
Shielding in Resource-Constrained Goal POMDPs

Michal Ajdarów, Šimon Brlej, Petr Novotný
Faculty of Informatics, Masaryk University
{xajdarow,xbrlej,petr.novotny}@fi.muni.cz

Abstract

We consider partially observable Markov decision processes
(POMDPs) modeling an agent that needs a supply of a cer-
tain resource (e.g., electricity stored in batteries) to operate
correctly. The resource is consumed by the agent’s actions
and can be replenished only in certain states. The agent aims
to minimize the expected cost of reaching some goal while
preventing resource exhaustion, a problem we call resource-
constrained goal optimization (RSGO). We take a two-step
approach to the RSGO problem. First, using formal methods
techniques, we design an algorithm computing a shield for a
given scenario: a procedure that observes the agent and pre-
vents it from using actions that might eventually lead to re-
source exhaustion. Second, we augment the POMCP heuris-
tic search algorithm for POMDP planning with our shields
to obtain an algorithm solving the RSGO problem. We im-
plement our algorithm and present experiments showing its
applicability to benchmarks from the literature.

Introduction
Partially observable Markov decision processes (POMDPs)
are the standard model for decision making under uncer-
tainty. While POMDPs are computationally demanding to
solve, advances in heuristic search (Silver and Veness 2010)
and reinforcement learning (Bhattacharya et al. 2020) al-
lowed for tackling large POMDP models. Recently, increas-
ing attention is being paid to safety aspects of autonomous
decision making as opposed to pure optimization of the ex-
pected rewards or costs (Garcı́a and Fernández 2015). In-
deed, heuristic and learning techniques can be susceptible to
leading the decision-making agent into dangerous situations,
and additional care must be taken to formally guarantee the
absence of such a risky behavior.

Shielding. A promising approach to obtaining such safety
guarantees is offered by the concept of permissive controller
synthesis (Dräger et al. 2015; Junges et al. 2016), which was
later distilled into the concept of shielding (Alshiekh et al.
2018). Intuitively, a shield σ is a function which inputs the
agent’s current information X (in a POMDP, this would be
the whole history of the agent’s actions and observations)
and outputs a list of allowed actions which the agent can

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

use in the current situation without risking violation of its
safety specification in the future. The shielding process then
forces the agent to only consider, in a situation described
by available information X , the allowed actions in the list
σ(X). Shields are typically computed via formal methods
approaches, and hence they can guarantee that the shielded
algorithm satisfies the desired safety specification.

Consumption Models and RSGO Problem. In this pa-
per, we focus on safe decision making in agents that require
some uninterrupted supply of a resource (such as electric-
ity) to operate correctly. Such agents can be encountered,
e.g., in robotics (Notomista, Ruf, and Egerstedt 2018), and
we model them via the consumption paradigm (Brázdil et al.
2012), where the available amount of the resource is repre-
sented by an integer from the set {0, 1, . . . , ca}, the number
ca denoting the agent’s battery capacity. Each action of the
agent consumes some amount of the resource (i.e., decreases
the resource level), and the resource can be replenished to
the full capacity only in special reload states (e.g., charg-
ing stations). The safety specification is that the agent must
never run out of the resource. A crucial property of con-
sumption models (such as consumption MDPs (Blahoudek
et al. 2020)) is that the resource levels are not encoded in
the model’s states (since this would blow up the state space
by a factor exponential in the bit-size of ca). Instead, the
amount of resource consumed is specified for each state-
action pair, and the agent then tracks its resource level itself.
To account for the fact that, apart from preventing resource
exhaustion, the agent aims to do something useful, we study
the resource-safe goal optimization (RSGO) problem in the
consumption setting: the agent aims to reach a given set of
goal states with probability 1 (i.e., almost-surely) at the min-
imal expected cost, while preventing resource exhaustion.

Limitations of Previous Work. The previous approaches
to consumption models for resource-constrained decision
making under uncertainty suffer from two key limitations:
First, they consider only perfectly observable setting, i.e.,
consumption MDPs. Second, they only consider computing
policies satisfying qualitative criteria: avoiding resource ex-
haustion and almost-surely reaching a goal state; optimiza-
tion of quantitative criteria, such as the expected cost of
achieving a goal, was not considered.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

14674

Our Contribution. In this paper, we overcome both afore-
mentioned limitations: we present a method for solving a
combination of qualitative and quantitative criteria in par-
tially observable consumption MDPs (CoPOMDPs). Our
contribution has two essential parts: First, we show how
to design an algorithm computing shields in consumption
POMDPs prohibiting exactly those behaviors that lead to
resource exhaustion or that violate the possibility of even-
tually reaching a goal state. Hence, our shields handle the
qualitative aspect of the RSGO problem. Second, to han-
dle also the quantitative aspect, we augment the well-known
POMCP heuristic planning algorithm (Silver and Veness
2010) with our shields, thus obtaining an algorithm for the
finite-horizon approximation of the RSGO problem. We im-
plement our new algorithm and demonstrate its applicability
to benchmarks derived from the literature.

Outline of Techniques. The previous work (Blahoudek
et al. 2020) presented an algorithm that for perfectly ob-
servable consumption MDPs (CoMDPs) computes a policy
ensuring almost-sure goal reachability while preventing re-
source exhaustion. The algorithm runs in time polynomial in
the size of the CoMDP, so in particular in time polynomial in
the bit-size of ca . We reduce the computation of shields for
CoPOMDPs to the CoMDP problem of (Blahoudek et al.
2020). The reduction is non-trivial: in particular, we show
that the standard technique of constructing a belief support
MDP (Chatterjee et al. 2016; Junges, Jansen, and Seshia
2021; Baier, Bertrand, and Größer 2008) and then applying
the algorithm for perfectly observable MDPs is not directly
usable in the consumption setting.

