
Implicit Bilevel Optimization: Differentiating through Bilevel Optimization
Programming

Francesco Alesiani
NEC Laboratories Europe, Heidelberg, Germany

Francesco.Alesiani@neclab.eu

Abstract
Bilevel Optimization Programming is used to model com-
plex and conflicting interactions between agents, for ex-
ample in Robust AI or Privacy-preserving AI. Integrating
bilevel mathematical programming within deep learning is
thus an essential objective for the Machine Learning commu-
nity. Previously proposed approaches only consider single-
level programming. In this paper, we extend existing single-
level optimization programming approaches and thus pro-
pose Differentiating through Bilevel Optimization Program-
ming (BIGRAD) for end-to-end learning of models that use
Bilevel Programming as a layer. BIGRAD has wide applica-
bility and can be used in modern machine learning frame-
works. BIGRAD is applicable to both continuous and combi-
natorial Bilevel optimization problems. We describe a class
of gradient estimators for the combinatorial case which re-
duces the requirements in terms of computation complexity;
for the case of the continuous variable, the gradient compu-
tation takes advantage of the push-back approach (i.e. vector-
jacobian product) for an efficient implementation. Experi-
ments show that the BIGRAD successfully extends existing
single-level approaches to Bilevel Programming.

Introduction
Neural networks provide unprecedented improvements in
perception tasks, however, deep neural networks do not na-
tively protect against adversarial attacks nor preserve the
privacy of the training dataset. In recent years various ap-
proaches have been proposed to overcome this limitation
(Shafique et al. 2020), for example by integrating adversar-
ial training (Xiao et al. 2020). Some of these approaches re-
quire solving some optimization problems during training.
Recent approaches propose thus differentiable layers that in-
corporate either quadratic (Amos and Kolter 2017), convex
(Agrawal et al. 2019a), cone (Agrawal et al. 2019b), equi-
librium (Bai, Kolter, and Koltun 2019), SAT (Wang et al.
2019) or combinatorial (Pogančić et al. 2019; Mandi and
Guns 2020; Berthet et al. 2020) programs. The use of opti-
mization programming as a layer of differentiable systems
requires computing the gradients through these layers. With
discrete variables, the gradient is zero almost everywhere,
while with complex (black box) solvers, the gradient may
not be accessible.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: The Forward and backward passes of a Bilevel
Programming (BIGRAD) layer: the larger system has input
d and output u = hψ ◦ H ◦ hθ(d); the bilevel layer has
input z and output x, y, which are solutions of a Bilevel
optimization problem represented by the implicit function
H(x, y, z) = 0.

Proposed gradient estimates either relax the combinato-
rial problem (Mandi and Guns 2020), perturb the input vari-
ables (Berthet et al. 2020; Domke 2010) or linearly approx-
imate the loss function (Pogančić et al. 2019). These ap-
proaches though, do now allow to directly express models
with conflicting objectives, for example in structural learn-
ing (Elsken, Metzen, and Hutter 2019) or adversarial system
(Goodfellow et al. 2014). We thus consider the use of bilevel
optimization programming as a layer. Bilevel Optimization
Program (Kleinert et al. 2021; Dempe 2018), also known as
a generalization of Stackelberg Games, is the extension of
a single-level optimization program, where the solution of
one optimization problem (i.e. the outer problem) depends
on the solution of another optimization problem (i.e. the
inner problem). This class of problems can model interac-
tions between two actors, where the action of the first de-
pends on the knowledge of the counter-action of the second.
Bilevel Programming finds application in various domains,
as in Electricity networks, Economics, Environmental pol-
icy, Chemical plants, defense, and planning (Dempe 2018).
We introduce at the end of the section example applications
of Bilevel Optimization Programming.

In general, Bilevel programs are NP-hard (Dempe 2018),
they require specialized solvers and it is not clear how to
extend single-level approaches since the standard chain rule
is not directly applicable. By modeling the bilevel optimiza-

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

14683

tion problem as an implicit layer (Bai, Kolter, and Koltun
2019), we consider the more general case where 1) the solu-
tion of the bilevel problem is computed by a bilevel solver;
thus leveraging on powerful solver developed over various
decades (Kleinert et al. 2021); and 2) the computation of the
gradient is more efficient since we do not have to propagate
gradient through the solver.

We thus propose Differentiating through Bilevel Opti-
mization Programming (BIGRAD):
• BIGRAD comprises of forwarding pass, where existing

solvers (e.g. (Yang, Ji, and Liang 2021)) can be used,
and backward pass, where BIGRAD estimates gradient
for both continuous and combinatorial problems based
on sensitivity analysis;

• we show how the proposed gradient estimators relate
to the single-level analogous and that the proposed ap-
proach is beneficial in both continuous and combinatorial
optimization learning tasks.

Adversarial Attack in Machine Learning Bilevel pro-
gramming is used the represents the interaction between
a machine learning model (y) and a potential attacker (x)
(Goldblum, Fowl, and Goldstein 2019) and is used to in-
crease the resilience to intentional or unintended adversarial
attacks.

Min-Max Problems Min-max problems are used to
model robust optimization problems (Ben-Tal, El Ghaoui,
and Nemirovski 2009), where a second variable represents
the environment and is constrained to an uncertain set that
captures the unknown variability of the environment.

Closed-Loop Control of Physical Systems Bilevel Pro-
gramming is able to model the interaction of a dynamical
system (x) and its control sub-system (y), as, for example,
of an industrial plant or a physical process. The control sub-
system changes based on the state of the underlying dynami-
cal system, which itself solves a physics constraint optimiza-
tion problem (de Avila Belbute-Peres et al. 2018).

