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Abstract
The soaring number of personal mobile devices and public
cameras poses a threat to fundamental human rights and eth-
ical principles. For example, the stolen of private informa-
tion such as face image by malicious third parties will lead
to catastrophic consequences. By manipulating appearance of
face in the image, most of existing protection algorithms are
effective but irreversible. Here, we propose a practical and
systematic solution to invertiblely protect face information in
the full-process pipeline from camera to final users. Specif-
ically, We design a novel lightweight Flow-based Face En-
cryption Method (FFEM) on the local embedded system pri-
vately connected to the camera, minimizing the risk of eaves-
dropping during data transmission. FFEM uses a flow-based
face encoder to encode each face to a Gaussian distribution
and encrypts the encoded face feature by random rotating the
Gaussian distribution with the rotation matrix is as the pass-
word. While encrypted latent-variable face images are sent to
users through public but less reliable channels, password will
be protected through more secure channels through technolo-
gies such as asymmetric encryption, blockchain, or other so-
phisticated security schemes. User could select to decode an
image with fake faces from the encrypted image on the pub-
lic channel. Only trusted users are able to recover the original
face using the encrypted matrix transmitted in secure channel.
More interestingly, by tuning Gaussian ball in latent space,
we could control the fairness of the replaced face on attributes
such as gender and race. Extensive experiments demonstrate
that our solution could protect privacy and enhance fairness
with minimal effect on high-level downstream task.

1 Introduction
The prevalence of high-resolution cameras has generated un-
precedented scale visual data, thus significantly stimulating
computer vision applications. While promoting the common
good, i.e., autonomous driving (Yurtsever et al. 2020), arti-
ficial intelligence (AI) has also raised ethical concerns. For
example, the leakage of privacy-sensitive information such
as faces, car plate number poses the threat of social media
profiles identification and tracking of user relations through
large-scale deep face recognition (FR) analysis.
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Being aware of the negative aspects of AI on the society,
global legislative bodies actively call for actions to use AI
for the public good of humanity as well as ensuring global
sustainability set forth in the United Nation’s Sustainable
Development Goals (SDGs). For example, European Com-
mission requires that all stakeholders partaking the AI sys-
tem should ensure the respect for privacy and avoid unfair
bias throughout the system’s entire life cycle (AI 2019). To
establish Society5.0, Japan also claims that AI should be de-
veloped, utilised and implemented following the principles
of privacy protection and fairness (Secretariat et al. 2019).

In this avenue, we would like to discuss how to pro-
tect the privacy systematically for compliance with these
regulations. Particularly, we focus on an important type of
sensitive information-faces, that co-occurred with other ob-
jects captured by cameras. As shown in Figure 1, the ear-
liest and most straightforward solution is directly obfuscat-
ing sensitive information by pixel-level processing such as
blur, pixelation or adding Gaussian noise. While effective,
these obfuscation methods either result in poor visual per-
ception or leave negative efforts against consequent recog-
nition algorithms (Cao et al. 2021). Generative methods of-
fer an appealing way to replace the privacy information with
more realistic image. On the other hand, methods like ad-
versarial methods (Yang et al. 2021b) and differential pri-
vacy method (Chamikara et al. 2020) to apply perturbation
to evade the recognition of a FR system.

Considering that when sharing photo with family or close
friends, it is necessary to allow user to acquire the original
images. To achieve this, an invertible face de-identification
algorithm (Cao et al. 2021) is recently proposed to encrypt
the images where the original original images could be re-
stored with some passwords. Unfortunately, existing meth-
ods are so expensive that they can only be implemented on
the cloud or on personal workstations. The uploading of
captured original image to an encrypted site through pub-
lic channels is exposed to the danger of being stolen by Bob,
as illustrated in Figure 1. This eavesdropping danger also
threats the password of (Cao et al. 2021).

