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Abstract

In artificial intelligence (AI), negative social impact
(NSI) represents the negative effect on the society as
a result of mistakes conducted by AI agents. While the
photo classification problem has been widely studied in
the AI community, the NSI made by photo misclassi-
fication is largely ignored due to the lack of quantita-
tive measurements of the NSI and effective approaches
to reduce it. In this paper, we focus on an NSI-aware
photo classification problem where the goal is to de-
velop a novel crowd-AI collaborative learning frame-
work that leverages online crowd workers to quantita-
tively estimate and effectively reduce the NSI of mis-
classified photos. Our problem is motivated by the lim-
itations of current NSI-aware photo classification ap-
proaches that either 1) cannot accurately estimate NSI
because they simply model NSI as the semantic dif-
ference between true and misclassified categories or 2)
require costly human annotations to estimate NSI of
pairwise class categories. To address such limitations,
we develop SocialCrowd, a crowdsourcing-based NSI-
aware photo classification framework that explicitly re-
duces the NSI of photo misclassification by designing a
duo relational NSI-aware graph with the NSI estimated
by online crowd workers. The evaluation results on two
large-scale image datasets show that SocialCrowd not
only reduces the NSI of photo misclassification but also
improves the classification accuracy on both datasets.

Introduction
Photo classification is a prevalent image classification appli-
cation that classifies online photos into semantic categories
(Hu et al. 2018). The classified photos are leveraged in vari-
ous downstream online applications, such as hashtag recom-
mendation for photo sharing services (Zhang et al. 2019),
automatic photo organization (Lonn, Radeva, and Dimic-
coli 2019), and keyword-based social media image retrieval
(Chen et al. 2022). However, such applications often suffer
from the misclassification issue where the photos are clas-
sified into incorrect categories, and such misclassifications
cause severe negative social impact (NSI) on the society. For
example, an AI model developed by Facebook made a high
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NSI (e.g., strong public criticism) because it wrongly clas-
sified a photo of a black man in a video as content about
“Primates” and recommended the photo to users as an ad-
vertisement (Wehrli et al. 2021). Formally, we define NSI as
negative or undesirable effects on society as a result of mis-
classifying a given photo by an AI-based photo classification
model (e.g., deep convolutional network). Such NSI usually
contradicts the mainstream society value or humanity (Chen
and Bu 2019). This paper focuses on an NSI-aware photo
classification problem where the goal is to design a novel
crowd-AI collaborative photo classification framework that
effectively minimizes NSI of misclassified photos.

Several initial efforts have been made to study the NSI-
related problem caused by photo misclassification in AI and
computer vision communities (Sengupta et al. 2018; Olmo,
Sengupta, and Kambhampati 2020; Sengupta 2020). In par-
ticular, Sengupta et al. modeled the negative impact of mis-
classified photos as the semantic differences between the
true photo labels and misclassified labels (Sengupta et al.
2018). For example, they expect an autonomous car to pose
a lower negative impact if it misclassifies a photo of a “Dog”
as a “Cat” than as a “Plastic Bag”. The reason is that the
“Dog” and “Cat” sub-categories both belong to the “Animal”
category that requires the vehicle to stop while the “Plastic
Bag” does not. However, the above semantic relations are in-
sufficient to estimate the NSI of misclassified online photos
because such semantic relations are generated without ex-
plicit considerations of social ethics and values (Friedman
and Kahn Jr 2007). For example, online users feel more of-
fensive if human-related photos are misclassified as specific
animals (e.g., “Gorillas”, “Pigs”) than objects (e.g., “Desk”,
“Vase”) even if the labels of animals share more semantic
relation with “Human” as they are all living creatures.

Figure 1 further demonstrates our NSI-aware photo clas-
sification problem. We show four misclassified photos with
their true and misclassified photo labels in Figure 1. From
the perspective of online users who have seen these misclas-
sified photos, we analyze the potential NSI made by each
misclassified photo and observe that the misclassification re-
sults can lead to different levels of NSI. For example, mis-
classifying a “Person” as a “Giraffe” (Figure 1a) could make
a high NSI because many people feel offended by misclassi-
fying their personal photos as specific animals. In contrast,
the NSI of misclassifying a “Poodle Dog” as a “Rabbit”
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Figure 1: NSI-aware Photo Classification Problem

