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Abstract

Cloud masking is both a fundamental and a critical task in
the vast majority of Earth observation problems across social
sectors, including agriculture, energy, water, etc. The sheer
volume of satellite imagery to be processed has fast-climbed
to a scale (e.g., >10 PBs/year) that is prohibitive for manual
processing. Meanwhile, generating reliable cloud masks and
image composites is increasingly challenging due to the con-
tinued distribution-shifts in the imagery collected by exist-
ing sensors and the ever-growing variety of sensors and plat-
forms. Moreover, labeled samples are scarce and geographi-
cally limited compared to the needs in real large-scale appli-
cations. In related work, traditional remote sensing methods
are often physics-based and rely on special spectral signa-
tures from multi- or hyper-spectral bands, which are often not
available in data collected by many – and especially more re-
cent – high-resolution platforms. Machine learning and deep
learning based methods, on the other hand, often require large
volumes of up-to-date training data to be reliable and general-
izable over space. We propose an autonomous image compo-
sition and masking (Auto-CM) framework to learn to solve
the fundamental tasks in a label-free manner, by leverag-
ing different dynamics of events in both geographic domains
and time-series. Our experiments show that Auto-CM outper-
forms existing methods on a wide-range of data with different
satellite platforms, geographic regions and bands.

Introduction
Clouds are highly frequent and pervasive atmospheric phe-
nomena lying between satellite sensors and the surface of
the Earth. As a result, cloud masking and image composi-
tion are among the most fundamental tasks in satellite-based
Earth observation, and have a direct impact on the vast ma-
jority of important downstream Earth observation applica-
tions across social sectors, such as crop monitoring, solar
energy budgeting, water resource surveillance, disaster re-
sponse, carbon emission monitoring, etc. Given the societal
importance of these use cases, satellite-based platforms have
undergone many revolutions and the imagery is being col-
lected at an ever-growing resolution, scale, frequency, and
variety. For example, NASA’s Earth Observing System Data
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and Information System (EOSDIS) collects data at 12 PB-
s/year by 2020, and the total volume is projected to grow
from 42 PBs to 250 PBs by 2025 with new sensors. Sim-
ilarly, commercial platforms such as Planet constellations
can scan the entire Earth on a daily basis, and its SkySat
program can capture every location on Earth seven times a
day at 0.5m resolution. This sheer volume of data has fast-
climbed to a scale that is prohibitive for manual processing,
making it critical to develop robust and efficient techniques
for cloud masking and cloud-free image composition.

Despite the importance and broad impact, the problem is
challenging from several aspects. First, ground-truth sam-
ples of clouds have limited availability, especially consider-
ing the volume and variety of both existing and incoming
satellite data that are needed to meet the demand of large-
scale applications. Moreover, unlike other geospatial objects
such as buildings and roads, clouds are constantly-moving
targets, which means labels are limited to a single snapshot
and not usable for future data. Second, the training sam-
ples are geographically constrained to specific locations and
only cover a very tiny portion of the Earth, making learned
models hard to generalize in the heterogeneous Earth sur-
face (Xie et al. 2021; Goodchild and Li 2021; Karpatne
et al. 2018). Third, the data distribution is non-stationary due
to changes in the Earth’s surface environments, resolution
(e.g., very-high-resolution imagery), sensors (e.g., new plat-
forms), and more. In addition, the availability and choices
of spectral bands often vary across sensors. For example,
lower-resolution imaging platforms such as Landsat-8 and
Sentinel-2 often have broader (but different) spectrum cover-
age, whereas higher-resolution imagery from platforms such
as SkySat may only have visible RGB channels and near-
infrared. There are several directions in related work:

Physics-based methods. Traditional approaches from re-
mote sensing – including Fmask (Qiu, Zhu, and He 2019;
Zhu, Wang, and Woodcock 2015; Zhu and Woodcock 2012),
LaSRC (Skakun et al. 2019), Sen2Cor (Main-Knorn et al.
2017), MAJA (Hagolle et al. 2010) and others (Tarrio et al.
2020; Baetens, Desjardins, and Hagolle 2019) – often uti-
lize physical modeling of the interactions between clouds
and spectral signals to derive their signatures from multi- or
hyper-spectral imagery. Physics-based methods enjoy good
performance when the satellite product contains the required
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signals (e.g., thermal) and the physical assumptions are met
(e.g., existence of measurable parallax) (Skakun et al. 2019;
Frantz et al. 2018); for example, the Fmask algorithm works
well for Landsat imagery (Foga et al. 2017). However, the
conditions are only met for a few products as many sensors
are not designed to capture such spectral details. For exam-
ple, Sentinel-2, another major multispectral imagery collec-
tion platform, does not have thermal bands and this is known
to reduce cloud masking performance (Tarrio et al. 2020).
This is more common for more recent higher-resolution con-
stellations (e.g., from Planet or Maxar), where many only
have four bands: visible (i.e., RGB) and near-infrared.

Machine learning based methods. Various learning tech-
niques have been studied for cloud masking. Earlier attempts
mainly focused on traditional machine learning methods
such as decision trees, Bayesian methods, SVM, random
forests, and more (Hollstein et al. 2016; Li et al. 2015;
Wei et al. 2020). Recent developments have switched to-
wards deep learning models, including both CNN-based
scene-level classification (Shendryk et al. 2019) frameworks
and semantic segmentation with residual learning (Wieland,
Li, and Martinis 2019). Generative adversarial networks
(GANs) were also used to generate cloud-free scenes (Singh
and Komodakis 2018). However, the methods rely on la-
beled ground truth to deliver reliable performance, which
has limited availability and is extremely time-consuming to
collect for large-scale applications. As identified by many
evaluations, the constraints caused the learning methods to
be highly-sensitive to the imagery conditions and can hardly
generalize beyond the training samples for broad scenarios
(Tarrio et al. 2020). There have also been efforts to reduce
the demand of pixel-level labels, such as unpaired learning
for image dehazing (Yang, Xu, and Luo 2018; Yang et al.
2022), and GAN variants, such as CycleGAN for single-
scene based synthetic cloud removal (Zi et al. 2021). These
methods, however, still require scene-level labels, which are
challenging to obtain and update for the scale (e.g., global
scale) of existing and new Earth observation data.

Other related directions. In addition to the above di-
rectly related studies, another related direction is the unsu-
pervised species of intrinsic image decomposition (Li and
Snavely 2018; Shen et al. 2011; Yi, Tan, and Lin 2020),
which splits an image into a reflectance and a shadow layer.
However, the cloud masking problem does not follow the as-
sumptions of the model, including constant reflectance and
smoothness. For example, the Earth surface is a dynamic en-
vironment with changes in temperature, humidity, sun an-
gle, vegetation, reflectance, etc. Thus, images captured at
different timestamps and dates at the same location often
exhibit lots of differences in conditions. Moreover, intrin-
sic image decomposition focuses on changes in lights and
does not consider events with blockage of views. Finally,
unsupervised domain adaptation methods can learn domain-
invariant features. However, as Earth data are highly hetero-
geneous across space, time and sensors, such features are
hard to adapt to very different distributions (Kothandaraman
et al. 2022), as we will show in the experiments.

We propose an Autonomous image Composition and

Masking (Auto-CM) framework to learn to perform the fun-
damental task in a completely label-free manner. Specifi-
cally, our contributions are:

• We present a DISTANCE prior and corresponding spatio-
temporal data representation of satellite imagery.

• We propose a deep learning framework that captures the
clouds based on the differences in the spatio-temporal dy-
namics of the atmospheric events and land surface, with-
out using any labels.

• The framework is very simple to implement but highly ro-
bust and self-adaptive for different regions and sensors.

• We perform extensive experiments that cover different ge-
ographic regions, sensing platforms and spectral bands.

The experiment results show that the proposed Auto-CM
framework offers promising performance and improvements
for cloud masking across diverse scenarios. The results are
also similar to those from supervised models for test data
that are very similar to training and better for test data with
different distributions.

Problem Formulation
Definition 1 A satellite image tile I is a full scene captured
by a satellite at a location s and timestamp t in the orbit.

Definition 2 Image composites Icom (e.g., weekly or
monthly composites) are cloud-free images generated from
a time-series of image tiles.

