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Abstract

In the scope of “AI for Science”, solving inverse problems
is a longstanding challenge in materials and drug discovery,
where the goal is to determine the hidden structures given a set
of desirable properties. Deep generative models are recently
proposed to solve inverse problems, but these currently use ex-
pensive forward operators and struggle in precisely localizing
the exact solutions and fully exploring the parameter spaces
without missing solutions. In this work, we propose a novel ap-
proach (called iPage) to accelerate the inverse learning process
by leveraging probabilistic inference from deep invertible mod-
els and deterministic optimization via fast gradient descent.
Given a target property, the learned invertible model provides
a posterior over the parameter space; we identify these poste-
rior samples as an intelligent prior initialization which enables
us to narrow down the search space. We then perform gradi-
ent descent to calibrate the inverse solutions within a local
region. Meanwhile, a space-filling sampling is imposed on
the latent space to better explore and capture all possible so-
lutions. We evaluate our approach on three benchmark tasks
and two created datasets with real-world applications from
quantum chemistry and additive manufacturing, and find our
method achieves superior performance compared to several
state-of-the-art baseline methods. The iPage code is available
at https://github.com/jxzhangjhu/MatDesINNe.

Introduction
A fundamental problem in materials and drug discovery is
to find novel structures (e.g., molecules or crystals) with de-
sirable properties. One typical approach is to search in the
chemical space based on a specific property prediction. In-
verse design provides a promising way for this problem by
inverting this paradigm by starting with the desired function-
ality and searching for an ideal molecular structure (Sanchez-
Lengeling and Aspuru-Guzik 2018; Yao et al. 2021), as
opposed to the direct approach that maps from existing
molecules in chemical space to the properties. Mathemat-
ically speaking, inverse design tries to solve a nonlinear
inverse problem, which remains a significant challenge in
natural sciences and mathematics, and also plays a critical
role in safe decision-making with uncertainty. Typically, the
approach is to develop a mathematical operator or physical
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model Ω on how measured observations (e.g., properties)
y ∈ RM arise from the input hidden parameters (e.g., chemi-
cal space) x ∈ RD and such mapping y = Ω(x) represents
the forward process. The opposite direction, the inverse pro-
cess x = Ω−1(y), involves the inference of the hidden pa-
rameters from measurements. However, the inverse process
is ill-posed with a one-to-many mapping such that finding
Ω−1 becomes intractable.

Unfortunately, inverse design in scientific exploration dif-
fers from conventional inverse problems in that it poses sev-
eral unique additional challenges. First, the forward operator
Ω is not explicitly known. In many cases, the forward opera-
tor is modeled by first-principles calculations or large-scale
complex simulations (Lavin et al. 2021), including molecular
dynamics and density functional theory (Liu, Zhang, and Pei
2022). This challenge makes inverse design difficult to lever-
age recent advances in solving inverse problems, such as MRI
reconstruction (Wang, Ye, and De Man 2020), implanting on
images through generative models with large datasets (Asim
et al. 2020). Second, the search space x ∈ RD is often huge.
For example, small drug-like molecules have been estimated
to contain between 1023 to 1060 unique cases (Ertl and Schuf-
fenhauer 2009), while solid materials have an even larger
space. This challenge results in obvious obstacles for using
global search via Bayesian optimization or using Bayesian
inference via Markov Chain Monte Carlo (MCMC) since
either method is prohibitively slow for high-dimensional in-
verse problems (Zhang, Zhang, and Hinkle 2019). Third,
multimodal solutions have a one-to-many mapping issue. In
other words, there are multiple solutions that match the de-
sirable property. This issue leads to difficulties in pursuing
all possible solutions through a gradient-based optimization,
which converges a single deterministic solution and is easily
trapped into local minima (Zhang et al. 2021). Probabilis-
tic inference also has limitations in approximating complex
posteriors, which may cause the simple point estimates (e.g.,
maximum a posterior (MAP)) to have misleading solutions
(Sun and Bouman 2020). This work aims at addressing these
challenges by leveraging advantages from probabilistic infer-
ence and deterministic optimization to accelerate solving of
generic inverse problems. The key insight is to first learn an
approximate posterior distribution by training an invertible
neural network (INN) given paired datasets D = {xi,yi}mi=1
and then perform a local search via optimization by starting
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with these posterior samples as good initialization (called
“intelligent priors”).