(Figure 1b) is low since both “Poodle Dog” and “Rabbit” are
small animals. However, a close semantic relation between
two class categories (e.g., “Poodle Dog” and “Rabbit”) does
not always represent a low NSI of the misclassified photos
between these categories. For example, misclassifying a bird
as a kangaroo (Figure 1c) could cause a high NSI because
the risk of a car crashing with a kangaroo is significantly
higher than a flying bird. Moreover, we also observe that the
reason for misclassifying a photo could be closely associ-
ated with the ambiguous appearance of objects in the photo.
For example, Figure 1d contains a real gun that looks like an
umbrella as the gun is hidden by installing an umbrella top
frame. Therefore, it is likely that a trained photo classifica-
tion model misclassifies the gun as “Umbrella” in the photo,
leading to a high NSI due to public safety concerns.

Motivated by the above observations, we develop So-
cialCrowd, a crowd-AI collaborative learning framework
that leverages the collaborative strengths of AI and crowd-
sourced human intelligence to address the NSI-aware photo
classification problem. Our goal is to accurately estimate the
NSI observed in misclassified photos from the NSI set and
minimize the possibility of classifying unseen photos to the
wrong class categories with high NSI. In our SocialCrowd
framework, we leverage human intelligence from crowd-
sourcing systems (e.g., Amazon MTurk) to quantitatively es-
timate the NSI of misclassified photos. Our motivation for
incorporating crowdsourcing efforts is to leverage the crowd
workers’ extensive background knowledge and experiences
to accurately estimate NSI based on their considerations of
the relevant social contexts (Zuccon et al. 2011; Savenkov,
Weitzner, and Agichtein 2016; Zhang et al. 2021b). The es-
timated NSI values from different class categories are then
leveraged to construct an NSI-aware graph network to accu-
rately classify photos with minimized misclassification NSI.
To our best knowledge, SocialCrowd is the first NSI-aware
photo classification framework that leverages crowdsourc-
ing intelligence to effectively minimize NSI of misclassified
photos across different class categories in large-scale photo
classification applications. We evaluate SocialCrowd on two
large-scale image classification datasets that contain images
from hundreds of different class categories. The results on
both datasets show that SocialCrowd significantly reduces
the NSI of misclassified photos while accurately classifying
the photos compared to state-of-the-art baseline models.

Related Work
Social Impact of AI
The negative social impact (NSI) introduced by AI mod-
els remains a challenging problem to be addressed. A few
recent efforts have been made to address the NSI issue in
AI applications (Wang and Deng 2019; Hu et al. 2021; Ko-
rayem et al. 2016). For example, Wang et al. developed a
skewness-aware reinforcement learning framework to miti-
gate the racial bias in face recognition applications (Wang
and Deng 2019). Korayem et al. proposed a privacy-aware
object detection framework to reduce the NSI caused by pri-
vate information on computer screens in photos (Korayem
et al. 2016). However, none of the above NSI-aware ap-
proaches focuses on addressing the NSI issue caused by
photo misclassification due to the lack of effective strate-
gies to estimate and minimize NSI of misclassified photos.
There are also recent works that model NSI as semantic dif-
ferences between class categories of images and develop
weighted classification loss functions to reduce NSI (Sen-
gupta et al. 2018; Olmo, Sengupta, and Kambhampati 2020).
However, such semantic differences cannot accurately rep-
resent NSI and even make wrong estimations on NSI in
many real-world scenarios (e.g., the misclassified photo in
Figure 1c). Moreover, the above NSI-aware approaches suf-
fer a significant degradation of photo classification perfor-
mance because they ignore the category ambiguity in NSI-
aware photo classification models. In this paper, we focus on
a novel NSI-aware large-scale photo classification problem
that aims to accurately classify photos and minimize the NSI
of misclassified photos by AI models.

Crowd-AI Hybrid Systems
Our work is closely related to crowd-AI hybrid systems
where human efforts from a vast amount of crowd workers
are collaboratively coordinated to improve the performance
of AI algorithms (Hui and Berberich 2017; Blanco et al.
2011; Inel et al. 2018; Shi et al. 2020; Kou et al. 2022b;
Zhang et al. 2020, 2022b). For example, Balayn et al. intro-
duced a crowdsourcing-based concept extraction approach
to interpret image classification results (Balayn et al. 2021).
Saralioglu et al. developed a post-classification accuracy
assessment scheme that leveraged crowdsourcing efforts
to evaluate the image classification performance for high-
resolution satellite images (Saralioglu and Gungor 2019).
Hettiachchi et al. designed a visible gold question mecha-
nism to assess the reliability of crowd workers and improve
the data quality of crowdsourced face annotations (Hetti-
achchi et al. 2021). Heim et al. proposed a hybrid medi-
cal image annotation pipeline that utilized the joint power
of the crowd and AI algorithm for medical image segmen-
tation (Heim et al. 2018). However, those solutions do not
explore the opportunity to leverage the collective power of
crowd and AI to address the NSI-aware photo classification
problem. In contrast, the SocialCrowd designs a graph-based
crowdsourcing framework that incorporates human intelli-
gence from online crowd workers to accurately estimate the
NSI of photo misclassification across different class cate-
gories and effectively classify photos with minimal NSI.

