observable) belief
MDP with the (infinitely many) beliefs of the POMDP as
states captures the belief dynamics.

2.2 Learning Goal and Safety Constraints
The standard learning goal for POMDPs is to find a policy
π that maximizes the expected discounted reward, that is,
E [

∑∞
t=0 γ

tRt], where γt with 0 ≤ γt ≤ 1 is the discount
factor andRt is the reward at time t. Due to the infinite num-
ber of beliefs, computing such an optimal policy is in general
undecidable, even if the entire model is known (Madani,
Hanks, and Condon 1999).

An agent in safety-critical settings must (additionally) ad-
here to safety constraints. We capture these constraints us-
ing (qualitative) reach-avoid specifications, a subclass of
indefinite horizon properties (Puterman 1994). Such specifi-
cations necessitate to always avoid certain bad states from
AVOID ⊆ S and reach states from REACH ⊆ S almost-
surely, i.e., with probability one (for arbitrary long horizons).
We denote these constraints by ϕ = 〈REACH,AVOID〉. The
avoid specification ϕ = 〈AVOID〉 necessitates only to avoid
bad states. Formally, Prπb(S) denotes the probability to reach
a set of states S′ ⊆ S from the belief b using the policy π.
Definition 1 (Winning). A policy π is winning for specifi-
cation ϕ from belief b in POMDPM iff Prπb(AVOID) = 0
and Prπb(REACH) = 1. Belief b is winning for ϕ inM if
there exists a winning policy from b.

The relationM(π) |= ϕ denotes that the policy π is win-
ning according to the initial belief I . Computing such a win-
ning policy is, in general, decidable and EXPTIME-complete
but practically feasible methods exist (Chatterjee, Chmelik,
and Davies 2016; Junges, Jansen, and Seshia 2021). Finally,
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for multiple beliefs, a winning regions (aka safe or control-
lable regions) is a set of winning beliefs, that is, from each
belief within a winning region, there exists a winning policy.

We formulate the joint learning and safety problem we
consider in our safe reinforcement learning setting.

Problem 1 (Safe Learning). Given a POMDP M, a
safety constraint ϕ, and let π1, . . . , πn be the (training)
sequence of policies employed by an RL agent. The
problem is to ensure that for all policies πi it holds that
M(πi) |= ϕ with 1 ≤ i ≤ n and the final policy πn
maximizes E [

∑∞
t=0 γ

tRt].

Note that the condition to satisfy ϕ may induce a sub-optimal
reward as the agent has to strictly adhere to the safety con-
straint while collecting rewards.

3 State Estimators and Shields
In this section, we present the two knowledge interfaces for
RL agents in the shielding approach for POMDPs, refer to
Fig. 1. In particular, we discuss belief supports as concrete
state estimators for the agent, and introduce the notion of a
shield (for POMDPs). We discuss which guarantees we can
provide for shields that are computed on partial models.

3.1 Belief Supports as State Estimators
If the transition (and observation) probabilities in the POMDP
were known, the agent could incrementally compute a
Bayesian update of the belief and use that to estimate its
current state. However, this is a strong assumption. Instead,
we rely on the so-called belief support. A state s is in the
belief support B for a belief b, if s ∈ supp(b). Thus, the
belief-support B ∈ B, with B the set of all belief supports, is
a set of states. The belief-support can be updated using only
the graph of the POMDP (without probability knowledge) by
a simplified belief update. In particular, we can compute the
unique belief support (B′ | B, a, z) that can be reached from
B with action a and observation z. We exploit the following
result from (Junges, Jansen, and Seshia 2021).

Theorem 1. If a belief b is winning for a reach avoid specifi-
cation ϕ, any belief b′ with supp(b′) = supp(b) is winning.

Intuitively, all beliefs that share a belief-support are winning,
therefore, we can directly call a belief-support winning. We
now define the first knowledge interface for the RL agent.

