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Abstract
Adversarial attacks have threatened modern deep learning
systems by crafting adversarial examples with small pertur-
bations to fool the convolutional neural networks (CNNs). To
alleviate that, ensemble training methods are proposed to fa-
cilitate better adversarial robustness by diversifying the vul-
nerabilities among the sub-models, simultaneously maintain-
ing comparable natural accuracy as standard training. Previ-
ous practices also demonstrate that enlarging the ensemble
can improve the robustness. However, conventional ensem-
ble methods are with poor scalability, owing to the rapidly
increasing complexity when containing more sub-models in
the ensemble. Moreover, it is usually infeasible to train or
deploy an ensemble with substantial sub-models, owing to
the tight hardware resource budget and latency requirement.
In this work, we propose Ensemble-in-One (EIO), a sim-
ple but effective method to efficiently enlarge the ensem-
ble with a random gated network (RGN). EIO augments a
candidate model by replacing the parametrized layers with
multi-path random gated blocks (RGBs) to construct an RGN.
The scalability is significantly boosted because the num-
ber of paths exponentially increases with the RGN depth.
Then by learning from the vulnerabilities of numerous other
paths within the RGN, every path obtains better adversarial
robustness. Our experiments demonstrate that EIO consis-
tently outperforms previous ensemble training methods with
smaller computational overheads, simultaneously achieving
better accuracy-robustness trade-offs than adversarial train-
ing methods under black-box transfer attacks. Code is avail-
able at https://github.com/cai-y13/Ensemble-in-One.git

Introduction
With the convolutional neural networks (CNNs) becoming
ubiquitous, the security and robustness of neural network
systems are attracting increasing focuses. Recent studies
find that CNN models are inherently vulnerable to adversar-
ial attacks (Goodfellow, Shlens, and Szegedy 2014), which
add imperceptible perturbations or patches on the natural
images, referred to as adversarial examples, to mislead the
neural network models. Even without accessing the target
model, an adversary can still generate adversarial examples
on other surrogate models to attack the target model by ex-
ploiting the adversarial transferability among them.
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Such vulnerability of CNN models has spurred extensive
researches on improving the robustness against adversarial
attacks. One stream of approaches target on learning robust
features for an individual model (Madry et al. 2017; Bren-
del et al. 2020). Informally, robust features are defined as
the features that are less sensitive to the adversarial pertur-
bations on the inputs. A representative approach, referred
to as adversarial training (Madry et al. 2017), on-line gen-
erates adversarial examples on which the model minimizes
the training loss. As a result, adversarial training encour-
ages the model to capture the robust features that are less
sensitive to the adversarial input perturbations, thereby al-
leviating the model’s vulnerability. However, such adversar-
ial training methods often have to sacrifice the clean accu-
racy for enhanced robustness (Zhang et al. 2019) even with
a bag of tricks (Pang et al. 2020), since they exclude the
non-robust features and become less discriminative for the
examples with high similarity in the feature space.

Besides pursuing improved robustness for an individual
model, another active stream of researches focus on form-
ing strong ensemble models to improve the robustness (Yang
et al. 2020; Bagnall, Bunescu, and Stewart 2017; Pang et al.
2019; Kariyappa and Qureshi 2019; Liu et al. 2019). Gener-
ally speaking, an ensemble model is constructed by aggre-
gating multiple sub-models. Intuitively, an ensemble model
is more likely to exhibit better robustness than an individual
model, because a successful attack needs to mislead the ma-
jority of the sub-models rather than just one model. While
the robustness of an ensemble highly relies on the diver-
sity of its sub-models, recent study finds that CNN mod-
els trained independently have highly-overlapped adversar-
ial subspaces (Tramèr et al. 2017). Therefore, many stud-
ies propose ensemble training methods to diversify the sub-
models. For example, DVERGE (Yang et al. 2020) pro-
poses to distill non-robust features corresponding to each
sub-model’s vulnerability, then isolates the vulnerabilities of
sub-models by mutual learning so as to impede the adversar-
ial transferability among them.