In this article, we would like to share a systematic so-
lution that protects the privacy in the entire lifecycle, from
camera to end user. As shown in Figure 2, we choose to en-
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Figure 1: Existing privacy protection algorithms.

crypt the image immediately in local embedded system as-
sociated with cameras before uploading to intermediate or
final users. This fundamentally avoids the privacy leakage
on the transmission channel which is vulnerable to privacy
thieves (Bob in Figure 1). As shown in Figure 2, we propose
a Flow-based Face Encryption Method (FFEM) and imple-
ment it on the privacy encryption camera terminal. FFEM in-
cludes two steps: 1) detect, frontalize face and encode it to a
Guassian distribution as encoded face representation using a
flow-based (Kingma and Dhariwal 2018) encryption model;
2) rotate the encoded faces (Gaussian distribution) by an en-
cryption matrix (orthogonal rotation matrix). Our FFEM is a
low cost and lightweight model that runs on NVIDIA Jetson
Nano with 4G memory size. Since the flow-based face en-
coding and decoding model are invertible, the original faces
can also be recovered easily if the password is available (the
rotation matrix in the encoded face latent variable spaces).

After local encryption, the privacy encryption camera ter-
minal publishes two kinds of data: a private encrypted image
and face posture information through a public channel and
a rotation matrix password through a (virtual) secure chan-
nel. As illustrated in Figure 2, the encrypted latent-variable
face image Ienc per se is equivalent to the obfuscated image.
We could safely transmit this encrypted latent-variable face
image and face posture in a public but less reliable channel.
Users who are tolerant to obfuscation, like the one who use
like privacy-enhanced version of LSVRC (Yang et al. 2022),
could directly use Ienc for their recognition tasks. Bench-
marking existing obfuscated datasets, we demonstrate that
our encryption has minimal impact on downstream recog-
nition models. For better visual perception, privacy- aimed
users can also choose to obtain a de-identified image by
decoding the encrypted latent-variable face image and pos-
ture information without a password, resulting in a fake face
with the same pose as the original face. Interestingly, when
we encrypt faces through a uniformly sampled orthogonal
matrix(encryption matrix), each face will get a randomly
encrypted face, which greatly promotes the fairness of at-
tributes such as gender and race. By manipulating the Gaus-
sian ball of encoded face representation, we could even con-
trol the degree of the fairness. We can tune the size of Gaus-
sian ball to enforce that the decoded faces are closed to a

mean face to guarantee the fairness. Thus, the overall fair-
ness of the artificial intelligence system could be enhanced
(Wang et al. 2022; Karkkainen and Joo 2021) when we re-
place the original faces with fake faces. Finally, for those
trusted users or face-aimded user who target the raw face
information, they can decrypt the or original image with
the corresponding password. In our design, this password
could be transmitted more reliably in the virtual secure chan-
nel, which can be achieved by asymmetric encryption, user
authentication in blockchain or other sophisticated security
protection schemes.

In this paper, we have made the following contributions:

• We propose systematic solution to protect the privacy
from the camera to the end users. Specifically, our pro-
posed flow-based face encryption method (FFEM) is low
cost and lightweight that could be implemented on the
local embedded system of privacy encryption camera ter-
minal, minimizing the eavesdropping risk when transmit-
ting data to encryption site by existing methods.

• By encoding the face to a latent variable in a Gaussian
distribution (gassian ball) with a flow-based encoder, we
could flexibly generate a encrypted latent-variable face
by rotating the Gaussian distributed latent variable us-
ing the encryption matrix and generate a fake face using
flow-based decoder. Only privacy-aimed user could deci-
pher the original face with this encryption matrix trans-
mitted through secure channel, while other users could
choose to decode a nature but fake face from data trans-
mitted in public channel.

• By manipulating the size of Gaussian ball in the latent
space of FFEM, we could even control the fairness of
the decoded fake images, thus enhancing the fairness in
AI applications. Reduce the size of Gaussian ball can in-
crease the fairness of encrypted faces by generating faces
similar to mean face.

• Extensive experiments demonstrate our solution could
effectively protect the privacy and enhance fairness with
minimal negative effects on high-level tasks.

2 Related Work
Privacy Protection. The earliest face privacy protec-
tion algorithms are obfuscation-based methods, which ob-
fuscate of face regions by occlusion, blurring, pixelation
and etc (McPherson, Shokri, and Shmatikov 2016; Yang
et al. 2022). However, these methods are now challenged
by some obfuscation adapted face recognition (FR) sys-
tems (McPherson, Shokri, and Shmatikov 2016) and blurred
or pixelation recovery methods (Gharbi et al. 2016; Yang
et al. 2021a).