The input to the cloud-masking problem is a time-series
of satellite image tiles Simg = {Ii} covering a common
spatial region. The output is a cloud mask Mi for each image
tile in Simg . We also output one complimentary cloud-free
image composite IcomT for a set of image tiles in a local time
window of the time-series. While the training uses a time-
series of images, a learned model can make classifications
using a single snapshot.

Method
We propose an Auto-CM framework to learn to gener-
ate cloud masks in a completely label-free manner. In the
following, we first introduce a DISTANCE prior for the
spatio-temporal (ST) dynamics. Then, we present the corre-
sponding ST data representation, and DISTANCE-informed
model designs. Finally, we discuss test-time generalization.

Spatio-Temporal Dynamics by A DISTANCE Prior
As our Auto-CM framework does not rely on any labeled
samples to learn cloud masking, it is important to design a
mechanism to guide the learning process. Ideally, the opti-
mal solution trained from such a mechanism should corre-
spond to all cloud pixels being masked and non-cloud pixels
passing through. To “approximate” such a mechanism, we
introduce a Difference In the Spatio-TemporAl dyNamiCs
of Events (DISTANCE) prior as follows:

Definition 3 Events E are different types of phenomena or
processes happening on Earth. Here we consider two ma-
jor types of dynamic events: (1) atmospheric events EA,
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Figure 1: Spatio-temporal dynamics.

which are mainly represented by clouds in satellite imagery,
and (2) land surface processes ES , which include changes
in land covers (e.g., vegetation growth), environment condi-
tions (e.g., temperature), etc.

Definition 4 The DISTANCE prior focuses on the differ-
ences in the dynamics of the events (i.e., EA and ES) in
space and time:

• Differences in temporal dynamics: Comparing EA and
ES , clouds in the atmosphere are constant-changing
events, where the pattern tends to be highly different
in different image tiles covering the same location. In
contrast, surface processes ES change at a much lower
frequency (e.g., it may take weeks for vegetation to
change). Finally, changes in ES exhibit temporal peri-
odicity whereas those in EA do not (Fig. 1).

• Differences in spatial dynamics: As the changes in
clouds EA are constant and have high-degrees of lo-
cal randomness, the patterns of clouds are different both
across different locations at the same timestamp, and
across different timestamps at the same location. In con-
trast, ES results in different patterns (e.g., different land
cover types or layouts) at different locations, but the ex-
pressions are similar in adjacent timestamps for the same
location.

The DISTANCE prior represents the key differences in
ST-dynamics of EA and ES . In the next sections, we will
leverage the prior to design the corresponding data repre-
sentation and network structures, which together establish
the desired mechanism to guide the label-free training.

Spatio-Temporal Data Representation
Fig. 2 shows the overall ST-representation of the input data
to facilitate the needs of the DISTANCE prior. We create
local ST-packs of data based on the following definitions:

Definition 5 A temporal pack PT is a local subset of L im-
ages in a time-series, where T = {tj , tj+1, ..., tj+L−1}. L
needs to be sufficiently large so that each pixel in the image
is not blocked by clouds in at least one of the images in PT ;
it is not a hard constraint and it is okay to have pixels cov-
ered by clouds in a pack PT . This will introduce noises in
the training but is not expected to have a major impact as
long as it only accounts for a small proportion.
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Figure 2: ST data representation.

Definition 6 A ST-pack PST is a temporal-pack PT in a
local spatial window, where S has a size of W × W (mea-
sured by pixels). ST-packs PST have overlaps in both space
and time to be able to represent the DISTANCE prior and
evaluate similarity between them:
• Temporal similarity simT : This is evaluated between the

composites Icom (Def. 2) generated from two ST-packs
PSiTj

and PSiTj′ for the same spatial window. The sim-
ilarity simT (I

com
SiTj

, IcomSiTj′
) is expected to gradually in-

crease as distT (Tj , Tj′) increases, where the distance
function distT (·, ·) needs to include corrections for tem-
poral periodicity (e.g., Fig. 1 and 2), which will be shown
in Eq. (3).

• Spatial similarity simS: This is evaluated between
composites Icom for the same temporal range Tj

but different spatial windows Si and Si′ . The value
of simS(I

com
SiTj

, IcomSi′Tj
) is expected to increase as

distS(Si, Si′) increases, where distS(·, ·) evaluates the
spatial overlaps between two windows. simS reaches the
maximum value for completely overlapping pairs.