Related Work. Shielding in MDPs and POMDPs was
studied w.r.t. state safety specification (avoiding critical
states) (Alshiekh et al. 2018), ensuring almost-sure reach-
ability of a goal state (Junges, Jansen, and Seshia 2021),
or guaranteeing that the payoff is almost-surely above some
threshold (Chatterjee et al. 2017). The related notion of per-
missive controller synthesis has been studied in more quan-
titative settings of probabilistic reachability and expected
cost (Dräger et al. 2015; Junges et al. 2016). To our best
knowledge, our paper is the first to consider shielding for
resource-constrained agents modeled via POMDPs. While
shielding for CoPOMDPs could be in principle reduced to
state safety shielding by encoding resource level into states,
this would blow-up the state space by the factor equal to
the battery capacity. As demonstrated already for CoMDPs
in (Blahoudek et al. 2020), the “resource levels in states”
approach is highly inefficient when compared to methods
tailored to consumption models.

Resource-constrained planning is particularly rele-
vant in the application domain of autonomous (land-
based/aerial/underwater) vehicles, e.g., (Notomista, Ruf,
and Egerstedt 2018; Mitchell et al. 2015; Eaton et al. 2018).
In formal methods and verification, resource-constrained
agents are typically modeled in the consumption framework
(used in this paper) or energy framework. The former has
been considered in both non-probabilistic (Brázdil et al.
2012, 2014) and probabilistic (Blahoudek et al. 2020,
2021) settings, but not in partially observable ones. The

energy framework differs from the consumption one by
handling reloads: instead of atomic reloads in reload states,
a “negative consumption” is enabled for some state-action
pairs, allowing for incremental reloading. Various classes
of energy models have been considered, e.g., (Chakrabarti
et al. 2003; Bouyer et al. 2008; Brázdil, Kučera, and
Novotný 2016; Mayr et al. 2017; Degorre et al. 2010), and
while they can be seen as more general than consumption
models, they are not known to admit algorithms running in
time polynomial in the bit-size of the capacity ca .

The constrained optimization aspect present in
CoPOMDPs is similar in spirit to constrained (PO)MDPs
(C(PO)MDPs) (Altman 1999; Undurti and How 2010;
Poupart et al. 2015). While both approaches fit the
same framework of constrained optimization, the types
of constraints are actually quite different. In particular,
Co(PO)MDPs cannot be viewed as a special case of
C(PO)MDPs, and vice versa. The key difference is that
in C(PO)MDPs, there are penalty functions determining
one-step penalties, and the constraint is that the expected
aggregated penalty is below a given threshold. (Aggrega-
tion functions such as discounted, total, or mean payoff
are typically considered.) On the other hand, the constraint
in Co(PO)MDPs is on the intermediate values of the
consumption, not on the expectation of its aggregate values.
C(PO)MDPs can impose constraints such as “the expected
total amount of the resource consumed by the agent is
≤ B,” which does not guarantee that the agent does not run
out of the resource between two reloads. Hence, the two
models are incomparable.

Preliminaries
We denote by D(X) the set of all probability distributions
over an at most countable set X and by supp(d) the support
of a distribution d. For n ∈ N we denote by [n] the integer
interval {0, 1, . . . , n} ∪ {⊥}, where ⊥ is a special element
deemed smaller than all integers.

Definition 1 (CoPOMDPs.). A consumption partially ob-
servable Markov decision process (CoPOMDP) is a tuple
C = (S,A, δ,Z,O, C,R, ca), where S is a finite set of
states, A is a finite set of actions, δ : S × A → D(S)
is a probabilistic transition function that given a state s
and an action a ∈ A gives the probability distribution
over the successor states, Z is a finite set of observations,
O : S → D(Z) is a probabilistic observation function
that maps every state to a distribution over observations,
C : S ×A→ N is a resource consumption function, R ⊆ S
is the set of reload states, and ca ∈ N+ is a resource capac-
ity.

We often abbreviate δ(s, a)(s′) and O(s)(o) by δ(s′|s, a)
and O(o|s), respectively.

For (s, a) ∈ S × A we denote by Succ(s, a) the set of
successor states of s under a, i.e., the support of δ(s, a). We
say that two states s, t ∈ S are lookalikes if they can produce
the same observation, i.e., if supp(O(s))∩supp(O(t)) ̸= ∅.

Dynamics of CoPOMDPS. A CoPOMDP C evolves in
discrete time steps. The situation at time t ∈ N is described

14675

by a pair of random variables, St and Lt, denoting the cur-
rent state and the current resource level at time t, respec-
tively. The agent cannot observe the state directly, instead
receiving an observation Ot ∈ Z sampled according to the
current state and O: Ot ∼ O(St). The initial state is given
by the initial distribution λ0 ∈ D(S), i.e., S0 ∼ λ0, while
L0 will be typically fixed to a concrete initial resource level
ℓ0 ∈ [ca]. Then, in every step t, the agent selects an ac-
tion At from A according to a policy π. The policy makes
a (possibly randomized) decision based on the current his-
tory Ht = O0L0A0O1L1A1 . . . Ot−1Lt−1At−1OtLt, a fi-
nite alternating sequence of hitherto witnessed observations,
resource levels, and actions; i.e., At ∼ π(Ht). The new state
St+1 is then sampled according to the transition function δ:
St+1 ∼ δ(St, At). To describe the resource dynamics, we
define a resource update function ∆: [ca] × S × A → [ca]
s.t. ∆(ℓ, s, a) denotes the resource level after making a step
from s using action a, provided that the previous resource
level was ℓ: if ℓ = ⊥, then ∆(ℓ, s, a) = ⊥ and otherwise

∆(ℓ, s, a) =

ℓ− C(s, a) if 0 ≤ ℓ− C(s, a) ∧ s ̸∈ R,

ca − C(s, a) if 0 ≤ ca − C(s, a) ∧ s ∈ R,

⊥ otherwise.