Specifically, we propose a dynamic bi-directional training
scheme to obtain a backward model and a forward model
simultaneously. The backward model is used to generate pos-
terior samples x∗ given target properties y∗. These posterior
samples x∗ as intelligent priors significantly narrow down the
search space from the entire domain to a local domain. The
forward model serves as a surrogate of the forward operator
Ω and provides an accurate gradient estimate with respect
to the design space x ∈ RD via automatic differentiation.
This enables us to localize all possible solutions simultane-
ously by conducting an efficient gradient-based optimization
starting from the intelligent priors x∗. Unlike direct global
search with random initialization, our method significantly
accelerates inverse learning by conducting an efficient lo-
cal search via gradient descent on low-dimensional design
space. Compared with probabilistic inference via unsuper-
vised generative models, our inverse solutions are closer to
the ground truth since a supervised localization scheme is
performed on the posterior samples. Our method is also ap-
plicable to high-dimensional problems with relatively small
datasets given an expensive forward operator Ω. More im-
portantly, we propose an exploratory sampling strategy with
an enhanced space-filling capability to better explore and
capture all possible solutions in the design space. To the best
of our knowledge, this is the first work to investigate space-
filling sampling on the latent variable of the INN model to
improve sampling exploration with variance reduction. As
a result, we achieve superior performance in re-simulation
accuracy, space exploration, and solution diversity through
multiple artificial benchmarks. We also curate two real-world
datasets from quantum chemistry and additive manufacturing
and create a set of physically meaningful tasks and metrics for
the problem of inverse learning. We find our method achieves
superior performance compared to several state-of-the-art
baseline methods.

Related Work
Bayesian and Variational Approaches. From the inference
perspective, solving inverse problems can be achieved by
estimating the full posterior distributions of the parameters
conditioned on a target property. Bayesian methods, such
as approximate Bayesian computing (Yang et al. 2018), are
ideal choices to model the conditional posterior but this idea
still encounters various computational challenges in high-
dimensional cases (Zhang and Shields 2018a,b). An alter-
native choice are variational approaches, e.g., conditional
GANs (Wang et al. 2018) and conditional VAEs (Sohn, Lee,
and Yan 2015), which enable the efficient approximation of
the true posterior by learning the transformation between
latent variables and parameter variables. However, the di-
rect application of both conditional generative models for
inverse problems is challenging because a large dataset is
often required (Tonolini et al. 2020).

Deep Generative Models. Many recent efforts have been
made on solving inverse problems via deep generative mod-
els (Asim et al. 2020; Whang, Lindgren, and Dimakis 2021;

Whang, Lei, and Dimakis 2021; Daras et al. 2021; Sun and
Bouman 2020; Kothari et al. 2021; Song et al. 2021). For
example, Asim et al. (2020) focuses on producing a point
estimate motivated by the MAP formulation and (Whang,
Lindgren, and Dimakis 2021) aims at studying the full dis-
tributional recovery via variational inference. A follow-up
study from (Whang, Lei, and Dimakis 2021) is to study im-
age inverse problems with a normalizing flow prior. For MRI
or implanting on images, strong baseline methods exist that
benefit from explicit forward operator (Sun and Bouman
2020; Asim et al. 2020; Kothari et al. 2021). We do not ex-
pect any benefit from using our method here. Instead, our
focus is on the inverse design perspective where paired data
D = {xi,yi}mi=1 is limited since the forward operator is not
explicitly known and is often computationally intensive.

Invertible Models. Flow-based models (Rezende and Mo-
hamed 2015; Dinh, Sohl-Dickstein, and Bengio 2016;
Kingma and Dhariwal 2018; Grathwohl et al. 2018; Wu, Köh-
ler, and Noé 2020; Nielsen et al. 2020), may offer a promising
direction to infer the posterior by training on invertible ar-
chitectures. Some recent studies have leveraged this unique
property of invertible models to address several challenges in
solving inverse problems (Ardizzone et al. 2018; Kruse et al.
2021). However, these existing invertible model approaches
suffer from limitations (Ren, Padilla, and Malof 2020) in fully
exploring the parameter space, leading to missed potential
solutions, and often fail to precisely localize the optimal solu-
tions due to noisy solutions and inductive errors, specifically
in materials design problems (Fung et al. 2021, 2022).