DISTANCE-Informed Design of Training
We use the DISTANCE prior to guide the training process
of Auto-CM without ground-truth labels. Fig. 3 shows the
general design of the network architecture, where the CNN
component can be a user-selected backbone. As we can see,
the DISTANCE-informed model is easy to implement.

Overall network flow. The inputs of the network include
four ST-packs PST split into two pairs: (PS1T1 , PS2T2) and
(PS3T3 , PS4T4). There are two requirements on the pairs:
(1) Within each pair, we keep either the spatial window
S or temporal range T the same (not both) between the
two packs, and vary the other. For example, we can have
S1 = S2 and T1 ̸= T2. (2) Between the two pairs, the choice
of varying S or T must be consistent. For example, we can-
not have S1 = S2 but S3 ̸= S4. Satisfying the requirements
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allows us to evaluate the spatial or temporal similarity for
each of the two pairs, and then compare their relationships
according to the expectations from Def. 6.

All the four packs share the same CNN backbone
to generate the four image composites (Icom1 , Icom2 ) and
(Icom3 , Icom4 ), which will be used to evaluate the similarity-
based losses in the following sections. Meanwhile, the net-
work also generates a cloud mask for each image I in a pack,
which is both a final output of Auto-CM and an important in-
termediate result for generating an image composite for each
pack. As the training is in a label-free unsupervised setting,
the cloud masks will not be directly used in loss calculation.
Instead, the similarity between the image composites from
the packs will be used to construct the loss functions and
guide the training, as shown in Fig. 3.

Using one ST-pack PS1T1
as an example, each image

composite is generated by:

IcomS1T1
= G

(( ∑
i∈T1

I ′i ⊗ (1−Mi)
)
⊘
( ∑
i∈T1

(1−Mi)
)
, ΘG

)
(1)

where T1 is the local time-series of the ST-pack PS1T1
;

I ′i ∈ RW×W×d (d is the image depth) is the ith image in the
pack, which is a network-processed version of the original
image Ii and the network-processing can be considered as
learned-standardization; Mi ∈ RW×W×1 is the cloud mask
predicted for image Ii, and each value in Mi is in range [0, 1]
where 0 means no cloud and 1 means complete blockage by
clouds (some thin clouds may not fully block the view); G
and ΘG are the network layers generating the image com-
posite and the network parameters, respectively; and ⊗ and
⊘ are Hadamard (element-wise) product and division, re-
spectively (the same Mi is used for all d channels of I ′i).

Temporal similarity loss. The inputs to the temporal sim-
ilarity loss function are the similarity predictions from the
deep network for the image composites generated using each
pair of the ST-packs (Eq. (1)). It implements the expected re-
lationships between similarities simT in Def. 6, where a pair
of temporally closer ST-packs are expected to have a higher

similarity than a more distant pair:

LT = H(IcomS1T1
, IcomS1T2

, ΘH)−H(IcomS1T3
, IcomS1T4

, ΘH) (2)

where H and ΘH represent the network layers and param-
eters used to evaluate the similarity between the two image
composites generated from one pair of ST-packs (e.g., PS1T1

and PS1T2
), respectively; H is a Siamese structure shared

by the two composites; all image composites share the same
location S1; and the distance between the temporal ranges
follows distT (T1, T2) > distT (T3, T4), so minimizing LT

will enforce that the similarity between IcomS1T1
and IcomS1T2

is
smaller than that between IcomS1T3

and IcomS1T4
. Fig. 4 illustrates

LT calculation (IcomS1Tj
is simplified as Icomj ). To consider the

temporal periodicity, the distance distT between two time
ranges T1 and T2 (T2 is later than T1) is defined as:

distT = (T2[0]− T1[0])%β (3)

where T [0] is the start timestamp of a time range T =
{tj , tj+1, ..., tj+L−1}; % is the modulo; and β is the length
of a period. The value of β depends on the format of the
timestamps. For example, the periodicity in land surface pat-
terns mostly happens at the year level (e.g., the repetition of
the four seasons), and we can set β = 12 if the timestamp of
an image is indexed by month.

