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Abstract

The desired output for most real-world tasks using machine
learning (ML) and remote sensing data is a set of dense pre-
dictions that form a predicted map for a geographic region.
However, most prior work involving ML and remote sensing
follows the traditional practice of reporting metrics on a set
of independent, geographically-sparse samples and does not
perform dense predictions. To reduce the labor of producing
dense prediction maps, we present OpenMapFlow—an open-
source python library for rapid map creation with ML and
remote sensing data. OpenMapFlow provides 1) a data pro-
cessing pipeline for users to create labeled datasets for any re-
gion, 2) code to train state-of-the-art deep learning models on
custom or existing datasets, and 3) a cloud-based architecture
to deploy models for efficient map prediction. We demon-
strate the benefits of OpenMapFlow through experiments on
three binary classification tasks: cropland, crop type (maize),
and building mapping. We show that OpenMapFlow drasti-
cally reduces the time required for dense prediction compared
to traditional workflows. We hope this library will stimulate
novel research in areas such as domain shift, unsupervised
learning, and societally-relevant applications and lessen the
barrier to adopting research methods for real-world tasks.

Introduction
Remote sensing data (also referred to as Earth observation or
satellite data) has become an increasingly popular modality
for artificial intelligence research. This interest has largely
been driven by the opportunities that remote sensing data
present for contributing to challenges urgently important to
society, such as climate change (Pradhan et al. 2018; Rol-
nick et al. 2022; Rasp, Pritchard, and Gentine 2018), food
security (Wang, Azzari, and Lobell 2019; Kerner et al. 2020;
Tseng et al. 2020), disasters (Bonafilia et al. 2020), and
poverty (Xie et al. 2016). In recent years, many new datasets
have been made available to facilitate research in ML meth-
ods for remote sensing data spanning diverse tasks such
as image classification (Sumbul et al. 2019), segmentation
(Bonafilia et al. 2020), object detection (Christie et al. 2018)
and diverse application areas such as agriculture (Tseng
et al. 2021), disasters (Bonafilia et al. 2020), and land cover
(Sumbul et al. 2019; Alemohammad and Booth 2020). The
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growing interest in ML research for remote sensing data is
also driven by the challenges presented by its unique charac-
teristics compared to other data modalities. Remote sensing
datasets are very high-dimensional and often have spatial,
temporal, and spectral dimensions more complex than tradi-
tional RGB images or videos. The diversity of instruments
used for observing the Earth at different wavelengths, tem-
poral cadences, and spatial resolutions has driven active re-
search in domain adaptation (Tuia, Persello, and Bruzzone
2016; Song et al. 2019), data fusion (Babaeian et al. 2021),
and other topic areas. Evidence for the growing popularity of
remote sensing as a new data modality for ML research can
be seen in the growing number of workshops, journals, and
initiatives related to ML and remote sensing (e.g., Climate
Change AI (Rolnick et al. 2022)).

Traditional ML prediction tasks, such as those using im-
age data or text data, are trained and evaluated on datasets
containing samples that are assumed to be independently
and identically distributed (i.i.d.). However, for most predic-
tion tasks using remote sensing datasets, the desired output
is a set of dense predictions that form a predicted map of
a geographic region (Figure 1). The input samples used for
generating the dense predictions are geographically contigu-
ous and violate the i.i.d. assumption. For example, consider
the task of crop type classification in which the goal is to
predict locations where a specific crop is growing based on
satellite observations of a given focus region—e.g., predict-
ing where maize is growing in Kenya (Tseng et al. 2021). To
accomplish this task, a model would be trained using a set of
samples from different locations that are sparsely distributed
throughout the focus region, then evaluated on a similarly
sparsely-distributed test set. The majority of research studies
conclude after this evaluation, even though the practical goal
of remote sensing prediction tasks is to use the trained model
to make dense predictions at every pixel location to form a
complete map of the study region. Neglecting dense predic-
tions has several consequences: it 1) makes model adoption
significantly more difficult for the larger scientific commu-
nity and downstream applications, 2) obfuscates potential
model failure modes, and 3) precludes the investigation of
related foundational research challenges.