Surrogate-based Optimization. Another approach is to
build a neural network surrogate and then conduct surrogate-
based optimization via gradient descent. This is common in
scientific and engineering applications (Forrester and Keane
2009; Gómez-Bombarelli et al. 2018; White et al. 2019).
The essential challenge is that the forward model is often
time-consuming so a faster surrogate enables an intractable
search. A recent study in the scope of surrogate-based op-
timization is the neural-adjoint (NA) method (Ren, Padilla,
and Malof 2020) which directly searches the global space
via gradient descent starting from random initialization, such
that a large number of interactions are required to converge
and its solutions are easily trapped in the local minima (Deng
et al. 2021). Although the neural-adjoint (NA) method boosts
the performance by down-selecting the top solutions from
multiple starts, the computational cost is significantly high,
specifically for high-dimensional problems.

Methodology
Augmented Inverse Learning Formulation
In natural sciences, a mathematical or physical model is often
developed to describe how measured observations y ∈ RM

arise from the hidden parameters x ∈ RD, to yield such
a mapping y = Ω(x). To completely capture all possible
inverse solutions given observed measurements, a proper in-
verse model should enable the estimation of the full posterior
distribution p(x|y) of hidden parameters x conditioned on
an observation y. One promising approach is to approxi-
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Figure 1: Original inverse problem often encounters the ill-
posed issue due to one-to-many mappings. An augmented
inverse problem is formulated based on bijective mapping
with additional latent variable z.

mate p(x|y) with a tractable probabilistic model p̂(x|y) by
leveraging the advantage of the flexibility to generate paired
training data

{
(xi,yi)

N
i=1

}
from the well-understood for-

ward process yi = Ω(xi). Invertible neural networks (INNs)
(Rezende and Mohamed 2015; Dinh, Sohl-Dickstein, and
Bengio 2016; Ardizzone et al. 2018) can be trained in the for-
ward process and then used in the invertible mode to sample
from p(x|y) for any specific y. This is achieved by adding a
latent variable z ∈ RK , which encodes the inherent informa-
tion loss in the forward process. In other words, the latent vari-
able z drawn from a Gaussian distribution p(z) = N (0, IK)
is able to encode the intrinsic information about x that is not
contained in y. To this end, an augmented inverse problem is
formulated based on such a bijective mapping (Fig. 1):

x = h(ya;ϕ) = h(y, z;ϕ), z ∼ p(z) (1)

where h is a function of y and z, parametrized by an INN
with parameters ϕ. Forward training optimizes the mapping
x → ya = [y, z] and implicitly determines the inverse map-
ping x = h(y, z). In the context of INNs, the posterior dis-
tribution p(x|y) is represented by the deterministic function
x = h(y, z) that transforms the known probability distribu-
tion p(z) to parameter x-space, conditional on measurements
y. Thus, given a chosen observation y∗ with the learned h, we
can obtain the posterior samples xk which follows the poste-
rior distribution p(x|y∗) via a transformation xk = h(y∗, zk)
with prior samples drawn from zk ∼ p(z).

The invertible architecture simultaneously learns the model
h(y, z;ϕ) of the inverse process jointly with a model f(x;ϕ)
which approximates the true forward process Ω(x):

[y, z] = f(x;ϕ) = [fy(x;ϕ), fz(x;ϕ)] = h−1(x;ϕ) (2)

where fy(x;ϕ) ≈ Ω(x), model f and h share the same
parameters ϕ in a single invertible neural network. Therefore,
our approximated posterior model p̂(x|y) is built into the
invertible neural network representation

p̂(x = h(y, z;ϕ)|y) = p(z)/ |Jx| (3)

where the Jacobian Jx can be efficiently computed by using
neural spline flows (Durkan et al. 2019).

Dynamical Bi-directional Training
To optimize the loss more effectively, we perform a dynamic
bi-directional training scheme by accumulating gradients
from both forward and backward directions before updating
the parameters, using an adaptive update strategy for the

forward and backward loss weights λ. Specifically, the INN
training is performed by minimizing the total loss:

Ltotal = λxLx + λyLy + λzLz (4)
where Ly is a forward supervised loss that matches the neu-
ral network prediction fy(xk;ϕ) to the true observation via
known forward simulation yk = Ω(xk).