There is another recognized insight that the ensembles
composed by more sub-models tend to have greater robust-
ness improvement. Table 1 shows the robustness trend of the
ensembles trained with various ensemble training methods.
It drives us to further explore whether the trend will con-
tinue when keeping increasing the sub-models until infinity.
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#sub-model Baseline ADP GAL DVERGE

3 0.0%/1.5% 0.0%/9.6% 39.7%/11.4% 53.2%/40.0%
5 0.0%/2.1% 0.0%/11.8% 32.4%/31.7% 57.2%/48.9%
8 0.0%/3.2% 0.0%/12.0% 22.4%/37.0% 63.6%/57.9%

Table 1: Accuracy of the ensembles trained by different methods under adversarial attack, with 3, 5, and 8 sub-models respec-
tively (Yang et al. 2020). The number before and after the slash represent black-box and white-box adversarial accuracy under
perturbation strength 0.03 (8/255) and 0.01 (2.5/255), respectively.

However, the conventional ensemble construction methods
are with poor scalability because of the rapidly increasing
overhead. Especially when using mutual learning that trains
the sub-models in a round-robin manner, the training cost
increases at a speed of O(n2) where n is the number of
sub-models. And the computational cost of inference also
increases to n× of an individual model.

To address the scalability issue, we propose Ensemble-
in-One (EIO), a novel ensemble construction and training
paradigm, to simultaneously obtain enhanced adversarial ro-
bustness, natural (clean) accuracy and higher computational
efficiency. For a dedicated CNN model, we conduct a Ran-
dom Gated Network (RGN) by substituting each parameter-
ized layer with a Random Gated Block (RGB). In this way,
the network can instantiate numerous sub-models by con-
trolling the gates in the blocks. Ensemble-in-One substan-
tially reduces the complexity when scaling up the ensemble.
In summary, the contributions are summarized as below:

• Ensemble-in-One is a simple but effective method that
learns robust ensembles within one over-parametrized
random gated network. The scalable construction of EIO
enables us to build substantial larger training-time en-
sembles and employ diversification learning algorithms
to win both higher clean accuracy and better adver-
sarial robustness.

• Ensemble-in-One is a plug-in method that can be easily
applied on any CNN model (as the basic network).

• Ensemble-in-One incurs no extra inference-time cost,
as opposed to conventional ensemble methods. Specif-
ically, we only sample one path from the RGN, whose
inference cost is exactly the same as the basic network.

• Extensive experiments demonstrate the effectiveness
of Ensemble-in-One on a wide range of models and
datasets. EIO consistently outperforms the previous en-
semble training methods with a much smaller compu-
tational overhead. Moreover, EIO can achieve better
accuracy-robustness trade-offs than adversarial training
methods, especially under black-box attack scenarios,
which is more prevalent in the real world.

Related Work
Adversarial Attacks
The inherent vulnerability of CNN models raises high risk
on the security of deep learning systems. An adversary can
apply additive perturbations on a natural instance to gen-
erate an adversarial example to induce wrong predictions

of CNN models (Goodfellow, Shlens, and Szegedy 2014).
Denoting an input as x, the goal of adversarial attacks is
to find a perturbation δ such that xadv = x + δ can mis-
lead the model, where ||δ||p satisfies the intensity constraint
||δ||p ≤ ϵ to be human-invisible. To formulate that, the
adversarial attack aims at maximizing the loss L for the
model with parameters Θ on the input-label pair (x, y), i.e.
δ = argmaxδLΘ(x + δ, y), under the constraint that the
ℓp norm of the perturbation should not exceed the bound ϵ.
Usually, we use ℓ∞ norm (Goodfellow, Shlens, and Szegedy
2014; Madry et al. 2017) of the perturbations to measure
the attack’s effectiveness or model’s robustness. An attack
that requires smaller perturbations to successfully deceive
the model is regarded to be stronger. Correspondingly, a de-
fense that enforces the attacks to enlarge perturbation inten-
sity is regarded to be more effective.

A variety of adversarial attack methods have been inves-
tigated to strengthen the attack effectiveness. For example,
the fast gradient sign method (FGSM) (Goodfellow, Shlens,
and Szegedy 2014) exploits the gradient descent to gener-
ate the adversarial perturbations. As an improvement, many
studies further show the attack can be strengthened through
multi-step projected gradient descent (PGD) (Madry et al.
2017) generation, random-starting strategy, and momentum
mechanism (Dong et al. 2017). Recently, SGM (Wu et al.
2020) further finds that adding weight to the gradients go-
ing through the skip connections can make the attacks more
effective. Other prevalent attack approaches include C&W
losses (Carlini and Wagner 2017b) , M-DI2-FGSM (Xie
et al. 2019), AutoAttack (Croce and Hein 2020), etc. These
attacks provide strong and effective ways to generate adver-
sarial examples, which greatly threatens the AI systems.