Since Deep neural networks are susceptible to adversarial
examples and output incorrect results (Szegedy et al. 2013;
Pang et al. 2020), the adversarial examples have been used
to resist attacks by malicious face recognition systems (Yang
et al. 2021b; Dong et al. 2018). However, most of these
method are “white-box” attack that requires to know the FR
system in advance, restricting their application on “black-
box” FR system in real-life. Differential privacy (Dwork
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Figure 2: Assuming that our privacy encryption camera terminal captures some faces, it will convert them into encrypted latent-
variable face and transmit them to different users through the public channel. Privacy encryption camera terminal will transmit
the encrypted matrix to Face-aimed User through a secure channel so that Face-aimed User can decrypt the faces, while the
other two types of users will use the encrypted latent-variable face or fake face to complete their tasks.

2008) is anther popular privacy protection strategy that re-
moves individual features to protect user privacy while pre-
serving statistical features (Cangialosi et al. 2022). The
added Laplacian noise occasionally could not effectively de-
stroy the privacy information, thus failing to protect against
FR systems.

Fairness in AI. Many efforts are proposed to measure and
enhance the fairness in AI. For example, IBM’s AI Fairness
360 (Bellamy et al. 2019) measures the bias of a machine
learning model to adjust the model’s training set, ultimately
promoting AI fairness. While more and more face recogni-
tion algorithms are used in everyday life, many of them have
much higher false positive rates for non-white faces than
white faces, which would affect judicial fairness (Salvador
et al. 2021). To increase the fairness of the model, one ef-
fective solution is to process the dataset for the model train-
ing, thus avoiding an unfair model is derived from an unfair
dataset (Karkkainen and Joo 2021). Another approach is to
retrain the model to achieve fairness (Gong, Liu, and Jain
2020), but it is computationally expensive and may reveal
private information about the data used for retraining.

Generative Model. Generative model can be divided into
three types: (1) Generative adversarial networks (GANs)
(Goodfellow et al. 2014), which plays a max-min game un-
til generate data distribution is similar to the real data. (2)
Variational autoencoders (VAEs) (Kingma and Ba 2014)
represent high-dimensional complex data by learning a
low-dimensional latent space in an unsupervised manner.
(3) Flow-based model was first proposed in NICE (Dinh,
Krueger, and Bengio 2014) and extended in RealNVP (Dinh,
Sohl-Dickstein, and Bengio 2016). They use a flow contain-

ing the equivalent of a permutation that reverses the order-
ing of the channels. Glow (Kingma and Dhariwal 2018) re-
places this fixed permutation with a (learned) invertible 1
× 1 convolution, where the weight matrix is initialized as
a random rotation matrix. The simplification of calculation
of the matrix significantly reduces the overall computational
complexity.

The flow-based model maps the sampling space to an in-
termediate explicit representation by training an invertible
transformation, allowing us to recover the original data di-
rectly from this intermediate representation. Due to its in-
vertible property and low computational complexity, we se-
lect flow-based model as our generative model.

3 Privacy Encryption on Camera Terminal
Our framework of our method is shown in Figure 2. On
the privacy encryption camera terminal, we implement our
Flow-based Face Encryption Method (FFEM) to generate
privacy-protected images.

3.1 Face Detection and Rotation
Face Detection. The first step detects and resizes face
X ∈ R3×m×m in the image captured by the camera. m is
the height and width of the cropped face image. In our sys-
tem, we choose Yolo5Face (Qi et al. 2021) for face detec-
tion due to the balance between accuracy and computational
complexity.

Pose Estimation and Frontalization. Since training a
flow-based model handling multiple face poses requires
much parameters, the model size would be too large for an
embedded system. To reduce the computational and memory
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Figure 3: Illustration of encryption matrices of different
sizes.

requirement, we train the flow-based model only for single
frontal pose. Therefore, before encryption, we frontalize the
face and also record the face pose P = (yaw, pitch, roll)
which contains the angles of three Euler angles(yaw, pitch,
roll) for the consequent recovery. Here, we use lightweight
3ddfa (Guo et al. 2020) to estimate the pose estimation. For
frontalization, we choose Rotate and Render (Zhou et al.
2020) to wrap the original face X to the frontal face Xf :
Xf = W(P,X), where W(·) is the pose wrapping function.

3.2 Flow-Based Face Encryption
We propose a flow-based method to encrypt the original face
image Iori by mapping its data distribution to a Gaussian
distribution H ≜ N (0, Im) in a latent space. Since the shape
of the Gaussian distribution H in three-dimensional space is
is a ball, we name it as Gaussian ball.