Interdiction Problems Two actors’ discrete Interdiction
problems (Fischetti et al. 2019) arise when one actor (x)
tries to interdict the actions of another actor (y) under bud-
get constraints. These problems can be found in marketing,
protecting critical infrastructure, and preventing drug smug-
gling to hinder nuclear weapon proliferation.

Differentiable Bilevel Optimization Layer
We model the Bilevel Optimization Program as an Implicit
Layer (Bai, Kolter, and Koltun 2019), i.e. as the solution
of an implicit equation H(x, y, z) = 0. We thus compute
the gradient using the implicit function theorem, where z is
given and represents the parameters of our system we want
to estimate, and x, y are output variables (Fig.1). We also as-
sume we have access to a bilevel solver (x, y) = SolveH(z),
e.g. (Yang, Ji, and Liang 2021). The bilevel Optimization
Program is then used as layer of a differentiable system,
whose input is d and output is given by u = hψ ◦ SolveH ◦
hθ(d) = hψ,θ(d), where ◦ is the function composition op-
erator. We want to learn the parameters ψ, θ of the function

hψ,θ(d) that minimize the loss functionL(hψ,θ(d), u), using
the training data Dtr = {(d, u)N tr

i=1}. In order to be able to
perform the end-to-end training, we need to back-propagate
the gradient dzL of the Bilevel Optimization Program Layer,
which can not be accomplished only using the chain rule.

Continuous Bilevel Programming
We now present the definition of the continuous Bilevel Op-
timization problem, which comprises two non-linear func-
tions f, g, as

min
x∈X

f(x, y, z) y ∈ argmin
y∈Y

g(x, y, z) (1)

where the left part problem is called outer optimization
problem and resolves for the variable x ∈ X , with X = Rn.
The right problem is called the inner optimization problem
and solves for the variable y ∈ Y , with Y = Rm. The vari-
able z ∈ Rp is the input variable and is a parameter for the
bilevel problem. Min-max is a special case of Bilevel op-
timization problem miny∈Y maxx∈X g(x, y, z), where the
minimization functions are equal and opposite in sign. In the
Supplementary Material (Alesiani 2023), we describe how
the model of Eq. 1 can be extended in the case of linear and
nonlinear constraints.

Combinatorial Bilevel Programming
When the variables are discrete, we restrict the objective
functions to be multi-linear (Greub 1967). Various important
combinatorial problems are linear in discrete variables, e.g.
vehicle routing Problem (VRP), traveling salesman problem
(TSP), boolean satisfiability problem (SAT), which can be
written as

min
x∈X

⟨z, x⟩A + ⟨y, x⟩B , y ∈ argmin
y∈Y

⟨w, y⟩C + ⟨x, y⟩D
(2)

The variables x, y have domains in x ∈ X, y ∈ Y , where
X,Y are convex polytopes that are constructed from a set
of distinct points X ⊂ Rn,Y ⊂ Rm, as their convex hull.
The outer and inner problems are Integer Linear Programs
(ILPs). The multi-linear operator is represented by the in-
ner product ⟨x, y⟩A = xTAy . We only consider the case
where we have separate parameters for the outer and inner
problems, z ∈ Rp and w ∈ Rq .

BIGRAD: Gradient Estimation
BIGRAD provides gradient estimations for both continuous
and discrete problems. We can identify the following com-
mon basic steps (Alg.1):
1. In the forward pass, solve the combinatorial or continu-

ous Bilevel Optimisation problem as defined in Eq.1(or
Eq.2) using existing solver (SolveH(z)) e.g. (Yang, Ji,
and Liang 2021);

2. During the backward pass, compute the gradient dzL
(and dwL) using the suggested gradients (see ”Gradient
Estimation” sections) starting from the gradients on the
output variables ∇xL and ∇yL.

14684

Algorithm 1: BIGRAD Layer: Bilevel Optimization Pro-
gramming Layer using BIGRAD

1. Input: Training sample (d̃, ũ)
2. Forward Pass:

(a) Compute (x, y) ∈ {x, y : H(x, y, z) = 0} using
Bilevel Solver: (x, y) ∈ SolveH(z)

(b) Compute the loss function L(hψ ◦H ◦ hθ(d̃), ũ),
(c) Save (x, y, z) for the backward pass

3. Backward Pass:
(a) updates the parameter of the downstream layers ψ us-

ing back-propagation
(b) For the continuous variable case, compute based on

Theorem 2 around the current solution (x, y, z), with-
out solving the Bilevel Problem

(c) For the discrete variable case, use the gradient esti-
mates of Theorem 3 (for the discrete case: Eq.8, or
Eq.9) by solving, when needed, the two separate prob-
lems

(d) Back-propagate the estimated gradient to the down-
stream parameters θ

Continuous Optimization Gradient Estimation
To evaluate the gradient of the variables z versus the loss
function L, we need to propagate the gradients of the two
output variables x, y through the two optimization problems.
We can use the implicit function theorem to approximate
locally the function z → (x, y). We have thus the following
main results1.
Theorem 1. Considering the bilevel problem of Eq.1, we
can build the following set of equations that represent the
equivalent problem around a given solution x∗, y∗, z∗:

F (x, y, z) = 0 G(x, y, z) = 0 (3)

where

F (x, y, z) = ∇xf −∇yf∇yG∇xG, G(x, y, z) = ∇yg
(4)

where we used the short notation f = f(x, y, z), g =
g(x, y, z), F = F (x, y, z), G = G(x, y, z)