We then put Lt+1 = ∆(Lt, St, At).
When referring to CoPOMDP dynamics, we use upper-

case to denote random variables (St, Ot, At, etc.) and lower-
case for their concrete values, e.g., ht for a concrete history
of length t. We denote by Hist the set of all possible histories
in a given CoPOMDP, and by len(h) a length of a history h,
i.e., the number of action appearances in h. We denote by ℓh
the last resource level of history h.

Assumptions: Observable Resource and Zero Cycles.
Including resource levels in histories amounts to making the
levels perfectly observable. This is a reasonable assumption,
as we expect a resource-constrained agent to be equipped
with a resource load sensor. As long as this sensor has at
least some guaranteed accuracy ε, for an observed resource
level L we can report ⌊L − ε⌋ to the agent as a conserva-
tive estimate of the resource amount. We also assume that
the agent can recognize whether it is in a reload state or not,
i.e., a reload state is never a lookalike of a non-reload state.
Finally, we assume that the CoPOMDP does not allow the
agent to indefinitely postpone consuming a positive amount
of a resource unless a goal state (see below) has already
been reached. This is a technical assumption which does not
impede applicability, since we typically model autonomous
agents whose every action consumes some resource.

Optimization in Goal CoPOMDPs. In what follows, we
denote by Pπ the probability measure induced over the tra-
jectories of a CoPOMDP by a policy π, and by Eπ the cor-
responding expectation operator.

In a goal CoPOMDP, we are given a set of goal states
G ⊆ S. A policy π is a positive-goal policy if there exists
ϵ > 0 such that it reaches a goal state with probability at
least ϵ:

Pπ(St ∈ G for some t ∈ N) ≥ ϵ,

and a goal policy if it is a positive-goal policy with ϵ = 1.

We assume that all goal states g ∈ G are absorbing, i.e.,
δ(g | g, a) = 1 for all a ∈ A; that the self-loop on g has a
zero consumption; and that the agent can observe reaching
a goal, i.e., no goal state is lookalike with a non-goal state.
This captures the fact that reaching a goal ends the agent’s
interaction with the environment.

We study the problem of reaching a goal in a most effi-
cient way while preventing resource exhaustion. To this end,
we augment the CoPOMDP with a cost function cost : S ×
A→ R≥0, stipulating that the self-loops on goal states have
zero costs (we can also allow negative costs for some state-
action pairs, as long as such pairs can appear only finitely
often on each trajectory: these can be used, e.g., as one-time
“rewards” for the agent reaching a goal state). Then the total
cost of a policy π is the quantity

TC(π) = Eπ

[∞∑
t=0

cost(St, At)

]
.

Resource-Constrained Goal Optimization. A policy π is
safe if it ensures that the resource is never exhausted; due
to the discrete nature of CoPOMDPs, this is equivalent to
requiring that the exhaustion probability is zero:

Pπ(Lt = ⊥ for some t ∈ N) = 0.

In the resource-constrained goal optimization (RSGO) prob-
lem, we aim to find a policy π minimizing TC(π) subject to
the constrain that π is a safe goal policy.

Belief Supports for CoPOMDPs. When working with
POMDPs, one often does not work directly with histo-
ries but with their suitable statistics. The constraints in the
RSGO problem are qualitative, and hence qualitative statis-
tics should be sufficient for satisfying resource safety. This
motivates the use of belief supports. For each history h ∈
Hist, the belief support of h is the set Bel(h) ⊆ S of all
states in which the agent can be with a positive probability
after observing history h. The standard formal definition of a
belief support (Chatterjee et al. 2016) needs to be extended
to incorporate resource levels. This extension is somewhat
technical, and we defer it to the full version. Similarly to
standard belief supports, it holds that for a history h = ĥaoℓ

with prefix ĥ, given Bel(ĥ), a, o, ℓ, and last resource level of
ĥ, we can compute Bel(h) in quadratic time. Thus, the agent
can efficiently update its belief support when making a step.

Given a belief support B, state s ∈ B, and any his-
tory ĥaoℓ s.t. B = Bel(ĥ) and O(o|t) > 0 for some
t ∈ Succ(s, a), we say that the belief support Bel(ĥaoℓ)
is the s-successor of B under a. Slightly abusing the no-
tation, we denote by Succ(B, a, s) the set of all possible
s-successors of B under a. We also denote Succ(B, a) =⋃

s∈B Succ(B, a, s). Given B and a (or s), Succ(B, a) and
Succ(B, a, s) can be computed in polynomial time.

Shielding for CoPOMDPs
Informally, a shield is an algorithm which, in each step, dis-
ables some actions (based on the available information) and
thus prevents the agent from using them. In this paper, we
formalize shields as follows:

14676

Definition 2. A shield is a function σ : Hist × A → {1, 0}.
We say that σ enables action a ∈ A in history h if σ(h, a) =
1, otherwise σ disables a.

We say that policy π conforms to σ if it never selects a
disabled action, i.e., if σ(h, a) = 0 implies π(h)(a) = 0, for
all h ∈ Hist, a ∈ A.

A shield σ is support-based if σ(h, a) = σ(h′, a) for any
action a and histories h, h′ s.t. Bel(h) = Bel(h′) and ℓh =
ℓh′ . We treat support-based shields as objects of type 2S ×
[ca] × A → {1, 0}. A support-based shield σ is succinct if
for every B ∈ 2S and every a ∈ A there is a threshold τB,a

(possibly equal to∞) such that σ(B, ℓ, a) = 1⇔ ℓ ≥ τB,a.