At first, we train an flow-based model that learns the bijec-
tion mapping between the face in image space and the latent
variable space. NICE (Dinh, Krueger, and Bengio 2014) and
RealNVP (Dinh, Sohl-Dickstein, and Bengio 2016) use a
flow containing the equivalent of a permutation that reverses
the ordering of the channels. Glow replace this fixed permu-
tation with a (learned) invertible 1×1 convolution. We adopt
the flow-based model of Glow (Kingma and Dhariwal 2018)
in our method. Since the flow-based model is reversible, we
use the forward channel of the flow-based model as the en-
coder and the reverse channel as the decoder. The encoder
f(·): Z = f(Xf ) maps the original frontal face Xf to the
latent space Z ∈ R3×m×m,Z ∼ N (0, I). Since the distri-
bution of the latent variables is on a Gaussian ball, the ro-
tation of the latent variables will not change the distribution
of the latent variables (Wu, Du, and Yuan 2020). Thus, we
rotate encrypt this latent variable Z with a uniformly sam-
pled orthogonal matrix which is called “encryption matrix”
A: Zenc = A·Z. Finally, we cover the encrypted Zenc where
the face is in the original image. By reshaping the latent vari-
able Z ∈ R3×m×m into Rm×3m. The size of encryption
matrix A is only m×m, which is 128Kb for an image sized
128× 128. An illustration of the different encryption matri-
ces is shown in Figure 3.

Figure 4: Effect of change of temperature. From left to right,
the temperature is 0, 0.2, 0.4, 0.6, 0.8, 1.0

Now we have two kinds of data: 1) privacy-protected data:
encrypted latent-variable face image Ienc and posture infor-
mation P. 2) privacy-sensitive data: Encryption matrix A.
As discussed in next section, the former are transmitted on
public but less reliable channel while the latter goes through
secure channel.

3.3 Fairness Enhancement
Multiplying each latent variable Z ∼ N (0, λ2I) with a tem-
perature λ ∈ R could control the variance of its Gaussian
distribution, thus manipulating the size of the Gaussian ball.
As shown in Figure 4, we can see that as λ decreases, the
ages of two encrypted faces become closer and more fem-
inine. Therefore, by reducing λ, the bias caused by gender
and age can be reduced to promote fairness. Using a smaller
λ will compress the size of the Gaussian ball, making the
generated face closer to the “average face” learned by the
model, reducing the diversity between different generated
faces. So we can control the quality and diversity of the faces
generated by the encoder by adjusting the λ, we set the λ to
0.5 to obtain a better generation quality and reduce the diver-
sity of faces. The experiment shows that our method could
also promote racial fairness.

4 Data Transmission and End User
Posture Restoration. Since the rotation angle of Rotate
and Render only includes yaw and pitch, the rotation of roll
cannot be achieved. We choose CFR-GAN (Ju et al. 2022)
to render the face with same pose original image. Both of
the methods we have chosen to frontalization and posture
restoration require neither human intervention nor paired
data.

Different Users. For the end users, they will perform dif-
ferent operations on latent-variable face image Ienc trans-
mitted over public channel. Because its face privacy infor-
mation has been effectively protected, it can be transmitted
through insecure public channels. In the following, we will
introduce these three different types of users and their oper-
ation process on the user server.

4.1 Face-Aimed User
The face-aimed user deciphers the latent-variable face in en-
crypted latent-variable face image Ienc to a deciphered latent
variable using the encryption matrix transmitted through the
secure channel: Z

′
= A−1 · Zenc.

The encryption matrix is transmitted over a secure chan-
nel, so channel eavesdropping can be prevented. When they
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Model Backbone Easy Medium Hard FLOPs(G)
DSFD (Li et al. 2019) ResNet152 94.29% 91.47% 71.39% 259.55

RetinaFace (Deng et al. 2020) ResNet50 94.92% 91.90% 64.17% 37.59
HAMBox (Liu et al. 2019) ResNet50 95.27% 93.76% 76.75% 43.28

RetinaFace (small) MobileNet0.25 (Howard et al. 2017) 87.78% 81.16% 47.32% 0.802
FaceBoxes (Zhang et al. 2017) FaceBoxes 76.17% 57.17% 24.18% 0.275

YOLOv5s YOLOv5-CSPNet (Jocher 2020) 94.67% 92.75% 83.03% 5.751
YOLOv5n ShuffleNetv2 (Ma et al. 2018) 93.74% 91.54% 80.32% 2.111

Table 1: Comparison of Yolo5Face and existing face detectors on the Widerface validation dataset.

obtain the decrypted latent variable, they decode it to a de-
crypted frontal face X

′

f through the inverse channel of the
flow model: X

′

f = f−1(Z
′
).