Adversarial Training
To improve the robustness of CNN models, there are also
extensive countermeasures for adversarial attacks. One ac-
tive research direction targets improving the robustness of
individual models. Adversarial training (Madry et al. 2017)
optimizes the model parameters Θ on the adversarial ex-
amples generated in every step of the training stage, that
is, Θ = argminΘLΘ(x + δ, y). Therefore, the optimized
model will tend to drop non-robust features to converge bet-
ter on the adversarial data. However, adversarial training en-
courages the model to fit better on the adversarial examples,
thereby reducing the generalization on the clean data and
causing significant degradation of the clean accuracy. The
studies in (Zhang et al. 2019; Gowal et al. 2020; Wu et al.
2021) theoretically characterize the trade-offs between accu-
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racy and robustness and explore the behind working mech-
anisms. Bag of tricks (Pang et al. 2020) have been devel-
oped to obtain higher accuracy, e.g. early stopping, warmup,
learning rate scheduling, etc., while the accuracy loss is still
non-negligible.

Test-time Randomness for Adversarial Defense
There also exist studies that introduce test-time randomness
to improve the robustness. Feinman et. al. (Feinman et al.
2017) utilize the uncertainty measure in dropout networks
to detect adversarial examples. Dhillon et. al. (Dhillon et al.
2018) and Xie et. al. (Xie et al. 2017) incorporate layer-wise
weighted dropout and random input transformations during
test time to improve the robustness. Test-time randomness
is found to be effective in increasing the required distor-
tion on the model, since test-time randomness makes gen-
erating white-box adversarial examples almost as difficult
as generating transferable black-box ones (Carlini and Wag-
ner 2017a). Nevertheless, test-time randomness increases
the inference cost and can be circumvented to some extent
with the expectation-over-transformation technique (Atha-
lye, Carlini, and Wagner 2018). Instead of relying on test-
time randomness, Ensemble-in-One exploits and only ex-
ploits randomness in the training time to ensure the stability
and low cost of test-time predictions.

Ensemble Training for Adversarial Defense
Besides improving the robustness of individual models, an-
other recent research direction is to investigate the robust-
ness of model ensembles in which multiple sub-models
work together. The basic idea is that multiple sub-models
can provide diverse decisions. Ensemble methods can com-
bine multiple weak models to jointly make decisions,
thereby assembling as a stronger entirety. However, it is
demonstrated that independent training of multiple models
tends to capture similar features, which would not provide
diversities among them (Kariyappa and Qureshi 2019).

Several studies propose ensemble training methods to di-
versify the sub-models to improve the ensemble robustness.
For example, Pang et. al. treat the distribution of output pre-
dictions as a diversity criterion and they propose an adap-
tive diversity promoting (ADP) regularizer (Pang et al. 2019)
to diversify the non-max predictions of sub-models. Sanjay
et. al. regard the gradients w.r.t. the inputs as a discrim-
ination of different models, thus they propose a gradient
alignment loss (GAL) (Kariyappa and Qureshi 2019) which
takes the cosine similarity of the gradients as a criterion to
train the sub-models. The very recent work DVERGE (Yang
et al. 2020) claims that the similar non-robust features cap-
tured by the sub-models cause high adversarial transferabil-
ity among them. Therefore, the authors exploit non-robust
feature distillation and adopt mutual learning to diversify
and isolate the vulnerabilities among the sub-models, such
that the within-ensemble transferability is highly impeded.
However, as mentioned before, such ensemble methods are
overwhelmed by the fast-increasing overhead when scaling
up the ensemble. For example, DVERGE takes 11 hours to
train an ensemble with three sub-models while needs ap-
proximately 50 hours when increasing to eight. Therefore,

0 0 1

0 1 0

1 0 0
Aggregate

Figure 1: Normal ensemble training of multiple sub-models
(Left) and the proposed ensemble-in-one training within a
random gated network (Right). By selecting the paths along
augmented layers, the ensemble-in-one network can instan-
tiate nL sub-models, where n represents the augmentation
factor of the multi-gated block for each augmented layer and
L represents the number of augmented layers in the network.

a more efficient ensemble construction method is demanded
to tackle the scaling problem.