Succinct shield can be represented by a table of size
O(2|S| · |A|) storing the values τB,a. Hence, we treat them
as functions of the type 2S ×A→ [ca] ∪ {∞}.
RSGO Problem and Shields. We aim to construct shields
taking care of the qualitative constraints in the RSGO prob-
lem. To this end, our shields need to prevent two types of
events: directly exhausting the resource, and getting into a
situation where a goal state cannot be reached almost surely
without risking resource exhaustion. The latter condition can
be formalized via the notion of a trap:
Definition 3. A tuple (B, ℓ), where B ⊆ 2S , is a trap if
setting the initial distribution λ0 to the uniform distribu-
tion over B and the initial resource level L0 to ℓ yields a
CoPOMDP in which no safe goal policy exists.

Moreover, an ideal shield should not over-restrict the
agent, i.e., it should allow any behavior that does not pro-
duce some of the two events above. The following definition
summarizes our requirement for shields.
Definition 4. A shield σ is exact if it has the following three
properties:
• every policy conforming to σ is safe; and
• each policy π conforming to σ avoids traps, i.e., satisfies

Pπ((Bel(Ht), Lt) is a trap for some t ∈ N) = 0; and
• every safe goal policy conforms to σ.

Later in the paper, we show how to employ a heuris-
tic search augmented by an exact shield to solve a finite-
horizon approximation of the RSGO problem. Before that,
we present an algorithm which, given a CoPOMDP C, com-
putes an exact shield for C and checks whether the RSGO
problem for C has a feasible solution.

Computing Exact Shields
We construct exact shields by computing threshold levels.
These indicate, for each situation, what is the minimal re-
source level with which the agent can still manage to almost-
surely reach a goal state without exhausting the resource.
Definition 5. Let C be a CoPOMDP and h ∈ Hist be its
history. The threshold level and positive-threshold level of h
in C are the quantities TLevC

=1(h) and TLevC
>0(h), respec-

tively, equal to the smallest resource level ℓ ∈ [ca] that has
the following property: if we set the initial distribution λ0

of C to the uniform distribution over the set Bel(h) and the
initial resource level L0 to ℓ, then the resulting CoPOMDP
has a:

• safe goal policy in the case of TLevC
=1(h);

• safe positive-goal policy in the case of TLevC
>0(h).

In the case such a resource level does not exist at all, we
set the respective value to∞. We omit the superscript if C is
clear from the context.

The next lemma connects threshold levels to shields.1

Lemma 1. Let σ be an exact shield. Then for each h ∈ Hist
and each a ∈ A we have that σ(h, a) = 1 if and only if ℓh
is greater than or equal to the smallest number τ s.t. for
any s ∈ Bel(h) and any valid history of the form haoℓ
s.t. O(o|t) > 0 for some t ∈ Succ(s, a), it holds that
∆(τ, s, a) ≥ TLev=1(haoℓ).

I.e., an action can be enabled iff all possible outcomes of
that action lead to a situation where the current resource
level is at least the threshold level for that situation. Note
that Lemma 1 entails the existence of a unique (up to values
in histories that already exhausted the resource) exact shield.
Moreover, since threshold levels of a history h only depend
on Bel(h), this exact shield is support-based and succinct.

Computing Threshold Levels in POMDPs
We build on the fact, established in the previous work,
that threshold levels can be efficiently computed for per-
fectly observable consumption Markov decision processes,
or CoMDPs. In CoMDPs, the agent can perfectly observe
the current state St and the history of past states. For nota-
tional convenience, we treat CoMDPs as a special case of
CoPOMDPs in which Z = S and each state always pro-
duces itself as its unique observation: we thus omit the ob-
servations and observation function from the description of
a CoMDP.

Theorem 1 ((Blahoudek et al. 2020)). In a CoMDP, the val-
ues TLev=1(h) and TLev>0(h) depend only on the last ob-
servation (i.e., state) of h. Moreover, for each state s, the
values TLev=1(s) and TLev>0(s) – the common values of
TLev=1(h) and TLev>0(h), respectively, for all h’s whose
last state equals to s – can be computed in polynomial time.

The main idea of our approach is to turn a given
CoPOMDP P into a finite CoMDP that captures the aspects
of CoPOMDP dynamics pertaining to threshold levels. Be-
low, we present a construction of such a CoMDP.

Consumption Consistency. The construction assumes
that the input CoPOMDP is consistent, i.e., C(s, a) =
C(t, a) for each pair of lookalike states s, t. Any CoPOMDP
can be easily transformed into a consistent one by splitting
each probabilistic transition δ(s, a)(t) with a dummy state
ts,a in which the consumption depending on s and a takes
place. (The state ts,a emits the value C(s, a) as its observa-
tion, which only gives the agent information that he is guar-
anteed to get in the next step anyway).

Lemma 2. Given a CoPOMDP C, one can construct, in time
linear in the size of C, an equivalent (in terms of policies and
their costs) consistent CoPOMDP C′.

1Full proofs, missing constructions, and benchmark details in
the full version (Ajdarów, Brlej, and Novotný 2022).

14677

Token CoMDPs. A token CoMDP is our generaliza-
tion of a “POMDP to MDP” construction used in (Baier,
Bertrand, and Größer 2008) to prove decidability of almost-
sure reachability in (standard) POMDPs. States of the to-
ken CoMDP correspond to tuples (B,α), where B is a be-
lief support in the original CoPOMDP and α ∈ B is a
“token”, signifying the agent’s guess of the current state
(α can also equal a special symbol ε, representing an in-
valid guess). Formally, given a consistent CoPOMDP C =
(S,A, δ,Z,O, C,R, ca) we construct a token CoMDP CT =
(ST , A, δT , CT , RT , ca) such that:
• ST contains all reachable tuples (B,α) s.t. B ⊆ 2S is a

belief support in C and α is either an element of B or a
special symbol ε (“empty guess”);

• for each (B,α) ∈ ST and each a ∈ A we have
that δT ((B,α), a) is a uniform distribution over the set
SuccT ((B,α), a) defined as follows:
– if α ̸= ε, we add to SuccT ((B,α), a) all tuples of the

form (B′, α′), where B′ ∈ Succ(B, a) and α′ satisfies
one of the following: either α′ ∈ Succ(α, a) ∩ B′ or
Succ(α, a) ∩B′ = ∅ and α′ = ε;

– if α = ε, we add to SuccT ((B,α), a) all tuples of the
form (B′, ε), where B′ ∈ Succ(B, a)

• for each (B,α) ∈ ST and each a ∈ A we put
CT ((B,α), a) = C(s, a) where s is an arbitrary element
of B (this definition is correct since C is consistent).