To avoid noises caused by large changes over years (e.g.,
major changes to the landscapes), in our training data gen-
eration, we only generate pairs of T1 and T2 where the dif-
ference in the years they belong to is smaller than two (e.g.,
06/2020 to 06/2022 will not be generated); for convenience,
all timestamps in each T are from the same year.

Spatial similarity loss. Similarly, the spatial similarity
loss function also takes the similarity predictions for the two
pairs of image composites as inputs. The difference is that
here we vary spatial window S for the same T . Moreover,
according to Def. 4, patterns of the land surface are differ-
ent across locations, which is true even if two locations are
nearby (e.g., two neighboring districts of a city have differ-
ent layouts). This is different from temporal patterns of the
land surface, which remain similar for adjacent time periods.

Utilizing this new characteristic, we consider two forms
of the spatial similarity loss LS . The first form has the same
format as LT from Eq. (2), except that all image compos-
ites share the same time window T1, and distS(S1, S2) >
distS(S3, S4), where distS(·, ·) evaluates the overlap ratio
between two spatial windows of size W ×W (e.g., 1 means
full overlap and 0 means disjoint). The Siamese network lay-
ers H are shared between the calculation of LT and LS in
this case. The second and better form (used in Auto-CM)
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takes advantage of the characteristic and evaluates the loss
in a more controlled manner. Specifically, the network di-
rectly predicts the overlap ratio between a pair of cloud-free
image composites predicted from the ST-packs, as we can
control the level of overlaps during ST-pack generation. The
loss is then:

LS =
(
H ′(IcomS1T1

, IcomS2T1
, ΘH′)−O12

)2
+(

H ′(IcomS3T1
, IcomS4T1

, ΘH′)−O34

)2 (4)

where O12 and O34 are scalars denoting the overlap ratio
between spatial windows S1 and S2, and S3 and S4, respec-
tively; H ′ is a separate set of network layers used to estimate
the overlap ratios based on the composites. Note that this
form of LS can be evaluated using only one pair of compos-
ites. We keep the two-pair format just to be consistent with
the input structure in Fig. 3.

Auxiliary reconstruction loss. Finally, we include an ad-
ditional reconstruction loss, which is commonly used to reg-
ulate the training. In our case, we reconstruct each image
from a ST-pack using the pack’s image composite and the
corresponding cloud mask:

Ireconi = (1−Mi)⊗ Icom +Mi (5)

The loss function is then:

LR =
1

|T | ·H ·W
·
|T |∑
i=1

∥Ireconi − Ii∥2F (6)

where |T | is the number of images in the ST-pack, and F de-
notes the Frobenius norm. The overall loss function is then:

L = λT · LT + λS · LS + λR · LR (7)

where λT , λS and λR are scaling factors.

On-the-Go Test-Time Generalization
As Auto-CM is a label-free method, it is robust and can au-
tomatically adapt to different data distributions. In addition,
the deep network trained by the DISTANCE prior does not
need to be re-trained when we switch to a new dataset or new
region. Instead, it can be easily fine-tuned using new obser-
vations as needed. As there is no need for ground-truth label
data, any amount of new imagery can be used for training as
needed, increasing the generalizability of the framework.

On the other hand, from the computational perspective,
we prefer to have a better understanding of whether fine-
tuning is needed or how much new data we should use for
fine-tuning. Thus, we introduce a statistical testing based on-
the-go generalization approach to help determine this, and
only perform fine-tuning as necessary.

Specifically, we consider the fine-tuning process as a se-
quence of phases with new data subsets: D1, D2, D3, ...,
and the subsets follow the same distribution, which can be
the same or different from the data distribution used for
training. Starting from D1, the fine-tuning process continues
to include new subsets one by one. The goal of the statistical
testing is to determine when to terminate the tuning.

Denote Dtest as a left-out subset, which is from the same
test data but not included as part of the sequence D1, D2, ....