Theorem 2. Consider the problem defined in Eq.1, then
the total gradient of the parameter z w.r.t. the loss func-
tion L(x, y, z) is computed from the partial gradients
∇xL,∇yL,∇zL as

dzL = ∇zL− |∇xL ∇yL|
∣∣∣∣∇xF ∇yF
∇xG ∇yG

∣∣∣∣−1 ∣∣∣∣∇zF
∇zG

∣∣∣∣
(5)

The implicit layer is thus defined by the two conditions
F (x, y, z) = 0 and G(x, y, z) = 0. We notice that Eq.5 can
be solved without explicitly computing the Jacobian matri-
ces and inverting the system, but by adopting the Vector-
Jacobian product approach we can proceed from left to right
to evaluate dzL. In the following section, we describe how
affine equality constraints and nonlinear inequality can be
1 Proofs are in the Supplementary Material (Alesiani 2023)

used when modeling f, g. We also notice that the solution of
Eq.5 does not require solving the original problem, but only
applying matrix-vector products, i.e. linear algebra, and the
evaluation of the gradient that can be computed using au-
tomatic differentiation. The extension of Theorem.2 to cone
programming is presented the Supplementary Material (Ale-
siani 2023).

Combinatorial Optimization Gradient Estimation
When we consider discrete variables, the gradient is zero al-
most everywhere. We thus need to resort to estimating gradi-
ents. For the bilevel problem with discrete variables of Eq.2,
when the solution of the bilevel problem exists and its solu-
tion is given (Kleinert et al. 2021), Thm.3 gives the gradients
of the loss function with respect to the input parameters.

Theorem 3. Given the Eq.2 problem, the partial variation
of a cost function L(x, y, z, w) on the input parameters has
the following form:

dzL = ∇zL+ [∇xL+∇yL∇xy]∇zx (6a)
dwL = ∇wL+ [∇xL∇yx+∇yL]∇wy (6b)

The ∇xy,∇yx terms capture the interaction between
outer and inner problems. We could estimate the gradients in
Thm.3 using the perturbation approach suggested in (Berthet
et al. 2020), which estimates the gradient as the expected
value of the gradient of the problem after perturbing the in-
put variable, but, similar to REINFORCE (Williams 1992),
this introduces large variance. While it is possible to reduce
variance in some cases (Grathwohl et al. 2017) with the use
of additional trainable functions, we consider alternative ap-
proaches as described in the following.

Differentiation of Black-Box Combinatorial Solvers
(Pogančić et al. 2019) propose a way to propagate the gra-
dient through a single-level combinatorial solver, where
∇zL ≈ 1

τ [x(z + τ∇xL) − x(z)] when x(z) =
argmaxx∈X⟨x, z⟩. We thus propose to compute the varia-
tion on the input variables from the two separate problems
of the Bilevel Problem:

∇zL ≈ 1/τ [x(z + τA∇xL, y)− x(z, y)] (7a)
∇wL ≈ 1/τ [y(w + τC∇yL, x)− y(w, x)] (7b)

or alternatively, if we have only access to the Bilevel solver
and not to the separate ILP solvers, we can express

∇z,wL ≈ 1/τ [s(v + τE∇x,yL)− s(v)] (8)

where x(z, y) and y(w, x) represent the solutions of the two
problems separately, s(v) = (z, w) → (x, y) the complete
solution to the Bilevel Problem, τ → 0 is a hyper-parameter

and E =

[
A 0
0 C

]
. This form is more convenient than Eq.6

since it does not require computing the cross terms, ignoring
thus the interaction of the two levels.

Straight-Through Gradient In estimating the input vari-
ables z, w of our model, we may not be interested in the
interaction between the two variables x, y. Let us consider,

14685

for example, the squared ℓ2 loss function defined over the
output variables

L2(x, y) = L2(x) + L2(y)

whereL2(x) = 1
2∥x−x

∗∥22 and x∗ is the true value. The loss
is non-zero only when the two vectors disagree, and with in-
teger variables, it counts the difference squared, or, in the
case of the binary variables, it counts the number of differ-
ences. If we compute ∇xL

2(x) = (x − x∗) in the binary
case, we have that ∇xi

L2(x) = +1 if x∗i = 0 ∧ xi = 1,
∇xi

L2(x) = −1 if x∗i = 1 ∧ xi = 0, and 0 otherwise.
This information can be directly used to update the zi vari-
able in the linear term ⟨z, x⟩, thus we can estimate the gra-
dients of the input variables as ∇ziL

2 = −λ∇xiL
2 and

∇wiL
2 = −λ∇yiL

2, with some weight λ > 0. The intu-
ition is that the weight zi associated with the variable xi is
increased when the value of the variable xi reduces. In the
general multilinear case, we have additional multiplicative
terms. Following this intuition (see Sec.A.3), we thus use it
as an estimate of the gradient of the variables

∇zL = −A∇xL ∇wL = −C∇yL (9)
This is equivalent in Eq.2 where ∇zx = ∇wy = −I and
∇yx = 0, thus ∇xy = 0. This update is also equivalent
to Eq.7, without the solution computation. The advantage of
this form is that it does not require solving for an additional
solution in the backward pass. For the single-level problem,
the gradient has the same form as the Straight-Through gra-
dient proposed by (Bengio, Léonard, and Courville 2013),
with surrogate gradient ∇zx = −I .