After obtaining the decrypted frontal face, they use the
posture information transmitted over public channel to re-
cover the decrypted face to the original pose X

′
: X

′
=

W−1(P,X
′

f ). The decrypted face image IX′ is shown in
Figure 2 (a).

4.2 Privacy-Aimed User
Because the flow-based model is invertible, the user could
use the decoder f−1(·) to decode a fake face. The privacy-
aimed users decode the encrypted latent-variable face to a
encrypted frontal face Yf through the inverse channel of the
flow model: Yf = f−1(Zenc).

Then they use the posture information P transmitted
over public channel to rotate the encrypted frontal face
to the original pose to reconstruct the fake face Y: Y =
W−1(P,Yf ). The fake face image IY is shown in Figure 2
(b). We define this encryption method as fake face method.

4.3 Obfuscation Tolerant User
There are some users which we call obfuscation tolerant
users, do not need face information. Similar to the user of
privacy-enhanced version of ILSRC (Yang et al. 2022), they
can directly use the encrypted latent-variable face image
Ienc for their downstream tasks as shown in Figure 2 (c). We
define this encryption method as encrypted latent-variable
face method.

5 Experiments
We at first train our FFEM on images of CelebA-HQ (Kar-
ras et al. 2017) and FFHQ (Karras, Laine, and Aila 2019)
dataset. We at first detect the faces of these 100k images
and frontalize the faces through Rotate and Render (Zhou
et al. 2020) and use 90% of them for training and rest 10%
for testing. The batch size, temperature, learning rate, levels,
steps is set to 16, 0.5, 0.001, 5 and 32 respectively. As we can
see, the fake faces decoded by privacy-aimed user still visu-
ally maintain the appearance of human faces, showing our
FFEM captures the semantics of the input face images.

We then demonstrate our performance on privacy protec-
tion and fairness enhancement with following three experi-
ments. They are performed on two NVIDIA RTX 3090.

(a) Original Faces

(b) Fake Faces

Figure 5: Visualization of the faces before and after encryp-
tion. The first row contains original faces and the second row
contains the corresponding fake faces.

5.1 Dataset
CelebA-HQ CelebA-HQ dataset is a high resolution version
of CelebA dataset (Liu et al. 2015). It includes a total of 30k
high-resolution celebrity faces.
FFHQ FFHQ dataset is a high-quality face dataset con-
taining 70k high-definition face images with a resolution of
1024×1024, which are diverse and distinct in age, genders,
races, skin colors, expressions, face shapes, hairstyles, fa-
cial postures and image background. For both datasets, we
use its 256x256 resolution version and resize its images to
128x128 after face detection.
LFW LFW dataset (Huang and Learned-Miller 2014)
mainly collects images from the internet including more
than 13k face images in total. Each image is identified with
the name of the corresponding person.
UTK-face UTK-face dataset (Zhang, Song, and Qi 2017) is
a dataset with annotated race, age, and gender. Its age ranges
from 0 to 116 years old. Gender is divided into male and fe-
male. Races are divided into five categories: White, Black,
Asian, Indian, and Others.
HMDB51 HMDB51 dataset (Kuehne et al. 2011) contains
51 categories of actions, with a total of 6849 videos collected
from YouTube, google videos,etc. Each action contains at
least 51 videos and the video resolution is 320x240.

5.2 Effectiveness of Face Encryption
We evaluate the privacy protection against four widely
used third-party “black-box” FR models: ArcFace (Deng
et al. 2019), CosFace (Wang et al. 2018), FaceNet (Schroff,
Kalenichenko, and Philbin 2015), and SphereFace (Liu et al.
2017).

Similar to (Yang et al. 2021b), we randomly select 500
faces with different identities (containing two or more faces)
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in the LFW dataset as the probe images, leaving all of the re-
maining faces as the gallery. FR model calculates the simi-
larity between the probe image x and each face in the gallery.
We report Top-1 and Top-5 Accuracy representing 1 or 5
faces with the highest similarity have faces with the same
identity as x. The lower Top-1 and Top-5 accuracy means
better privacy protection. In this experiment, we evaluate
on our encrypted latent-variable face method and fake face
method. The encryption effect of the fake face method is
shown in Figure 5.