Further, denote Mi = F (Ii,ΘF ) as the cloud mask gen-
erated by the sub-network F of Auto-CM (Fig. 3) for an
image Ii ∈ Dtest, where ΘF are the learned parameters
from training data. Similarly, denote MJ

i = F (Ii,Θ
J
F ) as

the cloud mask generated with ΘJ
F , which are fine-tuned by

∪J
j=1Dj . We use the paired T-test to evaluate if the masks

generated are significantly different after each phase of fine-
tuning, with the following test statistic τ :

τ = µM/
(
σM/

√
W 2 · |Dtest|

)
(8)

µM =

|Dtest|∑
i=1

(
eT (MJ

i −MJ−1
i )e

)
/(W 2 · |Dtest|) (9)

σM =

|Dtest|∑
i=1

(
∥MJ

i −MJ−1
i − µMeeT ∥2F )/(W 2 · |Dtest|)

(10)
where MJ

i equals Mi when J = 0, and MJ
i ∈ RW×W .

The T-test value is compared with the corresponding critical
values from the look-up table to determine the significance
under level α (defaulted to the standard choice of 0.01).

Experiments
Satellite Datasets
We consider three satellite sensing platforms:
• Landsat-8 is a multispectral sensing platform with 11

bands covering wavelengths of 0.43 to 12.51µm, where
visible bands are from 0.45 to 0.67µm. The spatial reso-
lution is 15m for the panchromatic band, and 30m for all
other bands except the thermal bands, which are at 100m.

• Sentinel-2 also delivers multispectral imagery but covers
a different set of 13 bands. For example, its instrument
captures additional red edge bands but does not include
the thermal bands, which are important for physics-model-
based cloud detection.

• PlanetScope is a more recent platform with 3-4m high
resolution. As a trade-off, it covers a smaller set of bands:
the visible bands (red, green and blue) and near-infrared,
making it more challenging for cloud masking.
Locations and bands: The datasets cover a diverse range

of geographic areas over the world with different landscapes.
We use Landsat-8 data in New Zealand (islands; L1) and
central Australia (desert; L2). and Sentinel-2 data in Kenya
(urban and agriculture; L3) and eastern United States (ur-
ban; L4); and finally PlanetScope data in Ethiopia (urban
area and rivers; L5) and Brazil (urban peninsula; L6). We
also consider different sets of spectral bands using Landsat-
8. Specifically, we use three subsets to evaluate the proposed
approach: single band (panchromatic), visible bands (RGB),
and RGB + near-infrared. This will help show the method’s
capacity in detecting clouds with limited band information.
More details and temporal information are available in the
Appendix. Labels: (1) As Landsat-8 has been deployed for
a longer time, efforts have been made to develop labeled
cloud masks for evaluation (e.g., by USGS (USGS 2021)),
which we use for quantitative comparisons. (2) For Sentinel-
2 and PlanetScope, there is a lack of benchmark data that
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are similar to that of the Landsat-8, so we manually labeled
two tiles at the pixel-level for evaluation purposes. As the
amount of training data is smaller, for supervised baselines,
we initialize them using weak labels that come together with
the imagery (also evaluated in experiments). Cloud-free im-
age composites: As there is no gold-standard for the cloud-
free image composites, we use visualizations to qualitatively
evaluate the results. As defined in the scope, this is a compli-
mentary output and a necessary intermediate result for Auto-
CM (e.g., ST-similarity evaluation during training).

Results
We consider the following methods in the comparison:

• Physics-based: (1) FML8: The Fmask algorithm for
Landsat-8, one of the most adopted physics-based models
for cloud masking (Zhu, Wang, and Woodcock 2015). It
relies on specific spectral bands (e.g., thermal) in Landsat-
8, and is not applicable for high-resolution imagery with
fewer bands including PlanetScope (4 bands). (2) FMS2:
A Fmask variant for Sentinel-2 that uses other spectra due
to the missing thermal bands.

• Supervised learning: (1) UNet: An encoder-decoder se-
mantic segmentation network (Ronneberger, Fischer, and
Brox 2015; Zhang et al. 2021). (2) UNet-DA: UNet
with domain adaptation. An adversarial setup is used to
learn domain-invariant features for better generalizibility
(Tzeng et al. 2017; Fan et al. 2020); (3) D3: DeepLabV3+,
a multi-scale segmentation network (Chen et al. 2018). (4)
D3-DA: DeepLabV3+ with domain adaptation.