14638



Problem Description
We first introduce a few key terms in the crowdsourcing-
based NSI-aware photo classification problem.

Definition 1 Photo (x): A photo is an online image that is
created and shared by social media users across various so-
cial media platforms. The photos containing objects with
similar visual characteristics are often classified into the
same category. For example, all Dalmatian dogs of differ-
ent ages and sizes belong to the “Dalmatian” category due
to the same breed. We define the categories of interests as
C = {c1, . . . , cK} with K different categories that are inde-
pendent of each other. Note that following standard practice
in photo classification (Perera, Oza, and Patel 2021), each
photo is only assigned to one category based on the main
object in that photo.

Definition 2 Photo Dataset (X ): A photo dataset contains
a set of labeled photos. As shown in Figure 1, the photo
dataset X contains: 1) a training set X T = {xT

1 , . . . , x
T
M}

that includes a total of M photos to be used for training
AI-related photo classification models; and 2) an NSI set
XS = {xS

1 , . . . , x
S
N} that includes a total of N photos to be

used for identifying the misclassified photos and evaluating
the corresponding NSI values.

Definition 3 Photo Label (y): Each photo x has a seman-
tic photo label y ∈ C that identifies the class category of
the subjects in x (e.g., y =“Person” for the photo in Fig-
ure 1a). Similarly, we define the labels of X T as YT =
{yT1 , . . . , yTM} and the labels of XS as YS = {yS1 , . . . , ySN}.

Definition 4 Negative Social Impact (NSI): The negative
social impact (NSI) of a photo x represents the negative ef-
fect on society if x is misclassified by the AI model (i.e.,
ŷ ̸= y, where ŷ and y are the predicted and ground-truth
photo labels of the image, respectively). In particular, we
consider the effect of a misclassified photo as negative if the
misclassification contradicts the mainstream society value,
common sense, or humanity (Chen and Bu 2019). We de-
note NSI(x, y, ŷ) as the quantitative degree of NSI for photo
x with the ground truth label y, which is misclassified as ŷ.

Definition 5 Category Ambiguity (CAB): The category
ambiguity of photo x represents the ambiguity degree be-
tween class categories of the true and misclassified labels
in terms of their visual similarity. For example, the CAB of
Figure 1d is high because the gun in the photo is similar to
an umbrella and the ambiguity between them is high. We
denote A(x, y, ŷ) as the CAB for x where y and ŷ represent
the ground-truth and the misclassified labels, respectively.

Definition 6 Duo Relations: Given a misclassified photo,
we define the duo relations as the NSI and CAB of the photo.

Definition 7 Crowdsourcing Platform (C): A crowd-
sourcing platform receives crowdsourcing tasks from re-
questers (e.g., applications) and dispatches the tasks to
crowd workers (Zhang et al. 2022a; Kou et al. 2022a). We
will illustrate the details of our crowdsourcing task design in
the solution.

The goal of our NSI-aware photo classification problem
is to accurately classify the photos in X and minimize the
NSI of misclassified photos. Using the definitions above, our
problem is formally defined as:

minimize
M∑
i=1

NSI(xi, yi, ŷi|NSI(XS)), ∀yi ̸= ŷi

maximize
M∑
i=1

Pr(ŷi = yi|Θ, xi)

(1)

where NSI(XS) = {NSI(xi, yi, ŷi)|C}, 1 ≤ i ≤ N repre-
sents the estimated NSI of the images from the NSI set by
the crowdsourcing tasks. Pr(ŷi = yi|Θ, xi) is the probability
of the AI model Θ to correctly classify photo xi.