Ensemble-in-One
Basic Motivation
The conventional way to construct ensembles is to simply
aggregate multiple sub-models by averaging their predic-
tions, which is inefficient and hard to scale up. An intu-
itive way to improve the scalability of the ensemble con-
struction is to introduce an ensemble for each layer in the
network. As shown in Fig.1, we construct a random-gated
network by augmenting each parametrized layer with an n-
path gated block. Then by selecting the paths through the
augmented layers, the dynamic network can instantiate nL

varied sub-models ideally. Taking ResNet-20 as an exam-
ple, by replacing each convolution layer (ignoring the skip
connection branch) with a two-path gated module, the over-
all path count could approach 219 = 524, 288. This type
of architecture augmentation provides an approximation to
training a very large ensemble of sub-models. Then through
vulnerability-diversification mutual learning, each path will
obtain better robustness. Following this idea, we propose
Ensemble-in-One to improve the robustness of both individ-
ual models and ensembles.

Construction of the Random Gated Network
We denote a candidate neural network as N (o1, o2, ..., om),
where oi represents an operator in the network. To transform
the original network into a random gated network (RGN),
we first extract the neural architecture to obtain the connec-
tion topology and layer types. Then, we replace each param-
eterized layer (mainly convolutional layer, optionally fol-
lowed by a batch normalization layer) with a random gated
block (RGB). As shown in Fig. 2, each RGB simply con-
struct n copies of the original layer, and leverages one-hot
gates with uniform probabilities to control the open or mute
of corresponding sub-layers. Note that these copied sub-
layers are with different weights. We denote the RGN as
N (d1, d2, ..., dm), where di = (oi1, ..., oin). Let gi be the
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(a) Construction of random gated network (b) The schematic diagram of random gated block

Forward
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Figure 2: The construction of random gated network based on random gated blocks. The forward propagation will select one
path to allow the input pass. Correspondingly, the gradients also propagate backward along the same path.

Algorithm 1: Training process for Ensemble-in-One

Require: Path samples per iteration p
Require: Random Gated NetworkN with L parameterized

layers
Require: Pre-training epoch Ew, training epoch E, and

data batch Bd

Require: Optimization loss L, learning rate lr
Ensure: Trained Ensemble-in-One model

1: # pre-training of N
2: for e = 1, 2, ..., Ew do
3: for b = 1, 2, ..., Bd do
4: Random Sample Path Pi from N
5: Train Pi in batched data
6: end for
7: end for
8: # learning vulnerability diversity for N
9: for e = 1, 2, ..., E) do

10: for b = 1, 2, ..., Bd) do
11: Random sample l ∈ [1, L]
12: # randomly sample p paths
13: S=[P1, P2, ..., Pp], s.t. ∀i, j, ∃k ∈ [1, l], s.t.
Pi[k] ̸= Pj [k]

14: Get data (Xt, Yt), (Xs, Ys)← D
15: # Get distilled data
16: for i = 1, 2, ..., p do
17: X ′

i = x′
Pl

i
(Xt, Xs)

18: end for
19: ∇N ← 0
20: for i = 1, 2, ..., p do
21: ∇Pi = ∇(

∑
j ̸=i LfPi

(fPi(X
′
j), Ys))

22: ∇N = ∇N +∇Pi

23: end for
24: N = N − lr ∗ ∇N
25: end for
26: end for

gate in the ith RGB, then a specific path derived from the
RGN can be expressed as P = (g1 · d1, g2 · d2, ..., gm · dm).

For each RGB, when performing the computation, only
one of the n gates is opened at a time, and the others will
be temporarily muted. Thus, only one path of activation is
active in memory during both forward and backward passes,
keeping the memory consumption of RGN training to the
same level of training an individual model. Moreover, to en-
sure that all paths can be equally sampled and trained, each
gate in a RGB is chosen with identical probability, i.e. 1/n
if each RGB consists of n sub-operators. Therefore, the one-
hot gate function can be expressed as:

gi =


[1, 0, ..., 0] with probability 1/n,

[0, 1, ..., 0] with probability 1/n,

...
[0, 0, ..., 1] with probability 1/n.