Table 2 shows FR models could effectively recognize the
identity of the faces before encryption, the face recognition
models can recognize the identity of the face. After our en-
cryption, these FR models fail to make identification. Com-
pared with other face privacy protection methods, top-1 and
top-5 accuracy on our encrypted latent-variable faces and
fake faces achieved the lowest recognition accuracy among
most FR systems. We attribute the stronger protection to
adding information about new faces to confuse FR model.
While DeepPrivacy (Hukkelås, Mester, and Lindseth 2019)
replaces the original face with a new one, it still retains
some original information, deteriorating the privacy protec-
tion ability. Experiments demonstrate that our encryption ef-
fectively protect the private information.

5.3 Effect on Downstream High-Level Task
We perform a video action recognition task to evaluate
how our encryption affects the downstream high-level tasks.
First, we pretrain a ResNet-50 (He et al. 2016) model on
Kinetics-700 (Carreira et al. 2019) and Moments in Time
(Monfort et al. 2019), and then finetune on the official
training set of HMDB51 (Kuehne et al. 2011). After that,
we preprocess the video frames of the validation set of
HMDB51(divided into three splits), sample the video frames
and the number of sampled frames per video does not ex-
ceed 100 frames. In the sampled frames, we only encrypt
the faces larger than 24x24, because smaller ones are hard to
recognize already. Finally we compare the Top-N accuracy
of the action recognition task before and after encryption.
Since our encrypted latent-variable face and fake face affect
the facial expression, we do not evaluate on the categories
such as smile and laugh.

Table 3 shows that, similar to pixelation, encrypted latent-
variable face has little effect on action detection recognition
and even slightly improves the accuracy. We suspect both
pixelation and encrypted latent-variable face make the action
recognition model to focus more on other regions unrelated
to the face, potentially allowing it to make more accurate
judgments. Compared to the accuracy before encryption,
the accuracy of fake face encryption method drops slightly
(0.13%-0.92%). The experiment demonstrate that both ob-
fuscation tolerant users and privacy-aimed users could suc-
cessfully perform the downstream recognition on our en-
cryption methods.

5.4 Fairness Enhancement
Here, we verify how our method enhance the fairness on
face detection experiment. Because the fairness experiment
requires face information, we adopt the fake face method.

We at first collect the Ground Truth(GT) with bbox of the
faces detected by Yolo5Face (Qi et al. 2021) on UTK-face.
We evaluate face detection model of OpenCV (Bradski and
Kaehler 2008) on the fake face images and report the IoU.
Finally, we use AI fairness 360 to calculate the Mean Dif-
ference(closer to zero implys greater fairness) and Disparate
Impact(closer to 100% implys greater fairness) of different
groups for fairness measurement.

According to the face detection results of OpenCV, we
found that the average IoU of male is higher than that of
female, and the average IoU of Indians is higher than that
of other races. Therefore, in gender group, we define male
as the privileged group, and female as the unprivileged one.
For racial group, we define Indian as a privileged group and
others as the unprivileged ones. In Table 4, the Mean Dif-
ference between the unprivileged group and the privileged
group after encryption is closer to 0% compared to original
ones, illustrating a significant more fair performance. Dis-
parate Impact is also closer to 100%, which shows that gen-
der differences and racial differences are much smaller on
our fake faces. We have also evaluate the fairness improve-
ment on individual races and find our method achieves a re-
duction in overall bias. Please refer to the supplementary for
details.

In order to verify that our method is effective in eliminat-
ing the bias of the machine’s first impression of a person, we
apply the fairness performance on a commercial face attrac-
tiveness rating API available at Face++ Platform1 to evaluate
the attractiveness of original and fake faces on a subset of the
UTK-face dataset (containing 3250 faces).

From Table 5 shows attractiveness score differs obvious
on gender in original images with the mean difference be-
tween genders 14.3%. But after encryption, the mean dif-
ference between genders dropped to 7.73%, achieving bet-
ter fairness. Disparate Impact also dropped from 133.55%
to 115.87%, indicating that the effects of different genders
on the results are more balanced. The experiment, reported
in supplementary, on race also shows a significant overall
fairness enhancement through our method.