Related Work
Bilevel Programming in Machine Learning Various pa-
pers model machine learning problems as Bilevel problems,
for example in Hyper-parameter Optimization (MacKay
et al. 2019; Franceschi et al. 2018), Meta-Feature Learn-
ing (Li and Malik 2016), Meta-Initialization Learning (Ra-
jeswaran et al. 2019), Neural Architecture Search (Liu, Si-
monyan, and Yang 2018), Adversarial Learning (Li et al.
2019) and Multi-Task Learning (Alesiani et al. 2020). In
these works, the main focus is to compute the solution to
the bilevel optimization problems. In (MacKay et al. 2019;
Lorraine and Duvenaud 2018), the best response function is
modeled as a neural network and the solution is found us-
ing iterative minimization, without attempting to estimate
the complete gradient. Many bilevel approaches rely on the
use of the implicit function to compute the hyper-gradient
(Sec. 3.5 of (Colson, Marcotte, and Savard 2007)) but do
not use bilevel as a layer.

Quadratic, Cone and Convex single-level Programming
Various works have addressed the problem of differenti-
ate through quadratic, convex, or cone programming (Amos
2019; Amos and Kolter 2017; Agrawal et al. 2019b,a). In
these approaches, the optimization layer is modeled as an
implicit layer and for the cone/convex case, the normalized
residual map is used to propagate the gradients. Contrary
to our approach, this work only addresses single-level prob-
lems. These approaches do not consider combinatorial opti-
mization.

Implicit Layer Networks While classical deep neural
networks perform a single pass through the network at in-
ference time, a new class of systems performs inference by
solving an optimization problem. Examples of this are Deep
Equilibrium Network (DEQ) (Bai, Kolter, and Koltun 2019)
and NeurolODE (NODE) (Chen et al. 2018). Similar to our
approach, the gradient is computed based on a sensitivity
analysis of the current solution. These methods only con-
sider continuous optimization.

Combinatorial Optimization (CO) Various papers esti-
mate gradients of single-level combinatorial problems using
relaxation. (Wilder, Dilkina, and Tambe 2019; Elmachtoub
and Grigas 2017; Ferber et al. 2020; Mandi and Guns 2020)
for example use ℓ1, ℓ2 or log barrier to relax the Integer Lin-
ear Programming (ILP) problem. Once relaxed the problem
is solved using standard methods for continuous variable op-
timization. An alternative approach is suggested in other pa-
pers. For example, in (Pogančić et al. 2019) the loss func-
tion is approximated with a linear function and this leads
to an estimate of the gradient of the input variable similar
to the implicit differentiation by perturbation form (Domke
2010). (Berthet et al. 2020) is another approach that uses
also perturbation and change of variables to estimate the gra-
dient in an ILP problem. SatNet (Wang et al. 2019) solves
MAXSAT problems by solving a continuous semidefinite
program (SDP) relaxation of the original problem. These
works only consider single-level problems.

Discrete Latent Variables Discrete random variables pro-
vide an effective way to model multi-modal distributions
over discrete values, which can be used in various machine
learning problems. Gradients of discrete distribution are not
mathematically defined, thus, in order to use the gradient-
based method, gradient estimations have been proposed. A
class of methods is based on the Gumbel-Softmax estimator
(Maddison, Mnih, and Teh 2016). Gradient estimation of the
exponential family of distributions over discrete variables is
estimated using the perturb-and-MAP method in (Niepert,
Minervini, and Franceschi 2021).

Predict Then Optimize Predict then Optimize (two-
stage) (Elmachtoub and Grigas 2017; Ferber et al. 2020)
or solving linear programs and submodular maximization
from (Wilder, Dilkina, and Tambe 2019) solve optimization
problems when the cost variable or the minimization func-
tion is directly observable. On the contrary, in our approach
we only have access to a loss function on the output of the
bilevel problem, thus allowing us to use it as a layer.

Neural Combinatorial Optimization (NCO) NCO em-
ploys deep neural networks to derive efficient CO heuristics.
NCO includes supervised learning (Joshi, Laurent, and Bres-
son 2019) and reinforcement learning (Kool, Van Hoof, and
Welling 2019).

Experiments
We evaluate BIGRAD with continuous and combinato-
rial problems to show that improves over single-level ap-
proaches. In the first experiment, we compare the use of

14686

(a)

0 5 10 15 20 25 30

0.22

0.23

0.24

0.25

0.26

0.27

0.28 BiGrad
AdvOptNet

(b)

Figure 2: (a) Visualization of the Optimal Control Learning
network, where a disturbance ϵt is injected based on the con-
trol signal ut. (b) Comparison of the training performance
(cost vs iteration) for N = 2, T = 20 and epochs=10 of the
BIGRAD and the Adversarial version of the OptNet (Amos
and Kolter 2017).

BIGRAD versus the use of the implicit layer proposed in
(Amos and Kolter 2017) for the design of Optimal Control
with adversarial noise. In the second part, after experiment-
ing with an adversarial attack, we explore the performance
of BIGRAD with two combinatorial problems with Inter-
diction, where we adapted the experimental setup proposed
in (Pogančić et al. 2019). In these latter experiments, we
compare the formulation in Eq.8 (denoted by Bigrad(BB))
and the formulation of Eq.9 (denoted by Bigrad(PT)). In
addition, we compare with the single level BB-1 from
(Pogančić et al. 2019) and single level straight-through
(Bengio, Léonard, and Courville 2013; Paulus, Maddison,
and Krause 2021), with the surrogate gradient ∇zx = −I ,
(PT-1) gradient estimations. We compare against Supervised
learning (SL), which ignores the underlying structure of the
problem and directly predicts the solution of the bilevel
problem.