Solution
SocialCrowd consists of three modules: 1) a Crowdsourcing
Duo Relational Estimator (CDRE), 2) a Context-driven Vi-
sual Relation Predictor (CVRP), and 3) a Graph-based NSI-
CAB-aware Classifier (GNCC). In particular, the CDRE
module first designs a novel crowdsourcing framework to
explicitly query crowdsourced human intelligence to jointly
estimate the NSI and CAB of the misclassified photos. The
CVRP module, which works in parallel with the CDRE
module, designs a metric-based learning-to-learn classifica-
tion framework to effectively predict the NSI and CAB of
the misclassified photos from the categories that are not in-
cluded in the NSI set. Finally, the GNCC module introduces
a graph-based NSI-CAB-aware classifier that carefully fuses
the crowdsourced and predicted NSI and CAB from the
CDRE and CVRP modules to make accurate photo classi-
fication while minimizing the NSI of misclassified photos.

Crowdsourcing Duo Relational Estimator
The crowdsourcing duo relational estimator (CDRE) mod-
ule aims to leverage crowdsourced human intelligence to
estimate both NSI and CAB of misclassified photos across
different class categories. CDRE firstly designs a deep mis-
classified photo identifier that is trained on the training set
X T and validated on the NSI set XS . The validation on
XS identifies the misclassified photos from XS by validat-
ing the consistency between the predicted and true photo la-
bels. In particular, the identifier trains a set of deep learn-
ing photo classification models M = {M1, . . . ,MF } with
different backbone model structures on the different subsets
of X T and YT based on the cross-entropy loss (Zhang and
Sabuncu 2018). The identifier then validates each model in
M on XS and YS to identify the misclassified photos. The
reason for leveraging a set of photo classification models is
that different models with various optimized parameters of-
ten generate different classification results on each photo.
Therefore, a photo is likely to be misclassified with differ-
ent labels, which encourages crowd workers to estimate the
NSI and CAB of a misclassified photo from different per-
spectives in the following process. Formally, we define the
set of misclassified photos as XS

∗ = {xS
1 , . . . , x

S
N∗} where

Mf (x
S
n) ̸= ySn , 1 ≤ n ≤ N∗ ≤ N, ∀Mf ∈ M.
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Figure 2: Visual-guided Duo Relational Estimation Interface

Given the misclassified photos XS
∗ from XS , CDRE then

develops a context-based duo relational crowdsourcing task
that is assigned to crowd workers to estimate the NSI and
CAB of the photos from XS

∗ . In particular, we design a novel
visual-guided duo relational estimation interface to interact
with crowd workers as shown in Figure 2. For each crowd-
sourcing task, the interface randomly selects a misclassi-
fied photo from XS

∗ and expects a crowd worker to answer
three questions by selecting the corresponding options un-
der the questions. In particular, the first and third questions
in the interface estimate the NSI and CAB of misclassifying
the given photo, respectively. For the second question, we
ask crowd workers for the specific context of social issues
(i.e., social context) (Borras Jr et al. 2018) that they con-
sider when answering the first question. The motivation of
the second question is that crowd workers may estimate the
NSI of the misclassified photos from different perspectives
based on their own social experiences and interpretations of
NSI. Hence, understanding why a crowd worker answers the
first question with a specific selection is important for aggre-
gating the NSI from different photos and further predicting
the NSI of unseen photos in the next subsection. In particu-
lar, for each task t with the misclassified photo xS

t , we define
{rt,i|1 ≤ i ≤ 3} as the set of answers to the three questions.

Context-driven Visual Relation Predictor
As illustrated in Figure 1, the NSI set usually does not
contain the misclassified photos with all possible combi-
nations of class categories. We define the missing pairs of
class categories as unobserved category pairs. In particu-
lar, if there is no misclassified photo from the NSI set XS

that contains (ci, cj) as a category pair, we denote (ci, cj)
as an unobserved category pair. For example, if none of
the “Kangaroo” photos in the NSI set is misclassified as
“Person”, (“Kangaroo”, “Person”) is an unobserved cate-
gory pair. Since there is no misclassified photo from unob-
served category pairs, we cannot estimate the duo relations
of the photo by leveraging the CDRE module.