Controlling fairness with parameters λ. As discussed in
Section 3.3, the fairness enhancement could be adjusted by
λ. We evaluate on the gender groups in UTK-Face subset.
Table 6 shows that a smaller λ results in higher fairness,
represented by lower mean difference on gender groups.
Meanwhile, decreasing λ also decreases the standard devia-
tion(STD) of the attractiveness score lower, showing smaller
difference between each individual group.

5.5 Embedded Devices Deployment
As the proof of concept system, we set up an embedded
system using NVIDIA Jetson Nano, a popular IoT device
as the privacy encryption camera terminal to deploy the
FFEM. NVIDIA Jetson Nano integrates a Quad-core ARM
processor, a 128 NVIDIA CUDA core GPU, and 4GB uni-
fied memory 2. To reduce the memory usage and opti-
mize the inference performance, we deploy our model with

1https://www.faceplusplus.com.cn
2https://developer.nvidia.com/embedded/jetson-nano
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FaceNet CosFace ArcFace SphereFace
top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

Original 93.4% 97.8% 95.4% 97.8% 96.0% 98.2% 89.4% 93.4%
Blacked out 0.4% 1.6% 0% 0.8% 0.4% 1.6% 0.2% 1.4%

Pixelation(8x8) 0.2% 0.6% 0.2% 1.2% 0.2% 1.2% 0% 1.4%
Pixelation(16x16) 0% 0.4% 0% 1.0% 0.4% 1.4% 0.2% 1.0%

Gaussian Blur(3x3) 0.2% 0.8% 0.2% 0.8% 0.2% 0.4% 0.2% 1.0%
Gaussian Blur(9x9) 0.4% 1.6% 0.6% 1.2% 0.2% 1.2% 0.2% 1.6%

Heavy Blur 0.2% 1.0% 0.2% 1.2% 0.2% 0.6% 0% 1.0%
DeepPrivacy 0% 1.0% 0.2% 1.2% 0.2% 0.6% 0% 1.0%

Encrypted latent-variable face 0% 0% 0% 0.6% 0.4% 1.0% 0% 1.2%
Fake face 0% 0.2% 0% 0% 0% 0% 0% 0%

Table 2: Comparison of different face privacy protection methods.

Split 1 Split 2 Split 3
top-1 top-5 top-1 top-5 top-1 top-5

Original 61.70% 89.87% 83.27% 94.90% 82.35% 95.75%
Pixelation 61.63% 89.73% 83.33% 95.10% 82.55% 95.88%

Encrypted latent-variable face 61.70% 89.80% 83.27% 95.03% 82.29% 95.82%
Fake face 61.31% 89.28% 82.35% 94.77% 81.70% 95.36%

Table 3: Top-N accuracy of the action recognition task between different methods.

Face Mean Difference Disparate Impact
Original -7.31% 91.17%

Gender
Encrypted -2.60% 97.03%
Original -3.63% 95.20%

Race
Encrypted 1.19% 101.43%

Table 4: Mean Difference and Disparate Impact between un-
privileged and privileged groups before and after encryption.

Face Mean Difference Disparate Impact
Original 14.3% 133.55%

Gender
Encrypted 7.73% 115.87%

Table 5: Mean Difference and Disparate Impact between Fe-
male and male before and after encryption.

TensorRT 3(a C++ library that facilitates high performance
inference on NVIDIA GPUs), on the embedded system.
The software configuration of our experimental platfrom
includes CUDA version 10.2, python 3.6.9 and TensorRT
8.0.1.6. To evaluate the time and energy cost of privacy en-
cryption phase, we conducted experiments on 100 images
and obtained the averaged results. in . According to Table 7,
it takes around 300 ms and 1.3 Joule to encrypt an image on
the embedded device.

6 Discussion and Limitation
Compliance with legitimate efforts on protecting the pri-
vacy and boosting the fairness in the entitle life cycle, we

3https://developer.nvidia.com/tensorrt

0.5 0.6 0.7 0.8
Mean Difference 7.73% 10.8% 12.7% 12.51%

STD 10.25 11.76 12.41 12.37

Table 6: Fairness results under different λ.