Ly =
N∑

k=1

||fy(xk;ϕ)− yk||2. (5)

Lz is an unsupervised loss for the latent variable, which
penalizes deviations between the joint distribution p̂(y =
fy(x), z = fz(x)) and the product of the latent distribution
p(z) and the marginal distributions of p(y = Ω(x)):

Lz = MMD {f(xk;ϕ); p(y)p(z))} (6)
where MMD refers to the Maximum Mean Discrepancy
(Gretton et al. 2012a,b), a kernel-based approach that only
requires samples from each probability distribution to be com-
pared. Practically, Lz enforces z follow the desired Gaussian
distribution p(z), and ensures z and y are independent with-
out sharing the same information.

Lx is an unsupervised loss, which is implemented by
MMD and used to penalize the mismatch between the distri-
bution of backward predictions and the prior data distribution
p(x) if it is known,

Lx = MMD
{
f−1(yk, zk;ϕ), p(x)

}
(7)

where Lx aims to improve convergence and does not interfere
with optimization. Theoretically, if Ly and Lz has converged
to zero, and Lx is guaranteed to be zero so that the samples
drawn from Eq. (1) will follow the true posterior p(x|y∗)
for any observation y∗. Therefore, a point estimate from the
true posterior will lead to an exact inverse solution. How-
ever, practically, due to a finite training time, there is always
a difference between the Ltotal and zero loss, as well as a
residual dependency between y and z. This causes a mis-
match between the approximated posterior p̂(x|y) and the
true posterior p(x|y).

Our objective is to minimize the mismatch by optimiza-
tion with a good initialization. Assuming nt training epochs
are used, we set an initial large weight for the supervised
loss λi

y → Nℓ, i = 1, ..., nt/2, Nℓ ≫ 1 to seek an accurate
regression model fy(x;ϕ) and then perform an adaptive de-
cay when i = nt/2, .., nt and ensure λnt

y → 0 at the end
of training. The model with minimal ℓ2 loss fy(x;ϕ

∗) is
saved for prediction and gradient estimation. Meanwhile, the
weights of unsupervised loss λx and λz are set by λi

x → 0
and λi

z → 0 when i = 1, ..., nt/2 and are then adaptively in-
creased until λnt

x → Nℓ and λnt
z → Nℓ where we minimize

the residual dependency between y and z to approximate the
true posterior p(x|y). To do so, the backward MMD loss is
minimized such that the learned posterior will be closer to
the true posterior.

Localization from Posterior Samples
After finishing the dynamic bi-directional training, a set of
posterior samples can be drawn from the approximated pos-
terior distribution p̂(x|y), as the orange dots shown in Fig. 2
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Figure 2: Localizing inverse solutions from intelligent priors (posterior samples). The approximated posterior and its MAP
estimator both deviate from the exact solution but successfully narrow down the search space. Our objective is to localize the
exact solution by leveraging these posterior samples as intelligent initialization such that the process can be accelerated.

(left). Compared with the prior distribution p(x), these poste-
rior samples drawn from p(x|y) in either are able to reduce
the search space with a smaller gap from the exact solution,
which fits both unimodal and multimodal scenarios. Instead
of global random search used by surrogate-based optimiza-
tion, we localize the solutions starting from these posterior
samples which can be seen as intelligent priors (see Fig. 2
(right)) and the smaller gap can be quickly filled by gradient
descent with few steps. The local search via optimization
would significantly accelerate the localization process and
decrease the risk of local minima in global random search.
This novel idea mainly consists of three steps:
• Step 1 (Prior Exploration): Given a specific target ŷ,

repeat for a latent sample {zi ∼ p(z)}mi=1 to obtain a pos-
terior sample {x̂i ∼ p̂(x|ŷ)}mi=1 which can be interpreted
as a prior exploration of the solution space. Compared to
the samples xi directly drawn from the prior distribution
p(x), these posterior samples x̂i serve as good initializa-
tion, significantly shorten the distance to the exact inverse
solution, as explained in Fig. 2 (a) and (b).

• Step 2 (Gradient Estimation): Extract the saved regres-
sion model f̂y(x;ϕ∗) where the neural network parameters
ϕ∗ are fixed, and evaluate the model only by changing the
input x to the network. The gradient at the current input
x̂i can be defined as

gi =
∂L(f̂y(x̂i;ϕ

∗), ŷ)

∂x

∣∣∣∣
x=x̂i

x̂i ∼ p̂(x|ŷ) (8)

where L is the ℓ2 loss and the gradient gi can be efficiently
computed by automatic differentiation.