(1)

An RGN is similar to the super network in parameter-
sharing neural architecture search, and the forward process
of an RGN is similar to evaluating a sub-architecture (Pham
et al. 2018; Cai, Zhu, and Han 2018; Ning et al. 2021).
Compared to conventional ensemble training methods, our
method is easier to scale up the ensemble. It has the same
memory requirement for activation as an individual model.

Learning Ensemble in One
The goal of learning ensemble-in-one is to encourage the di-
versity of vulnerabilities between paths within the RGN by
mutually learning from each other. LetPi andPj be two dif-
ferent paths, where we define two paths as different when at
least one of their gates is different. To diversify the vulner-
abilities of paths, we train each path by distilling the adver-
sarial features of other paths. We adopt the same adversar-
ial feature distillation strategy as previous work (Ilyas et al.
2019; Yang et al. 2020). Specifically, consider two input-
label pairs (xt, yt) and (xs, ys) independently sampled from
the training set, we construct an adversarial sample, x′

Pl
i
, by

adding perturbations on xs, so that its feature in the lth layer
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Figure 3: Robustness comparison of EIO with previous ensemble training methods. Left: adversarial accuracy under black-
box transfer attack; Right: adversarial accuracy under white-box attack. The number after the slash (/3, /5, /8) stands for the
number of sub-models within the ensemble. The evaluations include ResNet-20 and VGG-16 on CIFAR-10. The distillation
perturbation strength of VGG-16-based EIO is set as ϵd = 0.03.

in the path Pi is similar to that of xt:

x′
Pl

i
(xt, xs) = argminz||f l

Pi
(z)− f l

Pi
(xt)||2, (2)

where ||z−xs||∞ ≤ ϵd. This adversarial sample exposes the
vulnerability of path Pi on classifying xs. Therefore, train-
ing another different path Pj using x′

Pl
i
(xt, xs) encourages

Pj to circumvent the vulnerability of Pi. The optimization
objective to minimize for path Pj is:

E(xt,yt),(xs,ys),lLfPj
(x′

Pl
i
(xt, xs), ys). (3)

We expect each path to learning from the vulnerabilities
of a substantial number of other paths. Thus, the overall ob-
jective to minimize when training the ensemble-in-one RGN
can be written as:∑

Pj∼N
E(xt,yt),(xs,ys),l

∑
Pi∼N ,i̸=j

LfPj
(x′

Pl
i
(xt, xs), ys),

(4)
where N is the set of all paths in the RGN. Since it is ob-
viously impossible to involve all the paths in a training it-
eration, we randomly sample a certain number of paths by
stochastically sample the one-hot gates according to Eq.1.
We denote the number of paths sampled in each iteration as
p, and refer to the set of selected paths as S (a subset ofN ).

Algorithm 1 summarizes the training process of the RGN.
Before starting vulnerability diversification training, we pre-
train the RGN with standard training settings to quickly
boost up the training process. During the training process,
a random path is picked out in each iteration and trained
on a batch of clean data. Then for each batched data-pairs

(Xt, Yt, Xs, Ys), the process of vulnerability diversification
contains three basic steps as follows. First, we randomly
sample p different paths to be involved in the iteration. Sec-
ond, we construct the adversarial samples for distillation-
based training for the data-pair (xt, yt, xs, ys) and the sam-
pled paths according to Eq. 2. The argmin optimization in
Eq. 2 is conducted by applying a 10-step PGD. Third, we
mutually train each path by distillation using the adversar-
ial samples generated on other paths in a round-robin man-
ner. As the paths share a proportion of weights owing to the
weight sharing in the RGN, instead of instantaneously up-
dating the weights when training each path, we sum up the
gradients calculated using all paths in S and conduct a final
update using the aggregated gradients.