Knowledge interface 1: the state estimator. A belief-
support state estimator σ : (Z × Act)∗ × Z → B takes
as input the observation-action history and returns the cur-
rent belief support to the RL agent. This estimator can be
implemented by repeatedly updating the belief-support inde-
pendently of the probabilities in a POMDP. We provide the
agent with state estimation as additional observation signal.

3.2 Shields
The purpose of a shield is to prevent the agent from taking
actions that would violate a (reach-avoid) specification. A
shield allows only actions that enable the agent to stay in
a winning region. That means, when taking an action from

some winning belief support, any next belief support reached
by taking this action must belong to a winning region.

We first define policies on the belief support of the form
π : B → Act . Recall that B denotes the set of all belief
supports. This (deterministic) policy chooses one unique
action for each belief support B ∈ B. For shields, we use
a more liberal notion of permissive policies that select sets
of actions (Dräger et al. 2015; Junges et al. 2016). Given a
POMDPM, a permissive policy is given as ν : B → 2Act .
Any action in ν(B) is called allowed. Intuitively, one can
think of a permissive policy as defining a set of policies:
In particular, a policy π is admissible for ν if for all belief
supports B ∈ B it holds that π(B) ∈ ν(B)1.

Shields can be defined as permissive policies for staying in
a winning region with respect to reach-avoid specifications.

Definition 2 (Shield). For a specification ϕ, a permissive
policy ν is a ϕ-shield, if for any B winning for ϕ, a ∈ ν(B),
and z ∈ Z, it holds that (B′ | B, a, z) implies B′ is winning.

Shields provide guarantees such that any policy that agrees
with the shield is winning (Junges, Jansen, and Seshia 2021).
We first state the formal correctness for avoid specifications.

Theorem 2. Let ϕ be an avoid-specification. For any ϕ-
shield forM all admissible policies are winning.

Shields for avoid-specifications may block all actions and
create deadlocks. Instead, we employ shields for reach-avoid
specifications that prevent the agent from visiting any dead-
ends. A shield itself cannot force an agent to visit reach
states. However, under mild assumptions, we can ensure that
the agent eventually visits the reach states: A policy is fair
if in any state which is visited infinitely often, it also takes
every allowed action infinitely often (Baier and Katoen 2008).
For example, a policy that takes every allowed action with
positive probability is fair.

Theorem 3. Let ϕ be a reach-avoid-specification. For a ϕ-
shield forM, all fair and admissible policies are winning.

Knowledge interface 2: the shield. We use shields as
computed via (Junges, Jansen, and Seshia 2021) that ensure
reach-avoid specifications as outlined above. Essentially, an
agent may use a state estimator σ : (Z × Act)∗ × Z → B in
conjunction with a shield ν : B → 2Act to compute allowed
actions. We restrict the available actions for the RL agents to
these allowed actions.

3.3 Shields on Partial Models
A shield for a POMDP relies only on the belief-support.
Therefore, it is also a shield for all POMDPs with the same
underlying graph-structure. We formalize this statement.

Partial models. We assume the agent has only access to a
graph-preserving approximationM′ of a POMDPM that
differs only in the transition models P ′ and P , and potentially
in the reward functions. It holds that P(s′|s, a) > 0 ⇐⇒
P ′(s′|s, a) > 0 for all states s, s′ ∈ S and actions a ∈ Act .
Similarly,M′ overapproximates the transition model ofM,

1Admissibility can be defined for more general classes of poli-
cies, see (Junges, Jansen, and Seshia 2021).
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if it holds for all states s, s′ ∈ S and actions a ∈ Act that
P(s′|s, a) > 0 =⇒ P ′(s′|s, a) > 0. The original POMDP
has no transitions that are not present in the partial model.

Guarantees. We state the following guarantees provided
by a shield, in relation to the two approximation types.

Theorem 4 (Reach-Avoid Shield). Let M′ be a graph-
preserving approximation ofM and ϕ a reach-avoid specifi-
cation, then a ϕ-shield forM′ is a ϕ-shield forM.