• Step 3 (Solution Localization): Precisely localize the
posterior samples drawn from p̂(x|y) to exact inverse so-
lutions via gradient descent x̂k+1

i = x̂k
i − γ gk

i , where
γ is the learning rate. We use Adam as the optimizer to
adaptively update the solution. Compared with the generic
random search in the entire space, our local search with
intelligent priors is much more efficient and the bad (local)
minima issue is naturally mitigated.

Space-Filling Sampling on Latent Space
In flow-based models, the data probability density pX (x) and
latent density pZ(z) follow the principle of probability preser-

Random sampling Classical LHS Maximin LHS

Figure 3: Space-filling sampling. 10 random samples are
used to show three sampling strategies: (a) simple random
sampling (SRS), (b) classical LHS, and (c) maximin LHS.

vation based on the change of variable theorem, which means
the probability and statistical information are preserved in
the transformation process (Li and Chen 2006). To this end,
the statistics of prior p(z) are preservably propagated to the
posterior density p(x|y). Inspired by this observation, we
propose to better manipulate the prior samples by introduc-
ing a space-filling sampling for latent space z such that a
diverse set of solutions are fully explored.

Instead of simple random sampling (SRS), we propose to
use Latin Hypercube Sampling (LHS) (Stein 1987; Shields
and Zhang 2016), which is a variance-reduced sampling
method and often used for Monte Carlo integration (McKay,
Beckman, and Conover 2000) and simulation (Zhang 2021).
As shown in Fig. 3, the LHS design shows better per-
formance on space-filling than SRS, specifically the opti-
mized LHS with maximin criteria, where an LHS design
Zn = {z1, ..., zn} that maximizes the minimum distance
between all pairs of points,

Zn = argmax
Zn

min {d(zi, zj) : i ̸= j = 1, ...,m} (9)

where d is the Euclidean distance defined by d(z, z′) =∑m
j=1(zj−z′j)

2. Unlike quasi-Monte Carlo (QMC) methods
(Caflisch et al. 1998) that are limited in high dimensional
problems, maximin LHS works well with strong space-filling
property and variance reduction capability.

iPage: Accelerating Inverse Learning Process. We pro-
pose an efficient learning algorithm for solving inverse learn-
ing problems by leveraging intelligent prior with accelerated
gradient-based estimate, with exploratory latent space sam-
pling, which consists of three core steps: training, inference,
and localization process, as explained in Algorithm 1.
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Algorithm 1:: iPage algorithm

1: Require: training data {(xi,yi)
m
i=1}, invertible neural network

model f(x;ϕ), prior distribution p(x),
2: // Training Process:
3: Initialize weight coefficients λx, λy and λz for each loss defined

in Eq. (5)-(7)
4: Define an adaptive decay scheme for λx, λy and λz during the

dynamic bi-directional training
5: Minimize the total loss in Eq. (4) via dynamic bi-directional

training with gradient descent optimizer
6: Save the forward model f̂(x;ϕ∗) with the minimal ℓ2 loss
7: // Inference Process:
8: Generate a random sample z from latent space p(z) using opti-

mized LHS with maximin criteria
9: Compute the corresponding posterior sample x̂ = f−1(ŷ, z;ϕ)

conditioned on the prior sample z and a specific observation ŷ
through an invertible transformation

10: Repeat sampling {zi ∼ p(z)}mi=1 to produce a number of pos-
terior samples {x̂i ∼ p̂(x|ŷ)}mi=1 that follow the approximated
posterior distribution p̂(x|ŷ)

11: // Localization Process:
12: Identify posterior samples {x̂i ∼ p̂(x|ŷ)}mi=1 as intelligent

prior initialization to narrowing down the search space
13: Compute the gradient gk

i at the current x̂i using f̂y(x̂i;ϕ
∗) in

Eq. (8) using automatic differentiation.
14: Localize these posterior samples precisely to exact solutions

via gradient descent x̂k+1
i = x̂k

i − γ gk
i

15: Return all possible exact inverse solutions x∗
i

Experiments
We start by demonstrating our proposed iPage method on a
2D sinewave function task and then extend our experiments to
two artificial benchmark tasks. Finally, we introduce two real-
world design problems from the field of quantum chemistry
and additive manufacturing to illustrate the performance of
learning complex high-dimensional inverse problems with
practical objectives in natural sciences and engineering.