Model Derivation and Deployment
Once the training of RGN is finished, we sample an in-
dividual path from the RGN and removing other modules
for inference deployment. We randomly set the gates of all
RGBs and extract the sub-model by tracing its execution
path. Therefore, the architecture of the derived model for
inference is exactly the same as the basic network before
supernet augmentation. In this way, EIO has a smaller infer-
ence cost than conventional robust ensembles (Yang et al.
2020) as it doesn’t introduce any additional overhead to the
inference process. On the other hand, compared to previous
studies that apply dropout-like strategy during testing (Fein-
man et al. 2017; Dhillon et al. 2018; Xie et al. 2017), EIO
introduces only training-time randomness in ensemble train-
ing, while ensuring the test-time stability of the predictions
by removing any test-time randomness.
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Experiments and Analysis
Experiment Settings
Benchmark. We conduct experiments with the ResNet-
20 (He et al. 2016), VGG-16 (Simonyan and Zisser-
man 2014), WideResNet-34-10 (Zagoruyko and Komodakis
2016), and ResNet-18 (He et al. 2016) networks on the CI-
FAR (Krizhevsky 2009) and Tiny-ImageNet (Le and Yang
2015) datasets. Specifically, we construct the RGNs based
on these networks by substituting each convolution layer to
a n-path RGB (by default, n = 2). Overall, there are 19
RGBs for ResNet-20, 13 RGBs for VGG-16, 32 RGBs for
WideResNet-34-10, and 17 RGBs for ResNet-18. We com-
pare with multiple competitive baseline methods, including
the Baseline that trains the models in a standard way and
three previous ensemble training methods: ADP (Pang et al.
2019), GAL (Kariyappa and Qureshi 2019), and DVERGE
(Yang et al. 2020). In addition, we also include the adver-
sarial training (AdvT) method (Madry et al. 2017), the im-
proved adversarial training method TRADES (Zhang et al.
2019), TRADES with a bag of tricks (Pang et al. 2020), and
an enhanced AdvT (Gowal et al. 2020) into the comparison.

Training Details. We follow the implementation of
DVERGE (Yang et al. 2020)1 to choose the training con-
figurations of ADP, GAL, and DVERGE. The AdvT applies
PGD-10 with different perturbation strengths. For TRADES,
TRADES with a bag of tricks and AdvT (Gowal), we di-
rectly use their released codes and checkpoints2,3,4. We train
the Ensemble-in-One networks for 200 epochs using SGD
with momentum 0.9 and weight decay 0.0001. The initial
learning rate is 0.1, and decayed by 10x at the 100-th and
the 150-th epochs respectively. When deriving the individ-
ual models, we fine-tune the derived models for 0-20 epochs
(by default 5) using SGD with a learning rate of 0.001. Note
that the fine-tuning process is optional and one can adjust
the number of epochs according to the need. By default, for
an RGN training, we sample 3 paths to construct temporary
sub-ensemble per iteration (p = 3). The augmentation factor
n for each RGB is set to 2, and the PGD-based perturbation
strengths ϵd is set to 0.07 for feature distillation with 10 it-
erative steps and each step size of ϵd/10.

Threat Models. We focus more on black-box transfer at-
tacks which is more prevalent in the real world, as the white-
box attack assumes the adversary has full knowledge of the
model parameters. For black-box transfer attacks on CIFAR-
10, the involved attack methods include: (1) PGD with mo-
mentum and three random starts (Madry et al. 2017); (2) M-
DI2-FGSM (Xie et al. 2019); and (3) SGM (Wu et al. 2020).
The attacks are with different perturbation strength and the
iterative steps are set to 100 with the step size of ϵ/5. Be-
sides the cross-entropy loss, we also incorporate the C&W
loss with these attacks. Therefore, there will be 3 (surrogate
models)× 5 (attack methods, PGD with three random starts,

1https://github.com/zjysteven/DVERGE
2https://github.com/yaodongyu/TRADES
3https://github.com/P2333/Bag-of-Tricks-for-AT
4https://github.com/deepmind/deepmind-

research/tree/master/adversarial robustness
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Figure 4: Comparison of EIO with state-of-the-art adversar-
ial training methods with different training-time perturba-
tion strength. X-axis: the clean accuracy; Y-axis: the black-
box adversarial accuracy. The test-time perturbation strength
is 0.031 (8/255).

M-DI2-FGSM, and SGM) × 2 (losses) = 30 adversarial ver-
sions. For CIFAR-100 and Tiny-ImageNet, we generate 10
(2 surrogate models × PGD with 5 random start) and 5 (1
surrogate model × PGD with 5 random start) adversarial
versions respectively. We also report results under the white-
box attack setting of a 50-step PGD with a step size of ϵ/5
and 5 random starts. We choose this diverse set of attack
methods to better quantify the model robustness.