To address the above issue, we develop a metric-based
learning-to-learn classification framework to predict the duo
relations of misclassified photos from unobserved cate-
gories. We show the detailed structure of the framework in

Figure 3. To predict the NSI of xS
t , we firstly generate an

embedding matrix WE ∈ RK×d to transform both ci and
cj to high-dimensional semantic features c̃i ∈ R1×d and
c̃j ∈ R1×d where K is the total number of considered class
categories. To encode the social context rt,2 from Rt as the
crowd perspective of NSI, we design a learning-to-learn neu-
ral network that transforms the semantic social context into
learnable matrix parameters of the framework. The process
is denoted as ot = W2(σ(W1(onehot(rt,2)))) where ot ∈
Rd×d is the generated parameter matrix. To estimate the po-
tential NSI between ci and cj based on the social context
rt,2, we apply the matrix multiplication for the correspond-
ing features to effectively aggregate the semantic informa-
tion from the categories ci, cj and the social context. The
generated features are further encoded with x̃S

t to predict the
NSI of xS

t , where x̃S
t is the encoded high-dimensional vec-

tor of xS
t . The process is denoted as r̂t,1 = x̃S

t σ(c̃
T
i c̃jot)W3

where W3 ∈ Rd×3 are learnable parameters to transform the
input features to r̂t,1 ∈ R3 that is optimized with the true
NSI value rt,1 through cross-entropy loss LNSI(r̂t,1, rt,1).

En
co
de
r

Gun

Umbrella Race

Public Safety

Health

…

>

Figure 3: The overview structure of CVRP

To solve the challenge that the CAB of a misclassified
photo is associated with the complex visual content of the
photo, we design a metric-based pairwise visual feature ex-
tractor to effectively identify the representative visual infor-
mation of different photos. In particular, we first design a
deep CAB classifier that classifies the CAB value of x̃S

t ,
which is denoted as r̂t,3 = W2(σ({x̃S

t |c̃i|c̃j}W1)) where
r̂t,3 ∈ R3 is the predicted CAB value. We denote the true
CAB value rt,3 as ground-truth label and apply the cross-
entropy loss denoted as Lce(r̂t,3, rt,3). To further identify the
representative visual information related to the correspond-
ing CAB value from each photo embedding, we exchange
the visual features between the photo embeddings and ex-
pect that the exchanged features lead to the changes of the
corresponding CAB values of the photo. In particular, given
two photo embeddings x̃S

t and x̃S
n that contain the same cate-

gory pair (ci, cj) but different CAB value rt,3 and rn,3 where
rt,3 > rn,3, we generate the exchange visual feature from
x̃S
t as hS

t = max2(MultiHead(x̃S
t W3)) where MultiHead

denotes the multi-head split operation and max2 denotes the
max value extraction on the feature dimension. We then in-
tegrate hS

t with x̃S
n as HS

n = {{x̃S
n |c̃i|c̃j}W1|hS

t }. Since
hS
t contains specific visual content (e.g., umbrella frame
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in Figure 2) of photo xS
t that leads to a high CAB value

rt,3, the CAB value of HS
n is expected to be higher than

the CAB value (i.e., rn,3) from hS
n because HS

n contains
hS
t as part of the visual feature. Therefore, we denote the

new cross-entropy loss function as LCAB(r̂
∗
n,3, rt,3), where

r̂∗n,3 = W2H
S
n .

After the optimization process of the metric-based
learning-to-learn framework based on the loss functions
LNSI, Lce and LCAB, we leverage the optimized framework to
predict the duo relations of each photo from XS . In particu-
lar, we denote the predicted NSI and CAB values of the NSI
set XS as Φ = {ϕ1, . . . , ϕN} and Ω = {ω1, . . . , ωN} where
N is the total number of photos. ϕn = {ϕn,1, . . . , ϕn,K} and
ωn = {ωn,1, . . . , ωn,K} denote the predicted NSI and CAB
of the photo xS

t that is misclassified to the total K categories.

Graph-based NSI-CAB-Aware Classifier
We develop the graph-based NSI-CAB-aware classifier
(GNCC) to classify the input photos based on the crowd-
sourced duo relations of XS from the CDRE and the pre-
dicted duo relations of XS from the CVRP, respectively.