In this paper, we introduce OpenMapFlow
(https://github.com/nasaharvest/openmapflow), an open-
source python library for rapid map creation with ML and
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Figure 1: Sparse vs dense predictions

remote sensing data. OpenMapFlow will enable researchers
to train and deploy ML models with remote sensing data by
reducing the effort and cost required to implement dense
prediction. Outputs created by OpenMapFlow have already
been used in downstream applications in agriculture by the
NASA Harvest program (https://nasaharvest.org/). Further,
studying dense predictions produced by OpenMapFlow can
stimulate future work on foundational research challenges
such as dataset shift, evaluation with unlabeled data, active
learning, unsupervised learning, and semi-supervised
learning. We hope that OpenMapFlow will foster scientific
exchange between researchers, practitioners, scientists,
students, and engineers in AI and remote sensing and enable
increased adoption of ML research methods for real-world
tasks with social impact.

Related Work
Despite the proliferation of ML libraries that help build and
train novel ML models, there continues to be a gap between
research experiments and deployed use of these models.
This gap is likely due to the complexity involved in deploy-
ing, maintaining, and updating ML systems for solving real-
world problems (Wagstaff 2012). Research on ML deploy-
ment tools, such as OpenMapFlow, is thus critical to help
bridge this gap and enable broader adoption of ML tools in
society.

An understanding of ML model failure modes is another
topic vital to model adoption and improvement (Kumar
et al. 2019). One common method used to understand fail-
ure modes is analyzing model errors on a validation set and
grouping the errors into distinct categories representing fail-
ure modes (Hoiem, Chodpathumwan, and Dai 2012; Bolya
et al. 2020). This technique is limited to uncovering failure
modes within the domain of the validation set. If the vali-

dation dataset sufficiently represents the real-world task, the
metrics tracked and failure modes discovered using the val-
idation set can be considered representative. However, it is
challenging to make representative datasets that are aligned
with real-world tasks (Shankar et al. 2017). Datasets that do
not sufficiently represent the real-world task can result in in-
flated performance metrics and can obfuscate failure modes.
OpenMapFlow helps identify failure modes for unlabeled
data outside of the data distribution captured by sparse vali-
dation sets.

Several platforms and libraries have been developed to
facilitate ML research with remote sensing datasets and to
evaluate their performance (Gomes, Queiroz, and Ferreira
2020), such as TorchGeo (Stewart et al. 2021), Radiant Earth
MLHub (Alemohammad 2019), and CropHarvest (Tseng
et al. 2021). However, these tools do not provide straight-
forward support for using trained models to generate maps
via dense prediction, which is the goal of OpenMapFlow.
Google Earth Engine (Gorelick et al. 2017), SEPAL (FAO
2020), and Descartes Labs (Beneke et al. 2017) platforms
do enable map generation via dense prediction using trained
machine learning models but have limitations that inhibit
their use in the ML research community and adoption by
real-world end-users. For example, Google Earth Engine
(Gorelick et al. 2017) provides comprehensive data export,
map storage, model training, and data exploration utilities.
However, the availability of modern machine learning mod-
els and training algorithms in Google Earth Engine is lim-
ited. Google Earth Engine does support trained deep learn-
ing models for prediction but only for TensorFlow models
deployed using the Google Cloud AI platform. SEPAL (FAO
2020) is another platform that enables dense predictions to
generate maps but is restricted to tree-based models and does
not support deep learning. Another limitation of existing
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tools like Descartes Labs (Beneke et al. 2017) and ArcGIS
Pro (www.esri.com/en-us/arcgis/products/arcgis-pro) is that
they require users to purchase a paid subscription which
is a barrier to easy initial experimentation and adoption by
users that lack large budgets. In addition, the aforementioned
platforms are primarily designed for facilitating the analysis
of remote sensing data broadly. In contrast, OpenMapFlow
aims to make remote sensing data a more accessible modal-
ity for machine learning research.