We report both the black-box and white-box adversarial
accuracy in an all-or-nothing fashion, i.e. a sample is judged
to be correctly classified only if all of its adversarial sam-
ples using different attack methods are correctly classified.
By default, we sample 1000 instances from the test set for
evaluation.

Robustness Evaluation
Comparison with Ensemble Methods. Fig.3 shows the
accuracy of the ensemble models trained by different meth-
ods with a wide range of attack perturbation strength.
ResNet-20 and VGG-16 are selected as the networks to con-
struct the ensembles and the EIO networks. The results show
that through our Ensemble-in-One method, an individual
model derived from the RGN, with the least computational
cost, outperforms than each case of the heavy ensembles
trained by previous ensemble training methods, simultane-
ously achieving comparable clean accuracy. The results sug-
gest that EIO is a more effective realization of constructing
large ensembles and brings significantly better robustness.

Comparison with Adversarial Training. AdvT has been
demonstrated as a promising approach on enhancing the ro-
bustness. Prior work attributes the enhancement to the ex-
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Model Dataset Method Clean Acc. Adv. Acc. Inference Cost

ResNet-20 CIFAR-100

Baseline 67.1 0.7 1x
AdvT(ϵ = 0.03) 49.6 42.4 1x
AdvT(ϵ = 0.02) 56.1 47.8 1x
AdvT(ϵ = 0.01) 61.6 49.7 1x

EIO 65.5 51.7 1x
GAL/3 68.6 42.9 3x

DVERGE/3 70.4 46.4 3x
EIO/3 69.4 54.3 3x

ResNet-18 Tiny-ImageNet

Baseline 50.3 4.3 1x
AdvT(ϵ = 0.03) 31.0 28.4 1x
AdvT(ϵ = 0.02) 35.1 31.4 1x
AdvT(ϵ = 0.01) 39.5 31.4 1x

EIO 46.7 33.7 1x
GAL/3 51.1 9.6 3x

DVERGE/3 53.6 13.1 3x
EIO/3 50.5 35.9 3x

Table 2: Comparison of methods on CIFAR-100 and Tiny-ImageNet. The Adv. Acc. means the black-box adversarial accuracy
with attack perturbation strength ϵ = 0.031 (8/255). The number after the slash means the number of sub-models within
corresponding ensembles during inference.

Method Baseline AdvT DVERGE/3 DVERGE/5 DVERGE/8 EIO

Training Time 0.5h 4.2h 13.5h 26.6h 49.3h 10.9h

Table 3: The training cost of ResNet-20 on CIFAR-10 with different methods. The number after the slash means the number of
sub-models within corresponding ensembles during inference.

Technique Clean Acc Adv. AccDistill RGN Mutual

91.2 0
✓ 84.7 (-6.5) 69.8 (+69.8)
✓ ✓ 87.3 (+3.6) 70.3 (+0.5)
✓ ✓ ✓ 88.3 (+1.0) 75.4 (+5.1)

Table 4: Ablation study on the involved techniques of EIO
under the black-box setting with ϵ = 0.031. “Distill” means
training every sub-model (path) by its own adversarial sam-
ples. “RGN” means training within the super-net. “Mutual”
means that every path learns the adversarial data distilled
from other paths.

clusion of non-robust features during AdvT. However, these
non-robust features might be useful to the classification ac-
curacy, resulting in trade-offs between the clean accuracy
and the robustness (Zhang et al. 2019). One can adjust the
perturbation strength in the AdvT to acquire different com-
binations of clean accuracy and adversarial robustness, as
shown in Fig.4. Three different networks are included. The
Parato curves suggest that EIO consistently outperforms
AdvT (including vanilla AdvT, TRADES, and TRADES
with a bag of tricks) on both clean and adversarial accuracy
under black-box transfer attacks.

Results on CIFAR-100 and Tiny-ImageNet. We further
evaluate the methods on CIFAR-100 and Tiny-ImageNet,
utilizing ResNet-20 and ResNet-18 as the basic networks.
Table 2 shows that EIO consistently outperforms other en-
semble training methods under black-box attack settings.
Besides, we find that ensemble inference brings significant
clean accuracy enhancements. We construct an EIO-based
ensemble by sampling its sub-models from multiple inde-
pendently trained RGNs. The simple aggregation of multiple
EIO brings improvements, too. Overall, the results demon-
strate that EIO is a more effective approach for achieving
better trade-offs on adversarial robustness and clean accu-
racy.