Baseline Methods. We provide five baseline methods: (1)
Mixture density networks (MDN) (Bishop 1994), which mod-
els the posterior distribution p(x|y) using a mixture of Gaus-
sian models; (2) Invertible neural network (INN) (Ardizzone
et al. 2018), which is built on the flow-based model with
latent variables to infer the completely posterior distribution;
(3) Conditional invertible neural network (cINN) (Ardizzone
et al. 2019; Rombach, Esser, and Ommer 2020) which modi-
fies INN framework by mapping the parameter space x and
latent space z conditional on y; (4) Conditional variational
auto-encoder (cVAE) (Sohn, Lee, and Yan 2015), which en-
codes x conditional on y, into latent variables z based on the
VAE framework, and (5) Neural-adjoint (NA) (Ren, Padilla,
and Malof 2020), which directly searches the global space
via surrogate-based optimization. To perform a fair compar-
ison of all methods, we adjust neural network architectures
such that all models have roughly the same number of model
parameters. More information on benchmark details, baseline
methods, invertible architectures, and datasets can be found
in the Appendix.

Quantitative Metric. We evaluate the true forward model
Ω(x) at the generated inverse solutions x and measure the re-
simulation error, which is defined as the mean squared error
(MSE) to the target y∗, Qre-sim = Ex

{
||Ω(x)− y∗||22

}
. We

apply this metric on two different scenarios: (1) solutions
given 1000 different observations y∗

i , i = 1, ..., 1000, as
shown in Table 2); and (2) solutions given a single specific
observation y∗, as shown in Table 3.

Task Dim x Dim y Data size Target y∗

Sinewave 2 1 1.00E+04 y∗ = 1.2
Robotic Arm 4 2 1.00E+04 y∗ = [1.5, 0]

Ballistics 4 1 1.00E+04 y∗ = 5
Crystal 6 1 5.00E+03 y∗ = 0.5

Architecture 1024 1 1.00E+05 y∗ = 1.0

Table 1: Training dataset size, dimensionality, and target ob-
servation y∗ for benchmark tasks and real-world applications.

Datasets. We focus on five datasets, including three bench-
marks (sinewave, robotic arm, and ballistics) and two real-
world (crystal and architecture design) problems. As shown in
Table 1, the first four tasks are low-dimensional problems and
the last one, i.e., the architecture task is a high-dimensional
design problem in image pixel levels.

Illustrative Example: 2D Sinewave Function
To test the capability of the iPage approach for solving in-
verse problems, we use a simple 2D sinusoidal function as
a benchmark. The input parameters are x = [x1, x2] and the
output is y = sin(3πx1) + cos(3πx2). Due to its periodic
nature, multiple solutions exist (theoretically infinite) given a
specific observed y∗.

Figure 4: Localization and exploration of inverse solutions for
the 2D sinewave function. Given a specific target y∗ = 1.2,
there exits a multimodal disconnected solution space (labeled
as 1-9 in the left panel). The inverse solution using four
baseline methods (INN, cINN, cVAE, and NA) and iPage
(with SRS) are illustrated and compared at different sampling
counts ranging from 25 to 200.

For most of the existing baselines, this sinewave bench-
mark task remains a significant challenge task, specifically
for obtaining accurate and diverse inverse solutions. An ex-
ample of a fixed y∗ is shown in Fig. 4, where we compare
our proposed methods to other baselines. We note that while
the INN, cINN and cVAE methods are able to find some solu-
tions within the local mode (marked by black circles labeled
as 1-9), they fail to infer precise solutions. The NA method
performs better in localizing to the globally optimal solution
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Method Sinewave Robotic Arm Ballistics Crystal Design Architecture Design

Mixture density networks (MDN) 0.17 ± 2.3e-4 0.018 ± 1.1e-5 0.024 ± 1.3e-5 0.81 ± 2.3e-2 1.74 ± 2.5e-1
Invertible neural network (INN) 0.12 ± 7.8e-5 0.014 ± 8.2e-6 0.019 ± 9.9e-6 0.49 ± 3.9e-2 0.88 ± 9.7e-2

conditional INN (cINN) 0.11 ± 2.3e-4 0.009 ± 7.3e-6 0.421 ± 2.0e-5 0.35 ± 8.1e-2 0.76 ± 8.6e-2
conditional VAE (cVAE) 0.13 ± 3.9e-4 0.021 ± 9.0e-6 0.798 ± 1.8e-5 0.64 ± 5.6e-2 1.03 ± 1.8e-1