This theorem follows directly from Theorem 1. Knowing
the exact set of transitions with (arbitrary) positive probability
for a POMDP is sufficient to compute a ϕ-shield.

For avoid specifications, we can further relax the assump-
tions. It suffices to require that each transition in the partial
model exists (with positive probability) in the (true) POMDP.

Theorem 5 (Avoid Shield). Let M′ overapproximate the
transition model ofM, and let ϕ′ = 〈AVOID〉 be an avoid
specification, then a ϕ′-shield for the partial modelM′ is a
ϕ′-shield for the POMDPM.

If the partial model is further relaxed, it is generally im-
possible to construct a shield with the same hard guarantees.

4 RL with Partial Model Knowledge
Recall the general setup in Fig. 1: While the environment
is described as a POMDP, the agent has only access to a
partial model via the knowledge interfaces as explained in
the previous section. This section discusses the potential
benefits of using these interfaces.

4.1 Safety
Safety during learning. Shielded RL agents are guaran-
teed to be safe during learning provided that the partial model
is adequate as formalized by Theorem 4. Furthermore, as-
suming the RL agent is fair as defined above, it is guaranteed
that they will eventually reach the REACH states. This guar-
antee does not come with an upper bound on the number of
steps2. In contrast, an unshielded agent takes actions first to
learn that it may lead to an AVOID state. State estimators are
thus not sufficient to ensure safety, as they only reason about
history and not about the future.

Safety after learning. In general, safety objectives en-
coded as reward and performance objectives (also encoded
as reward) may allow for non-trivial trade-offs, which harm
the ability to learn to adhere to safety objectives. Shielded
RL agents do not face this tradeoff as they must adhere to the
explicit safety constraints.

State estimators and safety. While state estimators can-
not guarantee safety, they may improve safety. In particular,
consider an action (such as switching on a light) which is
useful and safe in most but not all situations (e. g., a gas leak).
A state estimator provides the additional observation signals
that allow the RL agent to efficiently distinguish these states,
thereby indirectly improving safety, even during learning.

2Shields can also be computed for finite-horizon or cost-bounded
reach-avoid properties, which come with a guarantee on finite steps.

up

down
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b

a

(a) Example for estimators

A B

C

a b

c

(b) Example for shields

Figure 2: Figures for illustrating benefits of knowledge inter-
faces in terms of convergence rate, see Section 4.2.

4.2 RL Convergence Rate
Beyond providing safety guarantees, learning in partially
observable settings remains a challenge, especially when re-
wards are sparse. The availability of a partial model provides
potential to accelerate the learning process.

Using state estimates. A state estimator enriches the ob-
servation with a signal that compresses the history. Consider
the POMDP sketch in Fig. 2(a), abstracting a setting where
the agent early on makes an observation (orange, top) or
(blue, bottom), must learn to remember this observation until
the end, where it has to take either action a (solid) when it
saw orange before, or action b (dashed) when it saw blue be-
fore. State estimation provides a belief support that clarifies
whether we are in the bottom or top part of the model, and
thus trivializes the learning.

Using shields. A shield may provide incentives to (not)
explore parts of the state space. Consider an environment
as sketched out in Fig. 2(b). We have partitioned the state
space into three disjoint parts. In region A, there are no bad
states (with a high negative reward) but neither are there any
reach states, thus, region A is a dead-end. In region B, all
states will eventually reach, and in region C, there is a (small)
probability that we eventually reach an avoid state. An agent
has to learn that it should always enter region B from the
initial state. However, if it (uniformly) randomly chooses
actions (as an RL agent may do initially) it will only explore
region B in one third of the episodes. If the high negative
reward is not encountered early, it will take quite some time to
skew the distribution towards entering region B. Even worse,
in cases where the back-propagation of the sparse reward is
slow, region A will remain to appear attractive and region
C may appear more attractive whenever back-propagation is
faster. The latter happens if the paths towards positive reward
in region C are shorter than in region B.