Ablation Studies
Ablation Study on Techniques. As shown in Table 4,
compared to the baseline, the adversarial feature distillation
trades off helps clean accuracy for much higher adversarial
robustness.

Then, the random gating mechanism helps achieve a sig-
nificant increase on clean accuracy. This is because that
the random gating prevents the network from over-fitting
to the adversarial data, which works in a similar mecha-
nism as dropout (Srivastava et al. 2014). Nevertheless, we
emphasize that EIO has essential differences with dropout
techniques from two aspects. The first is aim-aspect differ-
ence. EIO aims to construct many models to learn from each
other. Solely because EIO shares their parameters for effi-
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Figure 5: The black-box adversarial accuracy under different
sample count p per iteration.

ciency, it can be seen as dropping other paths when forward-
ing a path. The second is method-aspect difference. Vanilla
dropout drops at parameter level from a single model, while
EIO drops at module level from a supernet.

Finally, by incorporating mutual learning mechanism, the
complete EIO solution can further improve the black-box
adversarial accuracy as each path can learn from more dis-
tilled adversarial data generated from other paths.

Ablation Study on Sampling Path Count. Fig.5 shows
the curves of black-box adversarial accuracy under different
sampled path count p per training iteration. As is observed,
when the sampled paths increase, the robustness of the de-
rived individual model also improves. The underlying rea-
son is that more samples of paths participating in each itera-
tion allows more paths to be mutually trained, thereby each
path is expected to learn from richer diversities. However,
the clean accuracy drops with the increasing of path sam-
ple count, because a single operator has to adapt to more
paths simultaneously. Moreover, the training time will also
increase as the training complexity satisfies O(p2). Overall,
sampling 3 paths per iteration is the most practical choice.

Ablation Study on Fine-tuning. Recall that we apply a
fine-tuning process after deriving a sub-model for deploy-
ment. The fine-tuning is normal training (i.e. training on
clean examples in the train set) and optional while can ef-
fectively compensate for the under-convergence as the ex-
tracted sub-model was trained within a super-net. As shown
in Fig.6, appropriate fine-tuning (e.g. fewer than 10 epochs)
helps batch normalization layers capture more stable statis-
tics and slightly adapts the weight parameters, thus helping
the extracted model gain higher clean accuracy without sac-
rificing its robustness.

Training and Inference Cost
Table 3 summarizes the training time cost of different meth-
ods. As EIO applies a 10-step PGD-based adversarial fea-
ture distillation for training and sample 3 paths per training
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Figure 6: The black-box adversarial accuracy and clean ac-
curacy under different epochs of fine-tuning.

iteration, the training time cost of an EIO network is approx-
imately 2.5× than AdvT. While the training time is substan-
tially reduced compared to the DVERGE when scaling up
the ensemble. For inference cost, EIO only sample one sub-
model for final deployment. Therefore, our method intro-
duces no extra inference cost compared to AdvT or baseline
methods, and incurs far smaller inference cost than the other
ensemble training methods.

Model Derivation Stability
As in the deployment phase, an individual model will be
derived from the RGN. Because the sampling is random, it
is important to prove the stability of the derivation. Hence,
we randomly extract 8 different sub-models from the same
RGN and test their performance and robustness. Our exper-
iments demonstrate the sampled sub-models are with slight
fluctuations on the final performance. The standard deriva-
tions (stds) of the adversarial accuracy (under eps=0.031)
are only 0.24% (for VGG-16) and 0.46% (for ResNet-20),
which can prove that the final performance is not sensitive
to the sampling randomness.

Conclusions
In this work, we propose Ensemble-in-One, an approach that
constructs a random gated network (RGN) and conducts ran-
domized ensemble training. Ensemble-in-One is inherently
scalable, in which numerous sub-models can be instanti-
ated by simply sampling different paths within the RGN. By
diversifying the vulnerabilities of paths, Ensemble-in-One
can efficiently obtain models with higher robustness, while
keeping a small overhead of model training and deployment.
The individual model derived from the RGN exhibits much
better robustness than the ensemble model derived from pre-
vious ensemble training methods without sacrificing clean
accuracy. Moreover, compared with the adversarial training
methods, EIO achieves better trade-offs on the clean accu-
racy and the black-box robustness.
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