Neural-Adjoint (NA) 0.006 ± 4.1e-6 0.008 ± 8.8e-6 0.016 ± 1.4e-5 0.12 ± 4.4e-3 0.71 ± 1.1e-1

iPage (with maximin LHS) 0.002 ± 1.6e-6 0.006 ± 4.2e-6 0.011 ± 4.7e-6 0.11 ± 4.5e-3 0.23 ± 1.2e-2

Table 2: Performance comparison on five tasks given 1000 different observations y∗). The re-simulation error measures how
well the generated x̂ is conditioned on the observation y∗. Each task is performed 50 times to obtain the standard deviation.

but fails to fully explore all possible solutions (e.g. missing
mode 6). Our iPage method with simple random sampling
(SRS) has the same difficulty (fails to capture modes 4 and 9)
because the prior initialization fails to fully explore these lo-
cal regions. Although this space exploration issue is mitigated
by increasing the number of solutions as Ns = 100, most
of the localized solutions become concentrated on specific
modes (e.g. modes 2, 5, and 6), with only limited solutions
lie on the boundary modes (e.g. modes 9 and 3) for the case
of Ns = 200.

Figure 5: iPage (with mLHS) performance. Blue dots rep-
resent the final solutions, showing that our approach yields
uniformly distributed solutions that capture all local modes.

To better capture all potential solutions, we introduce the
iPage method with maximin LHS which leverages space-
filling sampling to achieve better results than the previous
models (see Fig. 5). All 9 local modes are evenly covered by
the optimal solutions even with a limited number of samples
(e.g., Ns = 25). The quantitative comparison for the two
scenarios is shown in Table 2 and 3 respectively. iPage (with
mLHS) shows superior performance, especially for the re-
simulation error variance. This provides a clear illustration
of the advantages of using a space-filling sampling for space
exploration and variance reduction.

Artificial Benchmark Tasks
Two artificial benchmark tasks used by Ardizzone et al.
(2018); Ren, Padilla, and Malof (2020); Kruse et al. (2021)
are further used to assess the iPage performance.

Robotic Arm Task. This is a geometric benchmark that
targets the inference of the position of a multi-jointed robotic
arm from various configurations of its joints. The inverse
problem is to obtain all possible solutions in the x-space
given any observed 2D positions y∗. For the case of multiple
different observations, iPage shows similar results to cINN
and NA but with a slightly lower variance, as shown in Table

2. In the second setting (see Table 3), iPage outperforms the
other baselines with a much lower error and variance.

Ballistics Task. In this case, cINN and cVAE fail to solve the
problem with much larger errors than the others while NA
and INN show similar performance to iPage (see Table 3). In
general, iPage outperforms the baselines in terms of overall
stability and robustness.

Real-World Applications
We further demonstrate iPage’s superiority in both natural
sciences and engineering applications.

Crystal Design Problem. We apply our approach to a chal-
lenging real-world application in materials design, specifi-
cally one for modeling the electronic properties of complex
metal oxides. Quantum chemistry simulations are performed
to simulate these materials under perturbation and obtain
their resulting electronic properties such as the band gap.
Here, we tackle the inverse problem of the band gap to strain
mapping for the case of the SrTiO3 perovskite oxide, which is
otherwise intractable to obtain from quantum chemistry. This
can be an exceptionally difficult problem due to the complex
underlying physics, and the high degree of sensitivity of the
band gap to the lattice parameters, requiring very accurate
predictions for the generated structures to succeed.

Strain is represented by changes in the crystal lattice con-
stants and angles, a, b, c, α, β, γ, which serve as the hidden
parameters x. The target property y is the electronic band gap.
5000 samples were used for training where band gaps were
obtained using quantum chemistry, representing the forward
process. Additional details can be found in the appendix. We
provide this dataset as a novel benchmark for computational
chemistry, the first such example for solid state materials. We
herein select an arbitrary target of 0.5 eV to generate our
structures and compare the performance of our model with
the existing ones. The new crystals are generated for each
model and the band gaps are then computed using quantum
chemistry for validation (see Fig.6). The performance of our
approach was found to be significantly better than the base-
line invertible models, INN, cINN, and cVAE, as shown in
Table 2 and 3. By comparison, the INN, cINN, and cVAE
models are consistently off the target by a far greater degree,
with a deviation of 0.5-1.0 eV. The generated lattice param-
eters do not deviate much from the equilibrium values (see
Fig. 6) and thus the results are unsurprisingly poor. Based
on these observations and the magnitude of the deviations,
it is unlikely these methods will provide useful results even
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Figure 6: Two real-world design applications: (Left) Crystal structure design problem in quantum chemistry and (Right)
Architected materials design problem in additive manufacturing.
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Figure 7: Total time cost (inference and localization) for 1000 solutions. The time-to-solution using iPage with other baselines on
three benchmarks are compared side-by-side.