Optimal Control with Adversarial Disturbance
We consider the design of robust stochastic control for a Dy-
namical System (Agrawal et al. 2019b). The problem is to
find a feedback function u = ϕ(x) that minimizes

min
ϕ

E
1

T

T∑
t=0

∥xt∥2 + ∥ϕ(xt)∥2 (10a)

s.t. xt+1 = Axt +Bϕ(xt) + wt, ∀t (10b)

where xt ∈ Rn is the state of the system, while wt is a i.i.d.
random disturbance and x0 is given initial state. To solve
this problem we use Approximate Dynamic Programming
(ADP) (Wang and Boyd 2010) that solves a proxy quadratic
problem

min
ut

uTt Put + xtQut + qTut s.t. ∥ut∥2 ≤ 1 (11)

We can use the optimization layer as shown in Fig.2(a) and
update the problem variables (e.g. P,Q, q) using gradient
descent. We use the linear quadratic regulator (LQR) solu-
tion as the initial solution (Kalman 1964). The optimization

LQR OptNet Bilevel

Adversarial 2.736 0.2722 0.2379
(10 steps)
(30 steps) - 0.2511 0.2181

Table 1: Optimal Control Average Cost; Bilevel approach
improves (lower cost) over the two-step approach because
is able to better capture the interaction between noise and
control dynamics.

L∞ ≤ α DCNN Bi-DCNN CNN CNN*

0 62.9 ± 0.3 64.0 ± 0.4 63.4 ± 0.7 63.6 ± 0.5
5 42.6 ± 1.0 44.5 ± 0.2 43.8 ± 1.2 44.3 ± 1.0

10 23.5 ± 1.5 25.3 ± 0.8 24.3 ± 1.0 24.2 ± 1.0
15 14.4 ± 1.4 15.6 ± 0.7 14.6 ± 0.7 14.3 ± 0.4
20 9.1 ± 1.2 10.0 ± 0.6 9.2 ± 0.4 8.9 ± 0.2
25 6.1 ± 1.0 6.8 ± 0.5 6.0 ± 0.2 5.9 ± 0.2
30 3.9 ± 0.7 4.4 ± 0.5 3.9 ± 0.2 3.9 ± 0.1

Table 2: Performance on the adversarial attack with discrete
features, with Q = 10. DCNN is the single-level discrete
CNN, Bi-DCNN is the bilevel discrete CNN, CNN is the
vanilla CNN, while CNN* is the CNN where we add the
bilevel discrete layer after vanilla training.

module is replicated for each time step t, similarly to the
Recursive Neural Network (RNN).

We can build a resilient version of the controller in the
hypothesis that an adversarial is able to inject a noise of lim-
ited energy, but is arbitrarily dependent on the control u, by
solving the following bilevel optimization problem

max
ϵ

Q(ut, xt + ϵ) s.t. ||ϵ|| ≤ σ (12a)

ut(ϵ) = argmin
ut

Q(ut, xt) s.t. ∥ut∥2 ≤ 1 (12b)

where Q(u, x) = uTPu+xtQu+q
tu and we want to learn

the parameters z = (P,Q, q), where y = ut, x = ϵ of Eq.1.
We evaluate the performance to verify the viability of

the proposed approach and compare with LQR and OptNet
(Amos and Kolter 2017), where the outer problem is substi-
tuted with the best response function that computes the ad-
versarial noise based on the computed output; in this case,
the adversarial noise is a scaled version of Qu of Eq.11.
Tab.1 and Fig.2(b) present the performance using BIGRAD,
LQR, and the adversarial version of OptNet. BIGRAD im-
proves over two-step OptNet (Tab.1), because is able to
better model the interaction between noise and control dy-
namic.

Adversarial ML with Discrete Latent Variables
Machine learning models are heavily affected by the in-
jection of intentional noise (Madry et al. 2017; Goodfel-
low, Shlens, and Szegedy 2014). An adversarial attack typi-
cally requires access to the machine learning model, in this
way the attack model can be used during training to include
its effect. Instead of training an end-to-end system as in

14687

gradient accuracy [12x12 maps] accuracy [18x18 maps] accuracy [24x24 maps]
type train validation train validation train validation

BIGRAD (BB) 95.8 ± 0.2 94.5 ± 0.2 97.1 ± 0.0 96.4 ± 0.2 98.0 ± 0.0 97.8 ± 0.0
BIGRAD (PT) 91.7 ± 0.1 91.6 ± 0.1 94.3 ± 0.0 94.2 ± 0.1 95.7 ± 0.0 95.6 ± 0.1

BB-1 95.9 ± 0.2 91.7 ± 0.1 96.7 ± 0.2 94.5 ± 0.1 97.1 ± 0.1 96.3 ± 0.2
PT-1 88.3 ± 0.2 87.5 ± 0.2 90.9 ± 0.4 90.6 ± 0.5 92.8 ± 0.1 92.8 ± 0.2

SL 100.0 ± 0.0 26.2 ± 2.4 99.9 ± 0.1 20.2 ± 0.5 99.1 ± 0.2 14.0 ± 1.0

Table 3: Performance on the Dynamic Programming Problem with Interdiction. SL uses ResNet18.