Reproducibility is another major limitation of prior work
involving ML for remote sensing datasets (Gomes, Queiroz,
and Ferreira 2020). The preprocessing steps applied to gen-
erate the remote sensing data inputs associated with the
dataset labels are often not clearly described. This makes
it especially difficult to use a trained off-the-shelf model
to make predictions in a new region since there may be a
significant distribution shift between the training and infer-
ence data. OpenMapFlow addresses this by providing the
data processing pipeline for developing training and infer-
ence data in which the parameters for dataset construction
are fully described.

Methods
OpenMapFlow aims to facilitate ML research with remote
sensing datasets by providing an accessible and extensible
workflow that allows rapid iteration.

Accessible Design The complexities of remote sensing
data and geospatial map creation can deter new researchers
from exploring this important data modality. In the design
of OpenMapFlow, special attention was paid to reducing the
start-up effort required to develop ML methods for remote
sensing tasks by providing:

• a tutorial notebook for demonstrating the intricacies of
remote sensing data and model training

• a template project generation function along with three
example projects

• a simple method (two lines of code) for downloading ex-
isting training and evaluation data

• training and evaluation scripts that can be run on avail-
able datasets

• Github action scripts for automated integration testing
and model deployment

• Google Colab notebooks for all components (adding
data, model training, dense predictions) to remove the
need for local environment setup

• A short configuration file to establish the connection
between the OpenMapFlow library and the user’s own
Google Cloud project

The three components of OpenMapFlow—1) data process-
ing pipeline, 2) ML model training, and 3) rapid map
creation—can be used independently or end-to-end (Figure
2) depending on user needs. The library was designed such
that the first iteration cycle of the ML and remote sensing
project can be set up quickly.

Rapid Iteration Ability to evaluate results and iterate
quickly is critical to consistent progress in the practice of
data science (Rudin 2019). In projects involving machine
learning and remote sensing data, the natural places to it-
erate are on the labeled dataset, the ML model architecture,
the model hyperparameters, and the training setup. A key
factor in OpenMapFlow’s design was to empower the user
to have control over all these inputs and quickly see the re-
sult of changing any of them. Thus the library is kept light so
users can determine additional dependencies based on their
needs. To ensure a tight feedback loop from change to re-
sult, a specialized cloud architecture is developed to allow
for parallelized predictions at a low cost. Lastly, the auto-
generated project functionality is kept simple to allow users
the freedom to implement more complex methods.

Project Generation To start, the user must install the
OpenMapFlow package from the Python Package Index
(PyPI) and use the command openmapflow generate
to generate a project structure. The command will prompt
the user for project configuration arguments such as project
name and Google Cloud Project ID (with several defaults
provided). An existing Google Cloud project is a required
prerequisite for the end goal of making efficient dense pre-
dictions. The data version control (DVC) (https://dvc.org/)
library is used for versioning and storing all data in remote
storage. When all configuration is set, a lightweight project
structure is generated consisting of:

• openmapflow.yaml, a configuration file that
saves user inputs from the command openmapflow
generate

• datasets.py, a python file containing a list of new or
existing datasets and how they are generated from labels

• train.py, a template model training script
• evaluate.py, a template model evaluation script
• .github/workflows/test.yaml, a Github ac-

tion script that tests training and evaluation scripts as well
as dataset integrity

• .github/workflows/deploy.yaml, a Github
action script that containerizes and deploys trained mod-
els

• data/raw labels, a directory containing user-added
labels for creating custom datasets

• data/datasets, a directory containing existing ML-
ready datasets (consisting of labels and associated remote
sensing data)

• data/models, a directory containing models trained
using project datasets

• .dvc/, a folder created by the Data Version Control li-
brary for versioning all data