Method Sinewave Robotic Arm Ballistics Crystal Design Architecture Design

Mixture density networks (MDN) 0.22 ± 5.1e-4 0.023 ± 2.3e-5 0.041 ± 2.9e-5 0.84 ± 3.3e-2 1.81 ± 2.0e-1
Invertible neural network (INN) 0.19 ± 9.3e-5 0.015 ± 4.7e-5 0.024 ± 1.9e-5 0.57 ± 4.7e-2 0.83 ± 9.1e-2

conditional INN (cINN) 0.16 ± 5.0e-4 0.032 ± 3.1e-5 0.652 ± 4.3e-5 0.42 ± 8.8e-2 0.82 ± 8.5e-2
conditional VAE (cVAE) 0.25 ± 7.0e-4 0.021 ± 5.6e-5 0.912 ± 3.2e-5 0.70 ± 9.0e-2 1.20 ± 1.7e-1

Neural-Adjoint (NA) 0.011 ± 9.1e-6 0.012 ± 4.8e-5 0.031 ± 4.7e-5 0.15 ± 6.6e-3 0.79 ± 9.3e-2

iPage (with maximin LHS) 0.004 ± 2.1e-6 0.008 ± 7.6e-6 0.023 ± 8.9e-6 0.14 ± 2.2e-3 0.22 ± 1.2e-2

Table 3: Performance comparison of tested methods on five tasks for 1000 solutions conditioned on a specific observation y∗.
We repeat 50 times to obtain the standard deviation for each case.

with further training data provided. Only the NA method
provides results with similar performance to iPage, though at
a significantly greater computational cost. Furthermore, the
NA method encounters difficulties for problems with a larger
dimensionality in the parameter space.

Architecture Materials Design Problem. Architected mate-
rials on length scales from nanometers to meters are desirable
for diverse applications (Mao, He, and Zhao 2020). Recent
advances in additive manufacturing have made mass produc-
tion of complex architected materials technologically and
economically feasible. This task aims to find the optimal
material layout by searching the design space (1024 dimen-
sions) given a specific target mechanical property (see more
details in the Appendix). The input is the pixel matrix for
the element, and the output is the effective Young’s modulus.
We use this example to demonstrate that iPage can well scale
to high-dimensional problems, e.g., pixel-level images, and
outperform the other baseline methods.

Computational Cost Comparison
We have demonstrated that the iPage can precisely localize
the exact inverse solutions and quantitatively outperform
INN, cINN, cVAE and MDN methods on five tasks. The NA
method has advantages in learning accuracy but shows an
obvious drawback of large computational costs compared to

the other models. Fig. 7 shows the total time cost including
the inference and localization process on five tasks using one
NVIDIA V100 GPU. Due to the invertible architecture, INN
and cINN are efficient at sampling the posterior distributions.
The time cost of iPage is slightly higher than INN, cINN
and cVAE but still significantly lower than NA even though
gradient descent is employed (few steps in local search).

Conclusion
This work proposes an efficient inverse learning approach
that utilizes posterior samples to accelerate the localization
of all inverse solutions via gradient descent. To fully explore
the parameter space, variance-reduced sampling strategies
are imposed on the latent space to improve space-filling ca-
pability. Multiple experiments demonstrate that our approach
outperforms the baselines and significantly improves the ac-
curacy, efficiency, and robustness for solving inverse prob-
lems, specifically in complex natural science and engineering
design applications. One current limitation is the efficiency
of space-filling sampling in high-dimensional spaces. Future
work will aim to improve sampling efficiency by leveraging
scalable numerical algorithms and extend iPage to broader
topics in safe and robust AI, e.g., safe decision-making with
Bayesian experimental design (Zhang, Bi, and Zhang 2021),
and privacy leakage (Li et al. 2022; Li, Zhang, and Liu 2023).
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