4.3 Bootstrapping: Learning From the Shield
Finally, it is interesting to consider the possibility of disabling
the additional interfaces after an initial training phase. For
example, this allows us to bootstrap an agent with the shield
and then relax the restrictions it imposes. Such a setting is
relevant whenever the shield is overly conservative – e.g., en-
tering some avoid-states is unfortunate but not safety-critical.
It may also simplify the (formal) analysis of the RL agent,
e.g., via neural network verification (Katz et al. 2017; Carr,
Jansen, and Topcu 2021), as there is no further need to in-
tegrate the shield or state estimator in these analyses. We
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Figure 3: REINFORCE with (solid) and without (dashed) a shield. The red lines show when the RL agent is trained using only
observations from the environment, and the blue lines indicate when the RL agent is trained using the state estimator. The gray
lines are the rewards, averaged over multiple evaluations, obtained via a policy that randomly selects from available actions.

investigate two ways to disable these interfaces and to evalu-
ate agent performance after this intervention: either a smooth
transition or sudden deactivation.

When switching off shields suddenly, the agent will be
overly reliant on the effect of the shield. While it remembers
some good decisions, it must learn to avoid some unsafe
actions. We want to encourage the agent to learn to not rely
on the shield. To support this idea, we propose a smooth
transition: When switching off the shield, we do so gradually,
applying the shield with some probability p, which will allow
negative rewards whenever an action not allowed by the
shield is taken. We decay the probability that the shield is
applied over time to gently fade out its the effect. 3

5 Experiments
We applied shielded RL in six challenging domains with par-
tial observability. We compare multiple state-of-the-art deep
RL agents. The experiments focus on the safety, convergence
rate, and the ability to learn from additional interfaces as
outlined in the three subsections of Section 4. We include
the full set of results, and plots for all learning methods and
domains in the technical appendix4.

Setup. We use Storm (Hensel et al. 2022) as framework
to interface the model, the shield, and the state estimator.
All shields are computed within few minutes, details are

3When switching off state estimators, the learned agent is no
longer executable as it lacks necessary information. Solutions, e.g.,
defaulting to a fixed observation, are not part of this work.

4Source code may be located at https://github.com/stevencarrau/
safe RL POMDPs

given in the Appendix A.1. We developed bindings to Tensor-
flow’s TF-Agents package (Guadarrama et al. 2018) and use
its masking function to implement the precomputed shield.
All experiments were performed on 8x3.2GHz Intel Xeon
Platinum 8000 series processor with 32GB of RAM.

We employ a set of grid-based scenarios from (Junges,
Jansen, and Seshia 2021). Refuel and Obstacle involve guid-
ing a noisy agent to a goal location while avoiding hazardous
situations. Avoid and Evade aim to guide an agent to a goal
while avoiding collisions with one or more moving robots. In-
tercept attempts to prevent an adversary escaping by catching
it in time. Finally, Rocks is a variant of RockSample (Smith
and Simmons 2004) where the agent collects valuable rocks
and delivers them. Detailed descriptions of the environments
are given in Appendix A.1.

We use five deep RL methods: DQN (Mnih et al. 2015),
DDQN (van Hasselt, Guez, and Silver 2016), PPO (Schul-
man et al. 2017), discrete SAC (Christodoulou 2019) and
REINFORCE (Williams 1992). Unless otherwise specified,
we limited episodes to a maximum of 100 steps and calcu-
lated the average reward across 10 evaluation episodes. Due
to the sparse reward nature of the domains and for the sake
of readability, we performed smoothing for all figures across
a five-interval window. In episodal RL algorithms, such as
REINFORCE, we trained on 5000 episodes with an evalu-
ation interval every 100 episodes, and in the step-based RL
algorithms, such as DQN, DDQN, PPO and discrete SAC,
we trained on 105 steps with an evaluation interval every
1000 steps. Additionally, in the discrete SAC, we use long
short-term memory (LSTM) as comparison to recent LSTM-
based deep RL methods on POMDPs (Wierstra et al. 2007;
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Learning Setting No. violations
During After

No shield 3153 1023
Shield 0 0
Sudden switch-off 1867 502
Smooth switch-off 27 5

Table 1: The number of violations per episode for REIN-
FORCE learning agent during and after learning across 5000
episodes, averaged across the six domains. An RL agent can
have, at most, one violation per episode.