(Goldblum, Fowl, and Goldstein 2019), where the attacker is
aware of the model, we consider the case where the attacker
can inject a noise at the feature level, as opposed to the input
level (as in (Goldblum, Fowl, and Goldstein 2019)), this al-
lows us to model the interaction as a bilevel problem. Thus,
to demonstrate the use of a bilevel layer, we design a system
that is composed of a feature extraction layer, followed by
a discretization layer that operates on the space of {0, 1}m,
where m is the hidden feature size, followed by a classifica-
tion layer. The network used in the experiments is composed
of two convolutional layers with max-pooling and two linear
layers, all with relu activation functions, while the classifi-
cation is a linear layer. We consider a more limited attacker
that is not aware of the loss function of the model and does
not have access to the full model, but rather only to the input
of the discrete layer and is able to switch Q discrete vari-
ables, The interaction of the discrete layer with the attacker
is described by the following bilevel problem:

min
x∈Q

max
y∈B

⟨z + x, y⟩. (13)

where Q represents the sets of all possible attacks, B is the
budget of the discretization layer and y is the output of the
layer. For the simulation, we compute the solution by sort-
ing the features by values and considering only the first B
values, while the attacker will obscure (i.e. set to zero) the
first Q positions. The output y thus will have ones on the
Q to B non-zero positions, and zero elsewhere. We train
three models, on CIFAR-10 dataset for 50 epochs. For com-
parison we consider:1) the vanilla CNN network (i.e. with-
out the discrete features); 2) the network with the single-
level problem (i.e. the single-level problem without attacker)
and; 3) the network with the bilevel problem (i.e. the min-
max discretization problem defined in Eq.13). We then test
the networks to adversarial attack using the PGD (Madry
et al. 2017) attack similar to (Goldblum, Fowl, and Goldstein
2019). Similar results apply for FGSM attack (Fast Gradi-
ent Sign Attack) (Goodfellow, Shlens, and Szegedy 2014).
We also tested the network trained as a vanilla network,
where we added the min-max layer after training. From the
results (Tab.2), we notice: 1) The min-max network shows
improved resilience to adversarial attack wrt to the vanilla
network, but also with respect to the max (single-level) net-
work; 2) The min-max layer applied to the vanilla trained
network is beneficial to adversarial attack; 3) The min-max
network does not significantly change performance in pres-
ence of adversarial attack at the discrete layer (i.e. between
Q=0 and Q=10). This example shows how bilevel layers can

be successfully integrated into a Machine Learning system
as differentiable layers.

Dynamic Programming: Shortest Path with
Interdiction
We consider the problem of the Shortest Path with Interdic-
tion, where the set of possible valid paths (see Fig.3(a)) is Y
and the set of all possible interdiction is X . The mathemati-
cal problem can be written as

min
y∈Y

max
x∈X

⟨z + x⊙ w, y⟩ (14)

where ⊙ is the element-wise product. This problem is multi-
linear in the discrete variables x, y, z. The z, w variables

(a)

(b)

Figure 3: (a) Example Shortest Path in the Warcraft II tile
set of (Guyomarch 2017). (b) Example Shortest Path with-
out (left) and with interdiction (middle). Even a small inter-
diction (right) has a large effect on the output.

are the output of the neural network whose inputs are the
Warcraft II tile images. The aim is to train the parameters
of the weight network, such that we can solve the shortest
path problem only based on the input image. For the experi-
ments, we followed and adapted the scenario of (Pogančić
et al. 2019) and used the Warcraft II tile maps of (Guy-
omarch 2017). We implemented the interdiction Game us-
ing a two-stage min-max-min algorithm (Kämmerling and
Kurtz 2020). In Fig.3(b) it is possible to see the effect of
interdiction on the final solution. Tab.3 shows the perfor-
mances of the proposed approaches, where we allow for

14688

gradient accuracy accuracy accuracy
type k train validation k train validation k train validation

BB 8 89.2 ± 0.1 89.4 ± 0.2 10 91.9 ± 0.1 92.0 ± 0.1 12 93.5 ± 0.1 93.5 ± 0.2
PT 8 89.3 ± 0.0 89.4 ± 0.1 10 92.0 ± 0.0 91.9 ± 0.1 12 93.7 ± 0.1 93.7 ± 0.1
BB-1 8 84.0 ± 0.4 83.9 ± 0.4 10 87.4 ± 0.3 87.5 ± 0.4 12 89.3 ± 0.1 89.3 ± 0.1
PT-1 8 84.1 ± 0.4 84.1 ± 0.3 10 87.3 ± 0.3 87.0 ± 0.3 12 89.3 ± 0.0 89.5 ± 0.2
SL 8 94.2 ± 5.0 10.7 ± 3.9 10 92.7 ± 5.4 9.4 ± 0.4 12 91.4 ± 2.3 9.3 ± 1.2

Table 4: Performance in terms of the accuracy of the TSP use case with interdiction. SL has higher accuracy during train but
fails at test time. BB and PT are BIGRAD variants.

B = 3 interdictions and we used tile size of 12×12, 18×18,
24× 24. The loss function is the Hamming and ℓ1 loss eval-
uated on both the shortest path y and the intervention x. The
gradient estimated using Eq.8 (BB) provides more accurate
results, at double of computation cost of PT. The single-level
BB-1 approach outperforms PT, but shares similar computa-
tional complexity, while single-level PT-1 is inferior to PT.
As expected, SL outperforms other methods during training,
but completely fails during validation. Bigrad improves over
single-level approaches because includes the interaction of
the two problems.

(a)

(b)

Figure 4: Example of TSP with 8 cities and the comparison
of a TSP tour without (a) or with (b) a single interdiction.
Even a single interdiction has a large effect on the final tour.