Activities Time (ms) Energy (J)
GPU CPU Board

Encoding 267 0.24 0.53 1.2
Encoding +

Rotation 307 0.29 0.62 1.3

Table 7: Privacy Encryption Time and Energy Cost on Em-
bedded Device.

have proposed a systematic solution from cameras to users.
Different from existing research focusing on improving the
algorithms, we stood on the shoulders of giants to address
less considered problems, such as the dangers of eavesdrop-
ping on data transmissions. Extensive experiments demon-
strate that our solution can effectively protect the privacy,
enhance the fairness while imposing limited negative ef-
fects on the down-stream high level tasks for different kinds
of users. The proof-of-concept evaluation of the embedded
system demonstrated speed and energy efficiency, showing
great potential for widespread deployment of the solution.
While effective in terms of privacy protection, this initial at-
tempt leaves much to be desired. For example, the decoded
face, although rotated, still showed an unnatural background
when merged into the image. On this path, we hope to en-
gage in discussions with experts from different fields to find
out more practical applications in real-world systems.
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A.; et al. 2019. AI Fairness 360: An extensible toolkit for
detecting and mitigating algorithmic bias. IBM Journal of
Research and Development, 63(4/5): 4–1.
Bradski, G.; and Kaehler, A. 2008. Learning OpenCV: Com-
puter vision with the OpenCV library. ” O’Reilly Media,
Inc.”.
Cangialosi, F.; Agarwal, N.; Arun, V.; Narayana, S.; Sar-
wate, A.; and Netravali, R. 2022. Privid: Practical,{Privacy-
Preserving} Video Analytics Queries. In 19th USENIX Sym-
posium on Networked Systems Design and Implementation
(NSDI 22), 209–228.
Cao, J.; Liu, B.; Wen, Y.; Xie, R.; and Song, L. 2021. Per-
sonalized and Invertible Face De-identification by Disentan-
gled Identity Information Manipulation. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, 3334–3342.
Carreira, J.; Noland, E.; Hillier, C.; and Zisserman, A. 2019.
A short note on the kinetics-700 human action dataset. arXiv
preprint arXiv:1907.06987.
Chamikara, M. A. P.; Bertok, P.; Khalil, I.; Liu, D.; and
Camtepe, S. 2020. Privacy preserving face recognition
utilizing differential privacy. Computers & Security, 97:
101951.
Deng, J.; Guo, J.; Ververas, E.; Kotsia, I.; and Zafeiriou, S.
2020. Retinaface: Single-shot multi-level face localisation
in the wild. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 5203–5212.
Deng, J.; Guo, J.; Xue, N.; and Zafeiriou, S. 2019. Arcface:
Additive angular margin loss for deep face recognition. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, 4690–4699.
Dinh, L.; Krueger, D.; and Bengio, Y. 2014. Nice: Non-
linear independent components estimation. arXiv preprint
arXiv:1410.8516.
Dinh, L.; Sohl-Dickstein, J.; and Bengio, S. 2016. Density
estimation using real nvp. arXiv preprint arXiv:1605.08803.
Dong, Y.; Liao, F.; Pang, T.; Su, H.; Zhu, J.; Hu, X.; and Li,
J. 2018. Boosting adversarial attacks with momentum. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, 9185–9193.
Dwork, C. 2008. Differential privacy: A survey of results.
In International conference on theory and applications of
models of computation, 1–19. Springer.

Gharbi, M.; Chaurasia, G.; Paris, S.; and Durand, F. 2016.
Deep joint demosaicking and denoising. ACM Transactions
on Graphics (ToG), 35(6): 1–12.
Gong, S.; Liu, X.; and Jain, A. K. 2020. Mitigating Face
Recognition Bias via Group Adaptive Classifier. arXiv e-
prints.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. Advances in neural in-
formation processing systems, 27.
Guo, J.; Zhu, X.; Yang, Y.; Yang, F.; Lei, Z.; and Li, S. Z.
2020. Towards Fast, Accurate and Stable 3D Dense Face
Alignment. In Proceedings of the European Conference on
Computer Vision (ECCV).
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Howard, A. G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang,
W.; Weyand, T.; Andreetto, M.; and Adam, H. 2017. Mo-
bilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861.
Huang, G. B.; and Learned-Miller, E. 2014. Labeled faces
in the wild: Updates and new reporting procedures. Dept.
Comput. Sci., Univ. Massachusetts Amherst, Amherst, MA,
USA, Tech. Rep, 14(003).
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