Hausknecht and Stone 2015). Details on the hyperparameters
and the selection method are given in Appendix A.4.

5.1 Main Results
We make some key observations for REINFORCE. Results
in Sec. 5.2 and Appendix B clarify that, in general, these
observations hold for other RL algorithms.

The no shield and shield rows in Tab. 1 demonstrate that in
line with the formal guarantees, (only) the shielded agents
never violate the safety specification.

In Fig. 3, we demonstrate the performance of REIN-
FORCE. In these and subsequent plots, the dashed lines
indicate RL agents learning without the shield, while solid
lines indicate that the agent is shielded. Shielding acceler-
ates convergence. In Fig. 3(e) & 3(f) we observe that the
addition of the state estimator (blue) improves the conver-
gence rate over simply having the agent attempt to learn
from observations (red). As the presented domains are par-
tially observable with sparse reward, they are challenging
settings for RL. Consequently, we see that REINFORCE
does not always converge. We discuss details in Sec. 5.2.

In Fig. 4, we show how an RL agent performs when it ini-
tially learns using a shield and then that shield is either com-
pletely deactivated after 1000 episodes (green) or is switched-
off with a smooth transition (orange). For the latter, we apply
the shield with probability p and reduce p from 1 to 0 by learn-
ing rate α. The shielded RL agent generates higher-quality
episodes and subsequently, when the shield is removed, the
agent still maintains higher quality episodes since it has
previously experienced the sparse positive reward. The effect
is even more pronounced as the shield is smoothly removed,
where the performance mirrors the shielded condition. We
also refer to Tab. 1 for aggregates on safety violations when
switching off shields. The smooth deactivation cannot pre-
vent safety violations completely, but shows a consider-
able improvement over the unshielded version.

5.2 Detailed Results
In the sequel, we highlight important elements of the chal-
lenges presented in sparse domains, the shield’s improved
performance, and how the belief support and its representa-
tion impact learning.

Domains are sparse and thus challenging. As discussed,
Fig. 3 & Fig. 6 indicate that in the sparse-reward domains and
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under partial observation, without using additional knowl-
edge from the given partial model, the deep RL algorithms
struggle. In particular, reaching target states with a random
policy is very unlikely, e.g., in Evade (Fig. 3(b)), a random
policy without a shield reaches the target approximately 1%
of the time. Likewise, when the agent attempts to learn a pol-
icy for Avoid, it converges to a locally optimal but globally
sub-optimal policy, with an average reward of −100 (global
optimum of +991). This policy that remains in the left corner
stays outside of the adversary’s reachable space, but will not
move towards the goal at all. Similarly, the unshielded ran-
dom policy often reaches a highly negative reward: e.g., 95%
of the time in Obstacle (Fig. 3(f)). In POMDP settings con-
verging to a local optimum is a challenge for many RL agents:
In Fig. 5, we illustrate the problematic performance on the
Intercept domain for a variety of unshielded RL agents.

Ablation study: full observability and reward shaping.
In Fig. 6, we investigate the RL agent’s5 performance in more
detail. In particular, when artificially making the domain fully
observable, REINFORCE learns the optimal policy quickly
for all domains (even in the unshielded condition), which

5Each RL agent used the belief support (via the state estimator)
for the policy input representation.
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Figure 6: Empirical study comparing the different inputs for
performing REINFORCE on a reward normalized across all
domains. Dashed lines imply the RL agent5 is not shielded.

demonstrates how difficult it is to learn in POMDPs. To over-
come the sparse reward we can use reward shaping to guide
the learner (Kim et al. 2015; Hlynsson and Wiskott 2021).
While reward shaping6 may help, it leads to nontrivial side-
effects, especially for POMDPs. We observe that a dense
reward function helps the RL agent to converge faster than in
the default domain (see first 1000 episodes in Fig. 6). How-
ever, the dense reward may harm the final performance, as
exemplified by the performance for the dense reward com-
pared to the default. In particular, it seems to encourage risky
exploration in unshielded settings. The shield provides the
best improvement of performance when viewed in isolation
(each solid line gives consistently higher returns than its
dashed equivalent).