Adding New Data New training data can be added using
the OpenMapFlow remote sensing data processing pipeline,
which can be run through a Google Colab notebook or using
the command line interface. The pipeline requires a raw la-
bel file containing geospatial labels (CSV, Shapefile, or Geo-
JSON format) and a configuration in the datasets.py
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Figure 2: OpenMapFlow workflow

file to indicate which columns in the raw label file con-
tain the label coordinates, class, and timestamp. Once the
raw label file and configuration are set, the openmapflow
create-datasets command can be run to generate a
processed CSV file with labels and associated remote sens-
ing data that can be used for training a model. The CSV is
generated by standardizing the provided labels, addressing
duplicate examples, and creating Google Earth Engine ex-
port tasks to fetch remote sensing time series data. We used
Google Earth Engine to export data because it is available
at no cost for research and other noncommercial projects.
Each time series example contains 24 timesteps over 2 years.
Each timestep represents aggregated satellite observations
from one month. The remote sensing data associated with
each label has the same format as the CropHarvest dataset
(Tseng et al. 2021) where each timestep contains multi-
spectral optical images from Sentinel-2, Synthetic Aperture
Radar (SAR) data from Sentinel-1, meteorological data from
ERA5, and topographic data from the Shuttle Radar Topog-
raphy Mission (SRTM). Remote sensing data from Google
Earth Engine is exported directly to a Google Cloud Storage
bucket. Once the matching remote sensing data are available
for a particular label; OpenMapFlow downloads and saves
the data to the processed CSV file. To ensure data are added
and processed correctly, several data integration tests are
run automatically whenever an update to datasets.py
is pushed to the project repository.

Model Training After a new dataset has been generated
and passes all integration tests, the dataset can be used for
model training. A PyTorchDataset class is provided for

representing the processed CSV as tensors which can then be
used for training and evaluating PyTorch models. We chose
to use PyTorch (Paszke et al. 2019) instead of other machine
learning libraries because it is widely used for ML research.

The model training script is meant to serve as starting
point for users to quickly get a model running and visu-
alize predictions. OpenMapFlow provides a Google Colab
notebook demonstrating model training by using a Trans-
former model (Rußwurm and Körner 2020) implemented in
PyTorch from the Time Series AI library (TSAI) (Oguiza
2022).

Dense Predictions Once a new model is trained, the com-
mand openmapflow deploy can be used to deploy
the model at scale for efficient dense predictions. The de-
ployment process begins by packaging TorchScript model
files into a TorchServe server by building a Docker image.
The deployment process then automatically sets up several
Google Cloud services necessary for the dense prediction
architecture:

• Artifact Registry, used for storing docker images.

• Cloud Run, used for running and scaling the TorchServe-
based Docker containers.

• Cloud Buckets, used for storing all remote sensing data
from Earth Engine and for storing all predictions made
by a model.

• Cloud Functions, used for calling the Cloud Run ser-
vice on every addition to the remote sensing data Cloud
Bucket.
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Bounding Box Area Input data Sequential
prediction
time

Our predic-
tion time

Merging
time

Our cost

Rwanda 63,018 km2 0.331 TB 458 mins 12 mins 7 mins $9.19
Western Ethiopia 160,036 km2 1.38 TB 1908 mins 19 mins 40 mins $42.50
Uganda 375,755 km2 3.06 TB 4232 mins 39 mins 101 mins $93.25

1000 km2 8.83 GB 12 mins 1 min <1 min $0.30

Table 1: Dense Predictions Time and Cost

• Cloud Build, used for building the trigger Cloud Func-
tion.

The deploy command is run automatically when new models
are pushed to Github through a deploy Github action. This
ensures the latest models are used for predictions and allevi-
ates the need for installing additional dependencies such as
Docker.

