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Abstract

Real-world graphs like social networks are often evolution-
ary over time, whose observations at different timestamps
lead to graph sequences. Modeling such evolutionary graphs
is important for many applications, but solving this prob-
lem often requires the correspondence between the graphs
at different timestamps, which may leak private node infor-
mation, e.g., the temporal behavior patterns of the nodes.
We proposed a Gromov-Wasserstein Autoregressive (GWAR)
model to capture the generative mechanisms of evolutionary
graphs, which does not require the correspondence informa-
tion and thus preserves the privacy of the graphs’ nodes. This
model consists of two autoregressions, predicting the number
of nodes and the probabilities of nodes and edges, respec-
tively. The model takes observed graphs as its input and pre-
dicts future graphs via solving a joint graph alignment and
merging task. This task leads to a fused Gromov-Wasserstein
(FGW) barycenter problem, in which we approximate the
alignment of the graphs based on a novel inductive fused
Gromov-Wasserstein (IFGW) distance. The IFGW distance
is parameterized by neural networks and can be learned un-
der mild assumptions, thus, we can infer the FGW barycen-
ters without iterative optimization and predict future graphs
efficiently. Experiments show that our GWAR achieves en-
couraging performance in modeling evolutionary graphs in
privacy-preserving scenarios.

Introduction
Graphs are capable of describing relational and structured
information hidden in data. In many real-world scenarios,
such as social networks (Tantipathananandh, Berger-Wolf,
and Kempe 2007) and financial networks (Durante and Dun-
son 2014), the topological structure of a graph is often evo-
lutionary — the graph size, the attributes of its nodes, and
the edges between the nodes may change over time accord-
ing to the temporal behaviors of nodes. Such evolutionary
graphs (also known as dynamic graphs or temporal graphs)
are recorded as sequences of observed graphs.

The key problem of evolutionary graph modeling is
predicting future graphs given a sequence of observed
graphs. Currently, most existing modeling methods, e.g.,
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JODIE (Kumar, Zhang, and Leskovec 2019), VGRNN (Ha-
jiramezanali et al. 2019) and DynAERNN (Goyal, Chhetri,
and Canedo 2020), formulate the problem as a link predic-
tion task, capturing the topological dynamics of evolutionary
graphs by predicting the connections between arbitrary two
nodes based on their historical behaviors. Although these
methods achieve encouraging performance on evolutionary
graph modeling, they often suffer from a risk of private in-
formation leakage. In particular, the above methods require
the correspondence across the observed graphs, making the
temporal behaviors of each node become accessible. It has
been demonstrated that the privacy of nodes (e.g., the pro-
files of users in a network) can be inferred from their tem-
poral behaviors (Cheng, Caverlee, and Lee 2010; Paul and
Dredze 2011; Wang et al. 2013; Luo et al. 2014).

To accomplish privacy protection, we need to model evo-
lutionary graph from unaligned graph sequences — the cor-
respondence between arbitrary two graphs’ nodes is un-
known. Such a privacy-preserved evolutionary graph mod-
eling task is meaningful in practice. Take social network
modeling as an example. With the registration of new ac-
counts and the expiration of old ones, the topological change
of a social network comprises both nodes and edges. At dif-
ferent timestamps, not only the edges between the accounts
but also the accounts themselves may change. Modeling and
predicting the evolution of such social networks are signifi-
cant for both the commercial operation of service providers
and the supervision of third parties, and how to protect user
privacy throughout the modeling phase is one of the primary
challenges associated with the above activities.

In this work, we propose a Gromov-Wasserstein autore-
gressive (GWAR) model, treating unaligned evolutionary
graph modeling as a statistically-interpretable graph genera-
tion task. As illustrated in Figure 1, our GWAR model con-
sists of two autoregressions oriented to the number of nodes
(a.k.a, graph size) and graph structure, respectively. Given
a sequence of observed graphs, the size-oriented autoregres-
sion predicts the number of nodes for the future graph. Af-
ter determining the graph size, the structure-oriented autore-
gression predicts the probabilities of nodes and edges, in
which the historical graphs are aligned and merged together.
In particular, the joint alignment of the historical graphs is
achieved as a fused Gromov-Wasserstein (FGW) barycenter
problem (Vayer et al. 2020) under a novel inductive fused
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Figure 1: An illustration of the proposed GWAR model.

Gromov-Wasserstein (IFGW) distance. The optimal trans-
port associated with each IFGW distance is parameterized
by a graph neural network (GNN) with coupled attention
layers, which indicates the correspondence between graphs.
After learning the IFGW distance under mild assumptions,
we can infer the optimal transport without iterative optimiza-
tion and align graphs efficiently. The IFGW distance is sig-
nificant to improve the efficiency of our GWAR model on
both learning and inference, which avoids iterative optimiza-
tion used in conventional FGW distance. As a result, we suc-
cessfully simplified the learning of the GWAR model from
a bi-level optimization problem to two independent single-
level problems. Experimental results show that our GWAR
model outperforms state-of-the-art methods when modeling
unaligned evolutionary graphs.