In particular, we first construct a duo relational directed
graph (DRDG) as G based on the duo relations of XS . In
particular, G contains K graph nodes V = {v1, . . . , vK} that
correspond to K class categories. To represent each graph
node from G, we design two types of graph embeddings by
exploring the semantic meaning of each class category and
visual characteristics of the photos with the class category
as photo labels. To generate the semantic embeddings of the
graph nodes, we create an embedding matrix that transforms
each graph node in V to d-dimensional embeddings. There-
fore, the semantic embeddings of all graph nodes can be de-
noted as ṼP = {ṽp,1, . . . , ṽp,K} ∈ RK×d. To generate the
visual embeddings of the graph nodes, we first encode all
photos from XS by applying the photo embedding module
F from CVRP and then aggregate the photo embeddings
with the same photo labels to generate the embedding for
each category. We formally define the visual embeddings of
all graph nodes as ṼA = {ṽa,1, . . . , ṽa,K} ∈ RK×d. There-
fore, we denote the node embedding of all graph nodes as
Ṽ = {ṽ1, . . . , ṽK} where ṽk = {ṽp,k|ṽa,k} denotes the
graph embedding of the graph node vk. For each pair of
nodes (i.e., class categories) vi and vj from G, we add a
directed graph edge from vi to vj to indicate misclassified
photos from XS with the true label as vi and the misclas-
sified label as vj . For each graph edge from vi to vj , we
define the NSI edge weight as the average NSI value of all
photos from Φ if the photos have vi as the photo label and
vj as the misclassified label. Similarly, we define the CAB
edge weight as the average CAB value of all photos from
Ω. We convert the values of all NSI edge weights and CAB
edge weights in G to binary values (i.e., 0 and 1) that repre-
sent low and high values of duo relations between different
categories based on hyper-thresholds.

Given the constructed G and an input photo for classifi-
cation, GNCC aims to aggregate both the photo embedding
and graph embeddings based on the structure of G to dis-
criminate critical information of each class category from G.

For example, an input photo with the “Gun” label is more
likely to be correctly classified if the classification model
can discriminate critical visual information in the photo by
explicitly exploring the potential category information from
G that includes the “Gun” category and its connected mis-
classified categories. Given the input photo xm ∈ X T , we
define the graph aggregation process below.

h̃
(l)
k = {x̃m|σ(W1ṽ

(l−1)
k +

∑
j∈Vk

αk,j ṽ
(l−1)
j W2)} (2)

where ṽ
(l−1)
k is the aggregated embedding for the kth

graph node in (l − 1)th graph layer. Vk denotes the set
of graph nodes that are connected with vk in either or
both directions. αk,j is the normalized attention score A =

W4(Ṽ(x̃mW3)
T + (x̃mW3)ṼT ) between kth and jth graph

node embeddings. We aggregate the graph node embeddings
with the input photo embedding for ζ times where ζ is the
pre-defined hyper-parameter.

Given the aggregated embedding h̃k of the graph node vk
from G, our strategy expects h̃k to have larger or smaller dis-
tance with other graph node embeddings that are connected
to vk with a higher or lower edge-level NSI, respectively.
The strategy increases the probability of the model to con-
sider the categories with low NSI as alternative classification
results for the category of vc. Similarly, our strategy mini-
mizes the distance between h̃k and other graph node embed-
dings that are connected by graph edges with a higher CAB.
For example, our strategy encourages GNCC to jointly con-
sider the graph node embeddings of the “Gun” and “Um-
brella” categories to discriminate the ambiguous visual in-
formation between the two categories. We define the process
of GNCC as follows.

Lp = max(
∑

α∈V−
p

∥h̃k − h̃α∥ −
∑

β∈V+
p

∥h̃k − h̃β∥+ ϵ, 0)

La = max(
∑

α∈V+
a

∥h̃k − h̃α∥ −
∑

β∈V−
a

∥h̃k − h̃β∥+ ϵ, 0)
(3)

where ∥ · − · ∥ represents the L2 distance. V+
p and V−

p rep-
resent the graph nodes from G that connect to vi with high
and low edge-level NSI, respectively. Similarly, the V+

a and
V−
a denote the graph nodes with high and low CAB, respec-

tively. We jointly consider Lp and La by merging them to
one loss function defined as LGNCC = λLp + µLa where
λ and µ are pre-defined hyperparameters. We finally aggre-
gate all graph node embeddings as z̃n ∈ Rd for the mth input
photo and transform z̃m to ŷm ∈ RK that represents the final
prediction with K outputs. The output with the maximum
value corresponds to the final predicted category. We train
ŷm with the photo label ym using the cross-entropy loss.