• RT contains those tuples (B,α) ∈ ST such that B ⊆ R.

Pruning Token CoMDPs and Computing Exact Shields.
It is not correct to directly apply the algorithm of (Bla-
houdek et al. 2020) to the token MDP, as the following ex-
ample shows.
Example 1. Consider the CoPOMDP C pictured in the left
part of Figure 1, with the corresponding token CoMDP in
the right (the position of the token is given by the hat symbol,
e.g., {p̂, q} represents the state ({p, q}, p)). There exists no
safe goal policy from s in C, since there is always a chance
of getting stuck in t: after one step, the agent cannot know
whether it is in p or q and hence whether to choose action a
or b. But in the token CoMDP such a policy clearly exists.

Instead, we iteratively “prune” the token CoMDP CT =
(ST , A, δT , CT , RT , ca) by iteratively removing the reload-
ing property from all pairs (B,α) that correspond to a trap,
until reaching a fixed point. The resulting CoMDP can be
used to compute threshold values in the original CoPOMDP
and thus also an exact shield for C. The process is summa-
rized in Algorithm 1. Lines 2–10 compute the threshold lev-
els, the remaining lines extract the shield. The latter part uses
an “inverse” Ψ: [ca]×S×A→ [ca]∪{∞} of the function ∆
s.t. Ψ(ℓ′, s, a) can be interpreted as the minimal amount of
resource we need to have in s so that after playing a we have
at least ℓ′ units. Formally, if ℓ′ = ⊥, also Ψ(ℓ′, s, a) = ⊥,
irrespective of s, a. Otherwise,

Ψ(ℓ′, s, a) =


ℓ′ + C(s, a) ℓ′ ≤ ca − C(s, a) ∧ s ̸∈ R,

0 ℓ′ ≤ ca − C(s, a) ∧ s ∈ R,

∞ ℓ′ > ca − C(s, a).

s

p

q

r g

t

{ŝ}

{p̂, q}

{p, q̂}

{r̂, t} {ĝ}

{g}{r, t̂}

Figure 1: A CoPOMDP C (left) and its corresponding token
CoMDP (right). States r, t are reloads, and g is a goal. There
are two actions, a and b. Solid edges represent transitions
under action a (with uniform branching in r), and dashed
edges represent action b (if both actions behave in the same
way in a given state, only the a-edges are pictured). States
enclosed in dotted rectangles are indistinguishable, i.e., al-
ways emit the same common observation. We omit states
{s}, {p, q} and {r, t}, as these are unreachable from {ŝ}.

Theorem 2. After the repeat cycle in Algorithm 1 finishes,
for any B ⊆ 2S and α, β ∈ B it holds TLevCT

>0(B,α) =

TLevCT
>0(B, β). Moreover, the computed σ is the unique

(support-based succinct) exact shield for C. There is a safe
goal policy (i.e., the RSGO problem admits a feasible so-
lution) iff σ enables at least one action for the history of
length 0. The algorithm runs in time O(2S · poly(||C||)),
where ||C|| denotes the encoding size of C (with all integers
encoded in binary).

RSGO Problem and Shielded POMCP
We tackle the RSGO problem by augmenting the POMCP
algorithm with our shields.

POMCP. POMCP (Silver and Veness 2010) is a well-
known online planning algorithm for POMDPs, based on
the Monte Carlo tree search (MCTS) paradigm. To select an
optimal action, POMCP iteratively searches through and ex-
pands the history tree of a POMDP, whose nodes correspond
to histories. Each iteration consists of a top-down traver-
sal of the explored part of the tree, selecting simulated ac-
tions according to the UCT formula (Kocsis and Szepesvári
2006), which balances exploitation with exploration. Once
the simulation reaches a yet unexplored node, a rollout pol-
icy (typically selecting actions at random) is used to further
extend the sampled trajectory. The trajectory is then evalu-
ated, and the outcome is back-propagated to adjust action-
value estimates along the sampled branch. After multiple
such iterations, POMCP selects action with minimal value
estimate in the root to be played by the agent. After receiv-
ing the next observation, the corresponding child of the root
becomes the new root, and the process repeats until a deci-
sion horizon is reached.

Search Tree for Shielding. We augment POMCP’s tree
data structure so that each node additionally contains the in-
formation about the current resource level and the current
belief support (which is computable for each node using the
belief support of the parent.)

14678

Algorithm 1: Computing exact shields.
Input: consistent CoPOMDP C
Output: succinct support-based exact shield σ for C

1 compute the token CoMDP
CT = (ST , A, δT , CT , RT , ca)

2 repeat
3 Rem ← ∅;
4 compute TLevCT

>0 ; /* Theorem 1 */
5 foreach (B,α) ∈ RT do
6 if TLevCT

>0(B,α) =∞ then
7 foreach β ∈ B ∪ {ε} do
8 Rem ← Rem ∪ {(B, β)}

9 CT ← (ST , A, δT , CT , RT \ Rem, ca)
10 until Rem = ∅;
11 foreach B ⊆ 2S , a ∈ A do
12 MAX← −∞;
13 foreach s ∈ B do
14 SMAX← −∞;
15 foreach B′ ∈ Succ(B, a, s) do
16 α′ ← any elem. of B′;
17 SMAX← max(SMAX,TLevCT