Combinatorial Optimization: Travel Salesman
Problem with Interdiction
Travel Salesman Problem (TSP) with interdiction consists of
finding the shortest route y ∈ Y that touches all cities, where
some connections x ∈ X can be removed. The mathematical
problem to solve is given by

min
y∈Y

max
x∈X

⟨z + x⊙ w, y⟩ (15)

where z, w are cost matrices for the salesman and intercep-
tor. Similar to the dynamic programming experiment, we

implemented the interdiction Game using a two-stage min-
max-min algorithm (Kämmerling and Kurtz 2020). Fig.4
shows the effect of a single interdiction. The aim is to learn
the weight matrices, trained with the interdicted solutions
on a subset of the cities. Tab.4 describes the performance in
terms of accuracy on both the shortest tour and intervention.
We use Hamming and ℓ1 loss function. We only allow for
B = 1 intervention but considered k = 8, 10, and 12 cities
from a total of 100 cities. Single and two-level approaches
perform similarly in the training and validation. Since the
number of interdiction is limited to one, the performance
of the single-level approach is not catastrophic, while the
supervised learning approach completely fails in the vali-
dation set. Bigrad thus improves over single-level and SL
approaches. Since Bigrad(PT) has a similar performance of
BIGRAD (BB), thus PT is preferable in this scenario, since
it requires fewer computation resources.

Conclusions
BIGRAD generalizes existing single-level gradient estima-
tion approaches and can incorporate Bilevel Programming
as a learnable layer in modern machine learning frame-
works, which can model conflicting objectives as in adver-
sarial attacks problems. The proposed novel gradient estima-
tors are also efficient and the proposed framework is widely
applicable to both continuous and discrete problems. The
impact of BIGRAD has a marginal or similar cost with re-
spect to the complexity of computing the solution of the
Bilevel Programming problems. We show how BIGRAD is
able to learn complex logic when the cost functions are
multi-linear.

Limitations
Our approach models bilevel problems with discrete and
continuous variables, but we have not explored the mixed
integer programming problems, with mixed continuous and
discrete variables. We rely on the use of existing solvers to
compute the current solution and do not analyze the effect
of using approximated solutions, thus we leave it to the next
works to explore the potential to jointly solve and differen-
tiate bilevel problems.

Ethical Statement
The present work does not have ethical implications, but
shares with other machine learning approach the potential
to be used in a large multitude of applications; we expect

14689

our contribution to be used for the benefit and progress of
our society.

References
Agrawal, A.; Amos, B.; Barratt, S.; Boyd, S.; Diamond, S.;
and Kolter, Z. 2019a. Differentiable convex optimization
layers. arXiv:1910.12430.
Agrawal, A.; Barratt, S.; Boyd, S.; Busseti, E.; and Moursi,
W. M. 2019b. Differentiating through a cone program.
arXiv:1904.09043.
Alesiani, F. 2023. Implicit Bilevel Optimization: Dif-
ferentiating through Bilevel Optimization Programming.
arXiv:2302.14473.
Alesiani, F.; Yu, S.; Shaker, A.; and Yin, W. 2020. Towards
Interpretable Multi-Task Learning Using Bilevel Program-
ming. arXiv:2009.05483.
Amos, B. 2019. Differentiable optimization-based modeling
for machine learning. Ph.D. thesis, PhD thesis. Carnegie
Mellon University.
Amos, B.; and Kolter, J. Z. 2017. Optnet: Differentiable
optimization as a layer in neural networks. In International
Conference on Machine Learning, 136–145. PMLR.
Bai, S.; Kolter, J. Z.; and Koltun, V. 2019. Deep equilibrium
models. arXiv:1909.01377.
Ben-Tal, A.; El Ghaoui, L.; and Nemirovski, A. 2009. Ro-
bust optimization. Princeton university press.
Bengio, Y.; Léonard, N.; and Courville, A. 2013. Estimat-
ing or propagating gradients through stochastic neurons for
conditional computation. arXiv:1308.3432.
Berthet, Q.; Blondel, M.; Teboul, O.; Cuturi, M.; Vert, J.-P.;
and Bach, F. 2020. Learning with differentiable perturbed
optimizers. arXiv:2002.08676.
Chen, R. T.; Rubanova, Y.; Bettencourt, J.; and Duvenaud,
D. 2018. Neural ordinary differential equations. In Ander-
son, D., ed., Neural Information Processing Systems, 22–30.
American Institute of Physics.
Colson, B.; Marcotte, P.; and Savard, G. 2007. An overview
of bilevel optimization. Annals of operations research,
153(1): 235–256.
de Avila Belbute-Peres, F.; Smith, K.; Allen, K.; Tenen-
baum, J.; and Kolter, J. Z. 2018. End-to-end differentiable
physics for learning and control. Advances in NeurIPS.
Dempe, S. 2018. Bilevel optimization: theory, algorithms
and applications. TU Bergakademie Freiberg, Fakultät für
Mathematik und Informatik.
Domke, J. 2010. Implicit differentiation by perturbation. Ad-
vances in NeurIPS, 23: 523–531.
Elmachtoub, A. N.; and Grigas, P. 2017. Smart” predict,
then optimize”. arXiv:1710.08005.
Elsken, T.; Metzen, J. H.; and Hutter, F. 2019. Neural archi-
tecture search: A survey. The Journal of Machine Learning
Research, 20(1): 1997–2017.
Ferber, A.; Wilder, B.; Dilkina, B.; and Tambe, M. 2020. Mi-
paal: Mixed integer program as a layer. In AAAI, volume 34,
1504–1511.