• Unsupervised learning: (1) K-means: K-means++ with
k set to 2 (best from experiments). (2) HD: Hierarchical
density-based clustering that can handle arbitrary shapes,
densities and number of clusters (Campello, Moulavi, and
Sander 2013). (2) DEC: Deep embedding clustering with
initial k set to two (best from experiments) (Xie, Girshick,
and Farhadi 2016; Obeid, Elfadel, and Werghi 2021).

• Default masks: These are approximate cloud masks in-
cluded as part of the imagery products due to their neces-
sity in most downstream applications. They are typically
generated to the best of a provider’s ability with the ex-
isting methods and engineering (e.g., customized Fmask).
L8M, S2M and PSM are masks from Landsat-8, Sentinel-
2 and PlanetScope, respectively. For example, PSM is cre-
ated by supervised convolutional networks.

• Auto-CM: Our proposed approach (unsupervised).

Results for different geographic regions. Tables 1 to 3
show the results of the methods on Landsat-8, Sentinel-2 and
PlanetScope data, respectively. Each table includes results
from different geographic regions. For supervised methods,
when evaluating a method in a testing region (e.g., New
Zealand in Table 1), we use data from the other regions
for training. Additionally, to show the effect of distribution
shifts, we conduct another test where use 50% samples in
the test region as training and the other 50% for testing,
where the results are shown in parentheses (for UNet and
DeepLabV3+). Note that these numbers in parentheses are
not used for method comparison (as it is using true labels

from the test data) and are only used to help understand su-
pervised models’ robustness to region changes (Tarrio et al.
2020). For physics and unsupervised methods, the results are
directly obtained from the test region. Note that the physics
methods require information from certain spectral bands and
cannot be used on the PlanetScope data (Table 3). We can
see that physics-based Fmask algorithms show relatively
stable performances for different regions in Landsat-8 and
Sentinel-2, though the performance is reduced for Sentinel-
2. UNet-DA has the best performance among the supervised
methods, which require labeled samples. In general, they can
reach similar performances as the physics-based approach
on left-out test samples from the same training regions (in
the parentheses in the tables), but the scores decrease quickly
when applied to a different area or landscape. Their results
on L3 are poorer than other regions potentially due to the
weak labels that come together with the imagery product
have low quality around that region (e.g., 0.22 for S2M);
reliance on high-quality labels is a limitation for supervised
models. For both UNet and DeepLabV3+, unsupervised do-
main adaption shows improvements but are not sufficient to
bridge the distribution gap without labels from the target do-
main. The reason may be that domain-invariant features can
reduce the variance of performance but may be sub-optimal
for individual areas. For the unsupervised methods, the per-
formance is not very stable on different types of landscapes.
They tend to work better for large and thick clouds in areas
with homogeneous landscape, and worse with small or thin
clouds on complex landscapes (e.g., urban). Finally, Auto-
CM is consistently among the top results in most regions.

Results for different sensing platforms. Comparing Ta-
bles 1 to 3, we can see that the performance of the
physics-based Fmask algorithms decreases from Landsat-8
to Sentinel-2 due to the missing thermal bands, which the
physical rules rely on the most. They are no longer appli-
cable when it comes to the PlanetScope imagery which has
four high-resolution bands: RGB + near-infrared (NIR). Su-
pervised approaches have more stable performances for dif-
ferent sensors as they do not have the physical assumptions.
However, as we analyzed before, they do not generalize well
to different geographic regions for all three sensing plat-
forms. The performance of unsupervised methods decreases
for higher-resolution sensors, which is potentially caused
by the greater variation under clouds with the increased lo-
cal details. Finally, Auto-CM shows more consistent perfor-
mance for different types of sensors.

Results for different spectral bands. Here we perform a
controlled experiment for three subsets of spectral bands us-
ing Landsat-8, which has 11 bands. As we can see in Table 4,
Auto-CM does not rely on specific bands that are needed by
physics-based methods and can generate similar quality or
better masks even with a single band. The results with fewer
bands are also better than the current default masks from
the imagery product which are generated using full-band in-
formation in the test regions. This may potentially open new
opportunities in band prioritization for future satellite sensor
design and deployment.
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Test area FML8 UNet UNet-DA D3 D3-DA Kmeans HD DEC L8M Auto-CM
L1 0.959∗ 0.964∗ (0.985) 0.961 0.775 (0.904) 0.920 0.829 0.723 0.668 0.849 0.966
L2 0.891 0.908 (0.961) 0.919 0.857 (0.902) 0.810 0.849 0.694 0.923 0.873 0.940