>0(B
′, α′));

18 MAX← max(MAX,Ψ(SMAX, s, a))
19 σ(B, a)← MAX
20 return σ

FiPOMDP. Combining a (support-based exact) shield σ
with POMCP yields an algorithm which we call FiPOMDP
(“Fuel in POMDPs”). FiPOMDP operates just like POMCP,
with one crucial difference: whenever POMCP is sup-
posed to select an action in a node representing history
h, FiPOMDP chooses only among actions a such that
σ(B(h), a) = 1. This applies to the simulation/tree up-
date phase (where it selects action optimizing the UCT value
among all allowed actions), rollouts, and final action selec-
tion (where it chooses the allowed action with minimal value
estimate). Since POMCP is an online algorithm operating
over a finite decision horizon, FiPOMDP solves the RSGO
problem in the following approximate sense:

Theorem 3. Let N be the decision horizon and consider
a finite horizon approximation of the RSGO problem where
the costs are accumulated only over the first N steps. Con-
sider any decision step of FiPOMDP and let h be the history
represented by the current root node of the search tree. Let
ph be the probability that the action selected by POMCP to
be played by the agent is an action used in h by an optimal
finite-horizon safe goal policy, and sim the number of simu-
lations used by FiPOMDP. Then for sim →∞ we have that
ph → 1.

Shielding Other Algorithms. The shields are algorithm-
agnostic, and their usage is not limited to POMCP or MCTS
algorithms. Indeed, one of the advantages of our approach is
that shields can be used with any algorithm that tracks the
current resource level and the current belief support.

Experiments
We implemented FiPOMDP in Python. The algorithm for
exact shield computation was implemented on top of the
planning algorithm for CoMDPs. (Blahoudek et al. 2020).
We wrote our own implementation of POMCP, including the
particle filter used for belief approximation (Silver and Ve-
ness 2010). The up-to-date link to our implementation can
be found in the full version of the paper (Ajdarów, Brlej,
and Novotný 2022).2

Benchmarks. We evaluated FiPOMDP on three sets
of benchmarks. The first benchmark is a toy resource-
constrained Tiger, a modification of the classical benchmark
for POMDPs (Kaelbling, Littman, and Cassandra 1998)
adapted from (Brázdil et al. 2016). The goal states represent
the situation where the agent has made a guess about the
tiger’s whereabouts. In the resource-constrained variant, the
agent’s listening actions consume energy, necessitating reg-
ular reloads. During each reload, there is a probability that
the tiger switches its position. There is a cost of 10 per each
step. Opening the door with tiger/treasure yields cost 5000/-
500. We consider two versions: simple, where the probabil-
ity of the observed position of the tiger being correct is 0.85,
and fuzzy, where this probability is decreased to 0.6.

The second benchmark is a partially observable exten-
sion of the unmanned underwater vehicle (UUV) benchmark
from (Blahoudek et al. 2021). Here, the agent operates in a
grid-world, with actions performing movements in the car-
dinal directions. Movement is subject to stochastic pertur-
bations: the UUV might drift sideways from the chosen di-
rection due to ocean currents. The position sensor is noisy:
when the agent visits some cell of the grid, the observed po-
sition is sampled randomly from cells in the von Neumann
neighborhood of the true cell. We consider 4 gridworld sizes
ranging from 8x8 to 20x20. There is a cost of 1 per step,
hitting a goal yields “cost” -1000.

The final benchmark, adapted from (Blahoudek et al.
2020), consists of a routing problem for an autonomous elec-
tric vehicle (AEV) in the middle of Manhattan, from 42nd to
116th Street. Road intersections act as states. At each in-
tersection, the AEV picks a direction to continue (subject
to real-world one-way restrictions). It will deterministically
move in the selected direction, but the energy consump-
tion is stochastic due to the fluctuations in road congestion.
There are three possible consumption levels per road seg-
ment, their probability and magnitudes derived from real-
world traffic data. (Uber Movement 2019; Straubel 2008).
Similarly, the reload states correspond to the real-world po-
sitions of charging stations (United States Department of
Energy 2019). To add partial observability, we make the
consumption probabilities dependent on the unknown traf-
fic state (low/medium/peak), which evolves according to a
known three-state Markov chain. The cost is equal to the
amount of resource consumed in a given step, with a “cost”
-1000 when a goal is hit.

2Repository address at time of submission: https://github.com/
xbrlej/FiPOMDP.

14679

States # Obs Survival % Hit % Avg. cost Avg. time p. dec. (s) Shield time (s)

FiPOMDP (shielded)
Tiger simple 8 6 100 99.5 310.61± 1942.14 0.05± 0.02 < 1
Tiger fuzzy 8 6 100 57.3 1019.95± 2031.03 0.08± 0.03 < 1
UUV grid 8x8 64 64 100 98 −969.81± 153.61 3.21± 1.44 10.65
UUV grid 12x12 144 144 100 92 −898.48± 295.92 10.48± 3.59 76.99
UUV grid 16x16 256 256 100 87 −839.29± 364.92 22.21± 5.52 215.18
UUV grid 20x20 400 400 100 87 −839.08± 364.83 34.06± 8.87 493.87
Manhattan AEV 22434 7478 100 50 2745.3± 2845.06 13.02± 2.44 65

POMCP (unshielded)
Tiger simple 8 6 99.9 99.4 311.59± 1941.99 0.02± 0.01 -
Tiger fuzzy 8 6 86.8 48.5 914.87± 1859.81 0.02± 0.01 -
UUV grid 8x8 64 64 61 60 −555.75± 538.11 1.91± 0.27 -
UUV grid 12x12 144 144 8 7 23.76± 279.29 9.49± 1.23 -
UUV grid 16x16 256 256 4 3 67.52± 185.62 18.23± 1.60 -
UUV grid 20x20 400 400 6 5 45.77± 237.57 28.94± 2.96 -
Manhattan AEV 22434 7478 99 56 2352.88± 2935.04 13.36± 2.38 -

Table 1: Results of experiments. The top part shows results for FiPOMDP, the bottom for the POMCP baseline.