Once the deploy command has run successfully, a Google
Colab notebook create map.ipynb can be used to inter-
face with the Google Cloud architecture and generate dense
predictions using the deployed models on any region of in-
terest. The notebook is connected to the Google Cloud ar-
chitecture by the openmapflow.yaml configuration file.
A graphical user interface is provided to select a deployed
model, time frame, and region of interest. Once selected,
Google Earth Engine is used to fetch the remote sensing data
files for the region of interest into a Google Cloud bucket.
Alternatively, the user can elect to make predictions on ex-
isting remote sensing data files and avoid fetching new data.
Each new file in the remote sensing data bucket triggers a
Cloud Function, which calls the Cloud Run service to gen-
erate a prediction for every pixel inside the remote sensing
data file. The Cloud Run service then uploads the predic-
tions inside a netCDF file to a separate Google Cloud bucket.
When predictions have been made for all remote sensing
data points in the region of interest, the individual prediction
files must be merged into a single geospatial map. Compared
to the input remote sensing data files, where each pixel con-
tains band values over several time steps (228 float values
per pixel), the output prediction files only contain a single
float value for each pixel and therefore are much smaller.
Therefore, it is feasible to download all prediction files into
the Google Colab environment and merge them into a single
geospatial map using the Geospatial Data Abstraction Li-
brary (GDAL). Lastly, the geospatial map of predictions is
uploaded to Google Earth Engine to make the dense predic-
tions easily shareable and accessible to project stakeholders
and the public.

Experimental Results
Dense Predictions Time and Cost
The OpenMapFlow parallelized architecture offers a dras-
tic time reduction over commonly used sequential predic-
tion pipelines. To quantify this reduction, we measured
dense prediction time for several focus regions using Open-
MapFlow compared to the prediction pipeline used in

Kerner et al. (2020), which represents a traditional inference
approach. These regions are a subset chosen from the NASA
Harvest project focus regions and cover a range of regional
areas (63,000 to 376,000 km2) and input data sizes (0.3 to 3
TB). Specifically we measured 1) the time to generate indi-
vidual predictions for each remote sensing data file for a re-
gion, and 2) the time to merge all individual predictions into
a single predicted map file. For OpenMapFlow these times
were measured by running the create map.ipynb Co-
lab notebook for each region. For the traditional (sequential)
approach, we used a Virtual Machine (VM) to make pre-
dictions sequentially on a small region (1000km2). We then
used the input dataset file size (8.83GB) and prediction time
(12 minutes and 13 seconds) to compute a rate for sequential
predictions by dividing the dataset storage size by prediction
time, resulting in 12.05 MB/s. We used this prediction rate
to estimate the sequential prediction times for the larger re-
gions. We used a Google Cloud e2-standard-4 (4 vCPUs,
16 GB memory) Virtual Machine for the sequential predic-
tion to be comparable to the default Cloud Run setting of 4
vCPUs used in OpenMapFlow. Cost was computed by sum-
ming:

• US regional storage cost for one month for the remote
sensing data files and predictions

• Cloud Function CPU and memory cost for the request
execution time

• Cloud Run CPU and memory cost for the prediction ex-
ecution time

The results are shown in Table 1. Generally, sequential pre-
diction time will increase linearly with increased data size.
In contrast using OpenMapFlow allows scaling compute to
ensure prediction time is manageable.

Evaluation on Example Tasks
OpenMapFlow can be used to predict binary classification
maps using ML models and remote sensing data for any real-
world application domain including agriculture, forestry,
oceans, urban areas, and more. To demonstrate the utility of
using OpenMapFlow for various societally-relevant applica-
tions, we created complete OpenMapFlow projects for three
different tasks: cropland classification, crop type classifica-
tion, and building detection. We used these OpenMapFlow
projects to generate geospatial prediction maps and evalua-
tion metrics for each task. These examples are included in
the open-source Github repository along with their corre-
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Figure 3: Predicted cropland map for region near Abagatchi,
Togo (top), predicted crop type (maize) map for region in
Kakamega County, Kenya (middle), predicted buildings map
for Kampala, Uganda and surrounding region (bottom).

sponding datasets, evaluation metrics, and predicted geospa-
tial maps. We describe each task below.

Cropland Classification in Togo Cropland classification
consists of classifying each pixel in a satellite image as con-
taining cropland or not. A cropland map indicates where
crops are being grown for a particular time period and re-
gion and are important datasets needed for agriculture and
food security monitoring efforts (Nakalembe et al. 2021).
Each label for this task has metadata consisting of a coordi-
nate location (latitude/longitude) and a date or time range;
the binary class label indicates whether crops were grow-
ing in that location during the specified time range or not.
We used a total of 1577 labels (991 train, 277 val, 309 test)
in Togo obtained from Kerner et al. (2020) and an additional
34,270 globally-distributed training labels obtained from the
Geowiki dataset (See 2017).