Evaluation
Dataset and Experiment Setup
Dataset. We use publicly available MiniImageNet (Vinyals
et al. 2016) and Cifar100 (Krizhevsky and Hinton 2009) as
two real-world datasets in our experiments. MiniImageNet
is a sub-dataset of ImageNet (Russakovsky et al. 2015) that
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includes 100 class categories, and 600 images per class cat-
egory. We randomly split the MiniImageNet dataset with
420 training images and 180 testing images per class. Sim-
ilarly, the Cifar100 dataset is a sub-dataset of 80-million-
tiny-image dataset (Prabhu and Birhane 2020) that includes
100 class categories and 600 images per class category. We
split the dataset with 100 testing images and 500 training
images.
Crowdsourcing Setup. To generate NSI sets, we randomly
sample 20% of the labeled training photos from each dataset.
We train 100 deep misclassified photo identifiers from the
CDRE module on the remaining 80% of each training set.
After training, we use the photos from the NSI set to vali-
date each identifier (defined in CDRE module) and collect
all misclassified photos. We then sample photos from all
misclassified photos to construct the visual-guided duo rela-
tional estimation interface in CDRE by tasking crowd work-
ers to estimate both the NSI and CAB of the photos.

Our tasks are deployed on Amazon MTurk, which ran-
domly selects online crowd workers to answer the tasks re-
gardless of their demographic attributes (e.g., race, gender,
age) (Zhang et al. 2021a). We only allow crowd workers
who have a 95% or higher Human Intelligence Task (HIT)
approval rate to answer our tasks to ensure the quality of
the answers. For each task, we randomly generate a veri-
fication question (e.g., “what is the first letter of Apple?”)
for the crowd worker to avoid crowdsourcing attacks from
robot algorithms (Sanchez, Rosas, and Hidalgo 2018). We
set the payment to crowd workers well above the require-
ment from MTurk (Amazon 2022). We follow the IRB pro-
tocol approved for this project. In our experiment, we col-
lect 11,487 answers and 10,599 answers from the photos in
MiniImageNet and Cifar100, respectively.

Baselines
We compare the performance of SocialCrowd with both
state-of-the-art 1) deep learning and crowdsourcing based
photo classification baselines: VGG16 (Simonyan and Zis-
serman 2014), DenseNet (Huang et al. 2017), and Human-
Cls (Peterson et al. 2019); and 2) NSI-aware photo classi-
fication models: DeepBounded (Sengupta et al. 2018) and
DeepEKL (Olmo, Sengupta, and Kambhampati 2020).

Evaluation Results
Q1: NSI Performance of SocialCrowd. We first evaluate
the performance of SocialCrowd and compared schemes in
terms of NSI and classification accuracy. We collect the mis-
classified photos by all the schemes from the testing set. To
obtain the ground-truth NSI label of each class category pair,
we invite five well-trained independent social science pro-
fessionals to manually annotate how negative they think one
class category from each category pair is misclassified as
the other category. In particular, we create the NSI values
1-5 to indicate the degree of NSI as: 1) totally acceptable; 2)
acceptable; 3) neutral; 4) unacceptable; and 5) totally unac-
ceptable. We also apply majority voting on the annotations
for each category pair to obtain the final NSI value.

We define the metrics NSI-1 and NSI-5 to evaluate the
NSI performance of compared schemes. For a misclassified

photo, we retrieve the ground-truth NSI value from the an-
notated category pair with y and ŷ as the first and second
categories. We average the retrieved NSI values of all the
misclassified photos from the testing set as the NSI-1 score.
In addition, we further define NSI-5 to be the NSI value
when none of the top 5 most likely labels predicted by a
scheme is the same as the photo label. Intuitively, the lower
scores of NSI-1 and NSI-5 indicate better NSI performance.
We summarize the results in Table 1. We observe that So-
cialCrowd outperforms all compared schemes with a signif-
icant decrease in the NSI value. Such performance gains are
mainly attributed to the design of SocialCrowd that accu-
rately estimates the NSI of observed misclassified photos by
leveraging crowdsourced human intelligence and explicitly
considers the NSI between class categories to reduce the NSI
of misclassified photos.