Evaluation. The hardware configuration was: CPU: AMD
Ryzen 9 3900X (12 cores); RAM: 32GB; Ubuntu 20.04.

FiPOMDP is the first approach to solving the RSGO prob-
lem in CoPOMDPs. Hence, as a baseline to compare with,
we chose plain (unshielded) POMCP (with the same hy-
perparameters), to see how the formal safety guarantees of
FiPOMDP influence resource safety in practice. POMCP it-
self does not consider resource levels, which puts it at a dis-
advantage. To mitigate this, we treated (only in the POMCP
experiments) resource exhaustion as entering a “breakdown”
sink state, from which the target can never be reached.
Hence, runs exhausting the resource were penalized with the
same cost as runs which did not reach the goal.

The results are pictured in Table 1, averaged over 100 runs
(1000 for the Tiger benchmark). The first two columns show
the number of states and observations. The Survival % is
the percentage of runs in which the agent did not run out of
the resource. The Hit % is the percentage of runs in which
the agent hit the target within the decision horizon. The next
column shows an average cost incurred by the agent (± the
std. deviation). We also present average time per decision
step. The final column shows the time needed to compute
the shield (including the computation of the token CoMDP).

We highlight the following takeaway messages: (1.) Al-
though computing an exact shield requires formal methods,
our algorithm computed a shield within a reasonable time,
even for relatively large (from a formal methods point of
view) CoPOMDPs (the Manhattan benchmark). (2.) Shield-
ing is essential for resource safety. The unshielded version
never achieved 100% resource safety. In contrast, FiPOMDP
never exhausted the resource, validating its theoretical guar-
antees. (3.) The Hit percentage and Cost results show that
the shielded POMCP is consistently able to reach the goal.
On the other hand, the hit ratios are sometimes not as high as
desired. We suspect that this is because our benchmarks are
“non-smooth” in the sense that the costs encountered before

reaching the goal do not provide much information about
a path towards the goal. This was partially mitigated using
heavy rollouts (in particular for the gridworld benchmark,
where we used non-uniform rollouts with an increased like-
lihood of the agent repeating the direction chosen in the pre-
vious step). (4.) Since unshielded POMCP tends to exhaust
the resource, FiPOMDP has (in all but one of the bench-
marks) better hit percentage than the unshielded POMCP.
In relatively structureless domains, such as the gridworld,
shielding seems to help exploring the state space by prun-
ing away parts from which resource exhaustion cannot be
prevented. (5.) The Manhattan benchmark stands out in that
the unshielded version performs better in terms of “Hit %”
than the shielded one. Still, the unshielded version still is
not 100% safe. The benchmark admits a policy for quickly
reaching the goal, which carries a small risk of resource ex-
haustion. The unshielded agent takes this policy, while the
shielded agent computes a policy that is resource-safe at the
cost of slower progress. This shows that shields protect even
against low (though practically significant) exhaustion risks.

Conclusion
We presented a shielding algorithm for consumption
POMDPs with resource safety and goal reachability ob-
jectives. We combined our shields with the POMCP plan-
ning algorithm, yielding a heuristic approach to solving the
RSGO problem. An interesting direction for future work
is to combine our shielding algorithm with alternative ap-
proaches to POMDP planning.

Acknowledgments
This work is supported by the Czech Science Foundation
grant No. 21-24711S. We thank all the anonymous reviewers
for providing feedback on the preliminary versions of this
paper.

14680

References
Ajdarów, M.; Brlej, Š.; and Novotný, P. 2022. Shielding in
Resource-Constrained Goal POMDPs. arXiv:2211.15349.
Alshiekh, M.; Bloem, R.; Ehlers, R.; Könighofer, B.;
Niekum, S.; and Topcu, U. 2018. Safe Reinforcement
Learning via Shielding. In McIlraith, S. A.; and Wein-
berger, K. Q., eds., AAAI Conference on Artificial Intelli-
gence, (AAAI 2018), 2669–2678. AAAI Press.
Altman, E. 1999. Constrained Markov Decision Processes.
Chapman&Hall/CRC. ISBN 9780849303821.
Baier, C.; Bertrand, N.; and Größer, M. 2008. On Deci-
sion Problems for Probabilistic Büchi Automata. In Ama-
dio, R., ed., Foundations of Software Science and Computa-
tional Structures (FOSSACS’08), 287–301. Berlin, Heidel-
berg: Springer Berlin Heidelberg. ISBN 978-3-540-78499-
9.
Bhattacharya, S.; Badyal, S.; Wheeler, T.; Gil, S.; and Bert-
sekas, D. 2020. Reinforcement Learning for POMDP: Parti-
tioned Rollout and Policy Iteration With Application to Au-
tonomous Sequential Repair Problems. IEEE Robotics and
Automation Letters, 5(3): 3967–3974.
Blahoudek, F.; Brázdil, T.; Novotný, P.; Ornik, M.;
Thangeda, P.; and Topcu, U. 2020. Qualitative Controller
Synthesis for Consumption Markov Decision Processes. In
Lahiri, S. K.; and Wang, C., eds., Computer Aided Verifica-
tion (CAV 2020), 421–447. Cham: Springer.
Blahoudek, F.; Cubuktepe, M.; Novotný, P.; Ornik, M.;
Thangeda, P.; and Topcu, U. 2021. Fuel in Markov Decision
Processes (FiMDP): A Practical Approach to Consumption.
In Huisman, M.; Păsăreanu, C.; and Zhan, N., eds., Formal
Methods, 640–656. Cham: Springer International Publish-
ing. ISBN 978-3-030-90870-6.
Bouyer, P.; Fahrenberg, U.; Larsen, K.; Markey, N.; and
Srba, J. 2008. Infinite Runs in Weighted Timed Automata
with Energy Constraints. In Proceedings of FORMATS
2008, volume 5215, 33–47.
Brázdil, T.; Chatterjee, K.; Chmelik, M.; Gupta, A.; and
Novotný, P. 2016. Stochastic Shortest Path with Energy
Constraints in POMDPs. CoRR, abs/1602.07565.
Brázdil, T.; Chatterjee, K.; Kučera, A.; and Novotný, P.
2012. Efficient Controller Synthesis for Consumption
Games with Multiple Resource Types. In Proceedings of
CAV 2012, volume 7358, 23–38.
Brázdil, T.; Klaška, D.; Kučera, A.; and Novotný, P. 2014.
Minimizing Running Costs in Consumption Systems. In
Biere, A.; and Bloem, R., eds., Computer Aided Verifica-
tion 2014, volume 8559 of LNCS, 457–472. Springer Inter-
national Publishing. ISBN 978-3-319-08866-2.
Brázdil, T.; Kučera, A.; and Novotný, P. 2016. Optimiz-
ing the Expected Mean Payoff in Energy Markov Decision
Processes. In 14th International Symposium on Automated
Technology for Verification and Analysis, 32–49.
Chakrabarti, A.; de Alfaro, L. d.; Henzinger, T. A.; and
Stoelinga, M. 2003. Resource Interfaces. In Alur, R.; and
Lee, I., eds., Proceedings of EMSOFT 2003, volume 2855
of LNCS, 117–133. Heidelberg: Springer.