Mean 0.925 0.936 (0.973) 0.940 0.816 (0.903) 0.865 0.839 0.709 0.795 0.861 0.953

Table 1: F1-scores of cloud masks on Landsat-8 multispectral imagery (results within 1% of the best are denoted by ∗)

Test area FMS2 UNet UNet-DA D3 D3-DA Kmeans HD DEC S2M Auto-CM
L3 0.741 0.552 (0.686) 0.655 0.081 (0.457) 0.460 0.643 0.482 0.678 0.220 0.737∗

L4 0.675 0.754 (0.92) 0.883 0.669 (0.794) 0.565 0.808 0.814 0.885 0.790 0.913
Mean 0.708 0.653 (0.803) 0.769 0.375 (0.626) 0.512 0.726 0.648 0.782 0.505 0.825

Table 2: F1-scores of cloud masks on Sentinel-2 multispectral imagery (results within 1% of the best are denoted by ∗)

Test area Fmask UNet UNet-DA D3 D3-DA Kmeans HD DEC PSM Auto-CM
L5 - 0.818 (0.923) 0.899 0.55 (0.772) 0.855 0.823 0.297 0.893 0.486 0.930
L6 - 0.563 (0.907) 0.904 0.8 (0.811) 0.800 0.753 0.772 0.825 0.739 0.898∗

Mean - 0.69 (0.915) 0.902 0.675 (0.791) 0.827 0.788 0.534 0.859 0.613 0.914

Table 3: F1-scores of cloud masks on PlanetScope high-resolution imagery (results within 1% of the best are denoted by ∗)

Bands F1 (L1) Sig. level α F1 (L1→L2)
Pan. (single) 0.959 0.001 0.900

RGB 0.965 0.005 0.900
RGB+NIR 0.966 0.01 0.905

Table 4: Sensitivity analysis (Landsat-8)

Significance-based test-time generalization. Table 4
also evaluates the effectiveness of the significance-based
test-time generalization. This is for users who prefer to gen-
eralize existing Auto-CM models from other regions using
only a proportion of unlabelled ST-packs – to the degree that
is necessary – from the test region. Here we train Auto-CM
on L1 and then finetune to L2 with the phased significance
testing. As we can see, the module is not sensitive to the
choices of significance levels α (p-value thresholds). In the
experiments, it self-decided to use only 5%, 5% and 10% of
samples for the fine-tuning, respectively. We can see the re-
sults are consistent with the version that is directly trained
(unsupervised) on all data (Table 1).

Qualitative visual comparisons. (1) Cloud masks: Fig.
5(a) shows the cloud masks generated by different types of
methods in the test areas for the three sensing platforms. In-
terestingly, we can see the results of Auto-CM (here using
only four-bands) are often better than existing default masks
(e.g., S2M) that require physical information in other bands
as well; it also improves over PSM from supervised deep
learning. (2) Cloud-free composites: Fig. 5(b) shows ex-
amples of the composites by Auto-CM. Here the compos-
ites are considered complimentary outputs from Auto-CM,
which can be generated using the cloud masks from a ST-
pack. Additionally, the composites are also necessary inter-
mediate results in Auto-CM, which are used to model the
spatio-temporal dynamics based on the DISTANCE prior
and calculate the ST-similarity (e.g., used in LS and LT ).

Satellite Img. DECAuto-CM

(a) Cloud masking results
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(b) Cloud-free composites

Default (not truth)

Figure 5: Example results.

Conclusions
We proposed an unsupervised Auto-CM approach to gener-
ate cloud masks and complimentary image composites for
general satellite datasets. Our deep learning model uses a
new DISTANCE prior, showing promising ability to detect
clouds with limited bands and without any labeled samples.
A test-time generalization is also proposed to facilitate adap-
tation to new areas. Our future work will explore scenarios
where the surface process is highly dynamic such as polar re-
gions (Yu et al. 2021). We will also consider the fairness and
robustness of the masking results for different landscapes
and geographic regions (Xie et al. 2022).
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