Crop Type Classification in Kenya Binary crop type
classification consists of classifying each pixel in a satellite
image as containing a specific crop type (e.g., maize) or not.
Crop type classification is also often posed as a multi-class
classification problem in which each pixel is classified as
containing one of N crop types, but we focus on binary clas-
sification here. Thereby, labels follow the aforementioned
structure but with binary class: maize/non-maize. Like crop-
land maps, crop type maps are needed for a wide variety of
agriculture and food security applications (Nakalembe et al.
2021). For this task, we used 2,080 maize/non-maize labels
from the CropHarvest dataset (Tseng et al. 2021) in Kenya
(1,229 train, 438 val, 413 test).

Building Detection in Uganda Mapping buildings is use-
ful for a variety of applications including population map-
ping, humanitarian response efforts, and urban planning
(Sirko et al. 2021). For this task, we sampled 8,117 Uganda

specific positive (building) labels from the Google Open
Buildings dataset (Sirko et al. 2021), 13,993 negative (non-
building) labels from the Geowiki dataset (See 2017) and
1,455 negative (non-building) labels from the Uganda Pro-
tected Planet dataset (UNEP-WCMC 2022) (19,944 train,
1,863 val, 1,758 test).

We used OpenMapFlow to train time series classifica-
tion models for each task. In all experiments, models were
trained for 10 epochs with the default hyperparameters spec-
ified in the TSAI library. The model with the lowest valida-
tion loss was used to report test set metrics and make dense
predictions. Predicted maps were generated for each task’s
evaluation set region. Figure 3 shows a subset of the predic-
tion maps for each task zoomed in to an example region that
illustrates the detection of the class of interest.

We report the accuracy and F1 score for each applica-
tion task using the default project configuration in Table 2.
We used accuracy for easy interpretability and F1 score be-
cause it is a more representative metric for imbalanced data.
For the cropland classification task, we used OpenMapFlow
to run additional experiments for six TSAI models in addi-
tion to the Transformer and two batch size hyperparameter
settings to illustrate how OpenMapFlow enables rapid ex-
perimentation with different model architectures and hyper-
parameter settings. The goal of these results is to illustrate
how OpenMapFlow can be used to easily compute metrics
and benchmark multiple models for a given task. The fo-
cus of this paper is not on optimizing the results for these
three example tasks, but rather on the novel contribution of
the OpenMapFlow library which enables ML models to be
easily implemented and deployed for a wide variety of ap-
plications that use remote sensing data. Thus a detailed eval-
uation of the predicted maps and exploration of models and
hyperparameters to optimize evaluation metrics for each ap-
plication dataset is out of the scope of this study.

Discussion
Limitations The combination of remote sensing bands
used in the CropHarvest dataset (Sentinel-1, Sentinel-2,
ERA5, SRTM) (Tseng et al. 2021) is currently the only op-
tion available for remote sensing input datasets created using
OpenMapFlow. Though this is sufficient for many applica-
tions, some applications may require custom data sources for
machine learning model inputs. In addition, OpenMapFlow
currently only supports single-pixel time series inputs and
does not support datasets with spatial dimensions. While
the temporal dimension contains the most relevant informa-
tion for some remote sensing tasks (particularly for agricul-
ture applications), the spatial dimension is also useful for
many tasks. Spatial inputs (e.g., images or image patches)
would enable the use of a wider array of deep learning mod-
els that use spatial convolutions. Another limitation is that
OpenMapFlow is currently limited to binary labels and thus
can only be used for binary classification tasks. Lastly, cre-
ating new datasets and performing dense predictions with
OpenMapFlow currently requires Google Earth Engine and
several Google Cloud dependencies, which may limit its
flexibility for some users. Future work includes addressing
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Task Model Architecture Batch size Accuracy F1-Score
Cropland classification RNN (Rumelhart, Hinton, and Williams 1985) 64 0.76 0.70
Cropland classification RNN 256 0.80 0.75
Cropland classification LSTM (Hochreiter and Schmidhuber 1997) 64 0.73 0.67
Cropland classification LSTM 256 0.74 0.65
Cropland classification MLP (Wang, Yan, and Oates 2017) 64 0.78 0.69
Cropland classification MLP 256 0.74 0.70
Cropland classification ResNet (Wang, Yan, and Oates 2017) 64 0.80 0.73
Cropland classification ResNet 256 0.79 0.74
Cropland classification ResCNN (Zou et al. 2019) 64 0.77 0.69
Cropland classification ResCNN 256 0.71 0.69
Cropland classification Transformer (Rußwurm and Körner 2020) 64 0.76 0.69
Cropland classification Transformer 256 0.79 0.71
Cropland classification gMLP (Liu et al. 2021) 64 0.80 0.74
Cropland classification gMLP 256 0.75 0.70