Fischetti, M.; Ljubić, I.; Monaci, M.; and Sinnl, M. 2019.
Interdiction games and monotonicity, with application to
knapsack problems. INFORMS Journal on Computing,
31(2): 390–410.
Franceschi, L.; Frasconi, P.; Salzo, S.; Grazzi, R.; and Pon-
til, M. 2018. Bilevel programming for hyperparameter opti-
mization and meta-learning. In International Conference on
Machine Learning, 1568–1577. PMLR.
Goldblum, M.; Fowl, L.; and Goldstein, T. 2019. Adver-
sarially robust few-shot learning: A meta-learning approach.
arXiv:1910.00982.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. Advances in NeurIPS.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014. Explain-
ing and harnessing adversarial examples. arXiv:1412.6572.
Grathwohl, W.; Choi, D.; Wu, Y.; Roeder, G.; and Duve-
naud, D. 2017. Backpropagation through the void: Opti-
mizing control variates for black-box gradient estimation.
arXiv:1711.00123.
Greub, W. 1967. Multilinear Algebra. Springer Verlag.
Guyomarch, J. 2017. Warcraft ii open-source map editor.
http://github.com/war2/war2edit. Accessed: 2021-08-09.
Joshi, C. K.; Laurent, T.; and Bresson, X. 2019. An effi-
cient graph convolutional network technique for the travel-
ling salesman problem. arXiv:1906.01227.
Kalman, R. E. 1964. When is a linear control system opti-
mal? Trans ASME, J. Basic Eng., 51–60.
Kämmerling, N.; and Kurtz, J. 2020. Oracle-based algo-
rithms for binary two-stage robust optimization. Computa-
tional Optimization and Applications, 77(2): 539–569.
Kleinert, T.; Labbé, M.; Ljubić, I.; and Schmidt, M. 2021.
A Survey on Mixed-Integer Programming Techniques in
Bilevel Optimization. EURO Journal on Computational Op-
timization, 9: 100007.
Kool, W.; Van Hoof, H.; and Welling, M. 2019. Attention,
learn to solve routing problems! ICLR.
Li, K.; and Malik, J. 2016. Learning to optimize.
arXiv:1606.01885.
Li, Y.; Song, L.; Wu, X.; He, R.; and Tan, T. 2019. Learning
a bi-level adversarial network with global and local percep-
tion for makeup-invariant face verification. Pattern Recog-
nition, 90: 99–108.
Liu, H.; Simonyan, K.; and Yang, Y. 2018. Darts: Differen-
tiable architecture search. arXiv:1806.09055.
Lorraine, J.; and Duvenaud, D. 2018. Stochas-
tic hyperparameter optimization through hypernetworks.
arXiv:1802.09419.
MacKay, M.; Vicol, P.; Lorraine, J.; Duvenaud, D.; and
Grosse, R. 2019. Self-tuning networks: Bilevel optimiza-
tion of hyperparameters using structured best-response func-
tions. arXiv:1903.03088.
Maddison, C. J.; Mnih, A.; and Teh, Y. W. 2016. The con-
crete distribution: A continuous relaxation of discrete ran-
dom variables. arXiv:1611.00712.

14690

Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and
Vladu, A. 2017. Towards deep learning models resistant to
adversarial attacks. arXiv:1706.06083.
Mandi, J.; and Guns, T. 2020. Interior Point Solving for LP-
based prediction+ optimisation. arXiv:2010.13943.
Niepert, M.; Minervini, P.; and Franceschi, L. 2021. Implicit
MLE: backpropagating through discrete exponential family
distributions. Advances in Neural Information Processing
Systems, 34: 14567–14579.
Paulus, M. B.; Maddison, C. J.; and Krause, A. 2021. Rao-
Blackwellizing the Straight-Through Gumbel-Softmax Gra-
dient Estimator. In arXiv:2010.04838, 11.
Pogančić, M. V.; Paulus, A.; Musil, V.; Martius, G.; and Ro-
linek, M. 2019. Differentiation of blackbox combinatorial
solvers. In International Conference on Learning Represen-
tations.
Rajeswaran, A.; Finn, C.; Kakade, S.; and Levine, S. 2019.
Meta-learning with implicit gradients. arXiv:1909.04630.
Shafique, M.; Naseer, M.; Theocharides, T.; Kyrkou, C.;
Mutlu, O.; Orosa, L.; and Choi, J. 2020. Robust machine
learning systems: Challenges, current trends, perspectives,
and the road ahead. IEEE Design & Test, 37(2): 30–57.
Wang, P.-W.; Donti, P.; Wilder, B.; and Kolter, Z. 2019.
Satnet: Bridging deep learning and logical reasoning using
a differentiable satisfiability solver. In ICML, 6545–6554.
PMLR.
Wang, Y.; and Boyd, S. 2010. Fast evaluation of quadratic
control-Lyapunov policy. IEEE Transactions on Control
Systems Technology, 19(4): 939–946.
Wilder, B.; Dilkina, B.; and Tambe, M. 2019. Melding the
data-decisions pipeline: Decision-focused learning for com-
binatorial optimization. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine learning, 8(3-4): 229–256.
Xiao, T.; Tsai, Y.-H.; Sohn, K.; Chandraker, M.; and Yang,
M.-H. 2020. Adversarial learning of privacy-preserving and
task-oriented representations. In AAAI.
Yang, J.; Ji, K.; and Liang, Y. 2021. Provably faster algo-
rithms for bilevel optimization. Advances in Neural Infor-
mation Processing Systems, 34: 13670–13682.

14691