Chatterjee, K.; Chmelı́k, M.; Gupta, R.; and Kanodia, A.
2016. Optimal cost almost-sure reachability in POMDPs.
Artificial Intelligence, 234: 26–48.
Chatterjee, K.; Novotný, P.; Pérez, G. A.; Raskin, J.; and
Zikelic, D. 2017. Optimizing Expectation with Guarantees
in POMDPs. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence (AAAI 2017), 3725–3732. AAAI Press.
Degorre, A.; Doyen, L.; Gentilini, R.; Raskin, J.-F.; and
Toruńczyk, S. 2010. Energy and mean-payoff games with
imperfect information. In 24th International Workshop on
Computer Science Logic, 260–274.
Dräger, K.; Forejt, V.; Kwiatkowska, M. Z.; Parker, D.; and
Ujma, M. 2015. Permissive Controller Synthesis for Proba-
bilistic Systems. Log. Methods Comput. Sci., 11(2).
Eaton, C. M.; Krakow, L. W.; Chong, E. K.; and Maciejew-
ski, A. A. 2018. Fuel Efficient Moving Target Tracking Us-
ing POMDP with Limited FOV Sensor. In 2018 IEEE Con-
ference on Control Technology and Applications (CCTA),
331–336.
Garcı́a, J.; and Fernández, F. 2015. A Comprehensive Sur-
vey on Safe Reinforcement Learning. Journal of Machine
Learning Research, 16(42): 1437–1480.
Junges, S.; Jansen, N.; Dehnert, C.; Topcu, U.; and Katoen,
J. 2016. Safety-Constrained Reinforcement Learning for
MDPs. In Chechik, M.; and Raskin, J., eds., Proceedings of
TACAS 2016., volume 9636 of Lecture Notes in Computer
Science, 130–146. Springer.
Junges, S.; Jansen, N.; and Seshia, S. A. 2021. Enforcing
Almost-Sure Reachability in POMDPs. In Silva, A.; and
Leino, K. R. M., eds., Computer Aided Verification, 602–
625. Cham: Springer International Publishing. ISBN 978-3-
030-81688-9.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial intelligence, 101(1): 99–134.
Kocsis, L.; and Szepesvári, C. 2006. Bandit Based
Monte-Carlo Planning. In Fürnkranz, J.; Scheffer, T.; and
Spiliopoulou, M., eds., European Conference on Machine
Learning (ECML 2006), volume 4212 of LNCS, 282–293.
Springer.
Mayr, R.; Schewe, S.; Totzke, P.; and Wojtczak, D. 2017.
MDPs with energy-parity objectives. In 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, 1–
12.
Mitchell, D.; Corah, M.; Chakraborty, N.; Sycara, K.; and
Michael, N. 2015. Multi-robot long-term persistent cov-
erage with fuel constrained robots. In 2015 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
1093–1099.
Notomista, G.; Ruf, S. F.; and Egerstedt, M. 2018. Persisti-
fication of Robotic Tasks Using Control Barrier Functions.
IEEE Robotics and Automation Letters, 3(2): 758–763.
Poupart, P.; Malhotra, A.; Pei, P.; Kim, K.; Goh, B.; and
Bowling, M. 2015. Approximate Linear Programming
for Constrained Partially Observable Markov Decision Pro-
cesses. In AAAI 2015., 3342–3348. AAAI Press.

14681

Silver, D.; and Veness, J. 2010. Monte-Carlo Planning in
Large POMDPs. In Neural Information Processing (NIPS
23), 2164–2172. Curran Associates, Inc.
Straubel, J. B. 2008. Roadster Efficiency and Range.
https://www.tesla.com/blog/roadster-efficiency-and-range.
Accessed: 2023-03-23.
Uber Movement. 2019. Traffic Speed Data for New York
City. https://movement.uber.com/. Accessed: 2023-03-23.
Undurti, A.; and How, J. P. 2010. An Online Algorithm
for Constrained POMDPs. In International Conference on
Robotics and Automation (ICRA’17), 3966–3973. IEEE.
United States Department of Energy. 2019. Alternative Fu-
els Data Center. https://afdc.energy.gov/stations/.

14682