Building detection Transformer 64 0.97 0.97

Crop type classification (maize) Transformer 64 0.91 0.64

Table 2: Test set metrics for cropland classification, building detection, and crop type classification example tasks.

the data limitations by including other data sources, allow-
ing spatial data as input, and extending label types to in-
clude multi-class classification and regression. Due to the
project’s open-source nature, community contributions to
address these limitations in future work are also possible.

Research Topics Motivated by Dense Predictions As
discussed in the introduction and illustrated in Figure 1,
an essential difference between remote sensing datasets and
other modalities (e.g., images, videos, text) is that trained
models are used to make dense predictions. Together, these
predictions form a geospatial map that reveals patterns and
errors that may not be apparent from predictions on a set
of geographically-sparse samples. Therefore, ML models
should be evaluated based on the fidelity of the entire pre-
dicted map (the intended result for an end-user), not only
a geographically-sparse validation or test set as is the cur-
rent practice. Evaluating model performance on dense pre-
diction maps is an open area of research that has been under-
studied in existing research, despite its importance for real-
world adoption of ML models. Dense prediction maps are
extremely large (millions of samples) compared to the sparse
datasets currently used for training or evaluation (hundreds
or thousands of samples). Evaluating the large dense pre-
diction maps that OpenMapFlow enables researchers to pro-
duce will require advances in topics such as evaluating mod-
els on unlabeled and/or out-of-distribution data (e.g., Deng
and Zheng (2021); Sun et al. (2021)), robustness and adap-
tation to multiple types of distribution shift (e.g., Guillory
et al. (2021); Taori et al. (2020); Raghunathan et al. (2020)),
active learning, and error analysis. Techniques for address-
ing dataset shift and out-of-distribution data are especially
important because trained models may be used to make pre-
dictions for time periods beyond the training dataset (e.g.,
predicting crop type maps for a new agricultural season),
which exhibit different patterns as weather patterns vary, the
climate changes, and land use evolves. OpenMapFlow will

also enable these research topics to be studied using real-
world, societally-relevant datasets rather than being limited
to benchmark datasets.

Conclusion
We presented OpenMapFlow, a library for rapid geospa-
tial map creation with machine learning and remote sensing
data. OpenMapFlow was created to help make dense pre-
diction an integral component of ML research using remote
sensing data. We demonstrated how OpenMapFlow en-
ables rapid start-up, experimentation, iteration, and deploy-
ment for machine learning projects using remote sensing
datasets using experiments for three real-world tasks (crop-
land, crop type, and building classification). We showed that
OpenMapFlow greatly reduces the time required to gener-
ate dense prediction maps using trained models compared
to traditional approaches. OpenMapFlow is open-source
(https://github.com/nasaharvest/openmapflow) and accessi-
ble as a Python package on the Python Package Index
(PyPI).

OpenMapFlow has already been used to deploy state-of-
the-art deep learning models to generate high-resolution,
multi-year cropland and crop type maps in multiple coun-
tries, including Rwanda, Malawi, Namibia, and Tanzania.
These dense prediction maps are being used by stakehold-
ers for socially-impactful downstream applications includ-
ing cultivated area estimation, crop yield forecasting, and
crop conditions assessments.
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