Data MiniImageNet Cifar100

Metric NSI-1 NSI-5 NSI-1 NSI-5

VGG16 3.06 3.05 3.44 3.41

DenseNet 3.27 3.30 3.01 3.02

HumanCls 3.19 3.56 3.02 2.97

DeepBounded 3.01 3.05 2.98 2.96

DeepEKL 2.74 2.81 2.44 2.50

SocialCrowd 2.06 2.07 2.30 2.32

Table 1: NSI Performance

Q2: Photo Classification Performance of SocialCrowd. In
addition, we also evaluate the photo classification accuracy
of all methods, which is as important as reducing the NSI for
classification models. In particular, we evaluate the classifi-
cation accuracy using the Top-1 and Top-5 metrics that are
widely adopted in the computer vision community (Szegedy
et al. 2017). The results are shown in Table 2. We ob-
serve that SocialCrowd outperforms all compared schemes
in terms of the Top-1 metric and outperforms most schemes
in terms of the Top-5 metric on both datasets. The reason
is that SocialCrowd jointly considers both CAB and NSI of
misclassified photos in CVRP to generate discriminative vi-
sual embeddings between different graph nodes. The gener-
ated graph embeddings are further integrated with the input
photo embeddings to improve the classification accuracy of
the input photos. However, we also observe the SocialCrowd
does not perform as well as VGG16 on classifying photos in
terms of the Top-5 metric. One possible reason is that the
semantic embeddings and visual embeddings of the graph
nodes from CVRP cannot be effectively integrated due to
the domain discrepancy between the semantic information
(e.g., class category names) and the visual information (e.g.,
photos from the training and NSI sets).
Q3: Robustness of SocialCrowd: We further study the ro-
bustness of SocialCrowd with respect to the key variable:
percentage of crowdsourcing task (PCT). The PCT indicates
the percentage of crowdsourcing tasks to collect answers
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Data MiniImageNet Cifar100

Metric Top-1 Top-5 Top-1 Top-5

VGG16 0.709 0.890 0.841 0.970

DenseNet 0.669 0.897 0.812 0.969

HumanCls 0.687 0.887 0.822 0.969

DeepBounded 0.653 0.866 0.728 0.943

DeepEKL 0.683 0.883 0.785 0.956

SocialCrowd 0.749 0.920 0.825 0.971

Table 2: Classification Accuracy Performance

Figure 4: Robustness Study of SocialCrowd

from crowd workers and construct GDRP. We tune PCT
from 20% to 100%. The results are shown in Figure 4. We
observe that the NSI performance and the classification ac-
curacy improve as PCT increases. The results demonstrate
that our crowdsourcing tasks improve the performance of
SocialCrowd in terms of both NSI and classification accu-
racy. However, we also observe the performance of Social-
Crowd gradually plateaus especially when the PCT is greater
than 60%. One possible reason is that the information ob-
tained from the crowd in the new tasks (e.g., new NSI and
CAB scores of misclassified photos) are similar to the ex-
isting information embedded in GDRP as the number of
crowdsourcing tasks increases.
Q4: Ablation Study of SocialCrowd. Finally, we perform
a comprehensive ablation study to understand the contribu-
tions of important components of SocialCrowd. We create
three variants of SocialCrowd by changing its key compo-
nents: 1) SocialNSI: we do not consider CAB of misclas-
sified photos; 2) SocialCAB: we do not consider NSI of
misclassified photos; 3) SocialGraph: we remove the input
photo embedding from the concatenation of the graph node
embeddings in the GNCC module and aggregate the photo
embedding for final photo classification. We summarize the

results in Table 3. We observe SocialCrowd outperforms all
other variants in terms of all evaluation metrics. The results
demonstrate the importance and necessity of the key com-
ponents of SocialCrowd.

MiniImageNet

Metric NSI-1 NSI-5 Top-1 Top-5

SocialNSI 2.28 2.37 0.659 0.885

SocialCAB 2.94 2.98 0.667 0.893

SocialGraph 2.49 2.45 0.680 0.904

SocialCrowd 2.06 2.07 0.749 0.920

Cifar100

Metric NSI-1 NSI-5 Top-1 Top-5

SocialNSI 2.35 2.37 0.758 0.953

SocialCAB 3.02 3.02 0.801 0.965

SocialGraph 2.54 2.40 0.806 0.966

SocialCrowd 2.30 2.32 0.825 0.971

Table 3: Ablation Study of SocialCrowd

Conclusion
This paper presents SocialCrowd, a crowd-AI collabora-
tive NSI-aware photo classification framework to address
the problem of negative social impact of misclassified pho-
tos in large-scale photo classification applications. In par-
ticular, we design a novel duo relational NSI-aware graph
network to jointly model the NSI and CAB for different
class category pairs by exploring the crowdsourced human
intelligence. We also develop a context-driven visual rela-
tion predictor to efficiently predict the NSI and CAB of
unobserved class category pairs. We evaluate SocialCrowd
on two large-scale image datasets. Evaluation results show
that SocialCrowd significantly outperforms state-of-the-art
baseline methods by accurately classifying photos and ef-
fectively reducing the NSI of misclassified photos.
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