Shields improve convergence rate. Shielded agents pre-
vent encountering avoid states in all episodes, and other
episodes are thus more frequent. Consequently, a shielded RL
agent has a higher probability of obtaining a positive reward
even if the reward is sparse. For instance, in Obstacle, an
unshielded random policy averages approximately 12 steps
before crashing. In contrast, the shielded policy, which can-
not crash, averages approximately 47 steps before reaching
the goal. For RL agents that rely on episodic training, such
as REINFORCE, the shield greatly improves the agent’s con-
vergence rate, see Fig. 3(f). These efficiencies hold even for
the step-based RL agents, such as those presented in Fig. 5.
However, the DQN and DDQN struggle to converge to the
optimal policy. Such behavior could result from insufficient
data to properly process the state estimates from the shield.

State estimators improve convergence (less). The chal-
lenge of RL agents struggling with high uncertainty, as
sketched in the previous paragraphs, can also occur with
a shield. Again, in the Obstacle domain, REINFORCE with-
out the state estimation (red in Fig. 3) needs to learn both how
to map the observation to the possible states, and then also
how this would map into a value function, which it does only
after spending roughly 2000 episodes. In comparison, with
access to the belief support (blue in Fig. 3), the agent quickly

6Details for specific shaping in Fig. 6 are in Appendix A.3.

(a) Evade at t = 9 (b) Evade at t = 25

Figure 7: Incremental states of Evade where the agent (dark
blue square) has a belief set of states (shaded in pink). The
goal (green) is static. At t = 9, the shield prevents {south}
and the agent takes {east} and at t = 25, the shield prevents
{south, east} and the agent takes {scan}.

learns to estimate the value function. Thus, even shielded,
access to a state estimator can help. Vice versa, a shield does
significantly improve agents, even with a state estimator.

Limitation: Shields alone do not enforce reaching targets
quickly. As a drawback, shielding does not directly steer
the agent towards a positive reward. In environments like
Evade, where the reward is particularly sparse, a random
policy with a shield has only an 8% chance of reaching the
goal, see Fig. 3(b). In particular, it takes many episodes before
even collecting any positive reward. Shielded agents do thus
not alleviate the fact that episodes may need to be long.

Limitation: Shields may have little effect on perfor-
mance. For the domain Evade in Fig. 3(b), the RL agent
is only marginally improved by the addition of the shield.
In this domain, the shield is much less restrictive, often not
restricting the agent’s choice at all. Consider Fig. 7, where the
agent can easily either take an action that is just as beneficial
as the one that was restricted as in Fig. 7(a), or reduce the
size of the belief support by taking a scan as in Fig. 7(b). Fur-
ther, in Evade, the shield is restricting the agent from taking
actions that result in collisions with a very low probability.
When the unshielded agent takes these potentially unsafe
actions, it rarely suffers any negative outcome, leading to
similar values of average reward. In principle, this may even
degrade the performance of the shield. A similar problem
occurs if the episodes are too short to ensure reaching the
target, as detailed in Appendix B.1.

6 Conclusions
We presented a thorough study and an efficient open-source
integration of model-based shielding and data-driven RL
towards safe learning in partially observable settings. The
shield ensures that the RL agent never visits dangerous avoid-
states or dead-ends. Additionally, the use of shields helps
to accelerate state-of-the-art RL. For future work, we will
investigate the use of model-based distance measures to tar-
get states (Jansen et al. 2020) or contingency plans (Pryor
and Collins 1996; Bertoli, Cimatti, and Pistore 2006) as an
additional interface to the agent.
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