Related Work
Graph sequence modeling Many graph models have been
developed for generative tasks, e.g., probabilistic mod-
els (Erdos, Rényi et al. 1960), stochastic block models (Hol-
land, Laskey, and Leinhardt 1983), adversarial network over
random walks (NetGAN) (Bojchevski et al. 2018), and vari-
ational autoencoders (GraphVAE) (Simonovsky and Ko-
modakis 2018). Among them, some models focus on graph
sequences, such as the graph recurrent attention network
(GRAN) in (Liao et al. 2019), the TagGen for temporal
interaction network (Zhou et al. 2020), and the temporal
graph generative adversarial network (TG-GAN) in (Zhang
et al. 2021). These models describe the evolving sequences
of graphs and predict future graphs based on historical ob-
servations. Additionally, link prediction for dynamic graphs
is a task highly correlated with evolutionary graph model-
ing. Representative link prediction methods, e.g., variational
graph recurrent neural networks (VGRNN) (Hajiramezanali
et al. 2019) and EvolveGCN (Pareja et al. 2020), learn node
embeddings and predict edge probabilities based on the em-
beddings. However, the aforementioned methods assume
that the graph size is fixed during the evolutionary process
and the correspondence between different graphs is known,
which is questionable for privacy protection.

Privacy-preserved graph modeling Extensive user data

are collected for services in various domains such as health-
care (Li et al. 2020), banking systems (Wang et al. 2021)
and bioinformatics (Li et al. 2021), which leads to power-
ful graph-based models and a high risk of privacy issue at
the same time. Typically, differential privacy (DP) (Dwork
et al. 2006) is used to prevent information leaks in ma-
chine learning models by adding “just enough” noise dur-
ing model training. When learning GNNs, the DP strat-
egy is applied either to the graph data directly (Qiu et al.
2022) or to the gradient of model parameters (Igamberdiev
and Habernal 2021). Recently, federated learning has also
been extended to train GNNs to protect user privacy, e.g.,
FedGNN (Wu et al. 2021) incorporates the high-order user-
item interactions by building the local user-item graphs
in a privacy-preserving way. Besides, some other privacy-
preserved graph modeling methods encodes sensitive infor-
mation before training, e.g., the work in (Shen, Leus, and
Giannakis 2019) only requires an encrypted version of each
node’s connectivity and hence promotes node privacy. How-
ever, none of the above methods suppress the risk of pri-
vacy leakage caused by observing the temporal behaviors of
nodes based on the correspondence across observed graphs.
Currently, modeling users’ behavior sequences to capture
their behavior patterns is important to discover potential in-
terests in recommendation and social networks, while the
privacy issue in such scenarios is not fully considered yet.

Gromov-Wasserstein graph modeling As an important
variant of optimal transport distance, Gromov-Wasserstein
(GW) distance (Mémoli 2011; Chowdhury and Mémoli
2019) provides an useful pseudometric for graphs, which
has been applied to many problems, e.g., registering
shapes (Mémoli 2011), aligning protein networks (Xu et al.
2019), and matching vocabulary sets of different lan-
guages (Alvarez-Melis and Jaakkola 2018). Given multiple
graphs, the work in (Peyré, Cuturi, and Solomon 2016) pro-
posed a new concept called Gromov-Wasserstein barycen-
ter, achieving the interpolation of multiple graphs. Based
on GW barycenters, a multi-graph matching method is pro-
posed in (Xu, Luo, and Carin 2019). More recently, focusing
on the graphs with node attributes, the work in (Titouan et al.
2019) proposes fused GW (FGW) distance, which combines
the GW distance between graph structures with the Wasser-
stein distance (Villani 2008) between node attributes. The
FGW distance is proven to be useful in graph clustering and
classification tasks. In the aspect of computation, most of
the existing works calculate GW distance by Sinkhorn it-
erations(Sinkhorn and Knopp 1967), whose complexity per
iteration is O(N3) for the graphs with N nodes. The high
computational complexity limits the applications of GW dis-
tance. These years, many variants of GW distance have been
proposed, e.g., the recursive GW distance (Xu, Luo, and
Carin 2019), the sliced GW distance (Vayer et al. 2019), and
the Bregman ADMM-based algorithm (Xu 2020).

Gromov-Wasserstein Autoregression
Proposed Privacy-Preserved Modeling Strategy
Denote unaligned evolutionary graphs as a graph sequence
{Gt}Tt=0, where the correspondence between arbitrary two
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graphs is unknown. We are interested in modeling such un-
aligned evolutionary graphs in an autoregressive (AR) man-
ner, generating each Gt or its isomorphism based on its K-
step history {Gt−k}Kk=1, i.e.,

Gt
∼= f(Gt−1, . . . , Gt−K). (1)

Here, ∼= means isomorphism, which means that we can ob-
tain Gt by permuting the nodes of the generated graph. The
AR model f generates an isomorphism of Gt rather than the
exact Gt because of the requirement of privacy protection —
the correspondence between the nodes of different graphs is
unknown and accordingly, the graphs are unaligned. Addi-
tionally, the graph is generated from the most recent histor-
ical observations, i.e., the last K observed graphs, which is
reasonable in practice. For example, in social networks like
Twitter and Facebook, the registration and the cancellation
of user accounts and the interactions between users are often
predictable based on historical observations.

Learning this model requires us to jointly align arbitrary-
sized observed graphs and predict future graphs based on
the observations. To deal with arbitrary-sized and unaligned
graphs, we design our model as a composition of two autore-
gressions orienting to the number of nodes and the graph
structure, respectively, as shown in Figure 1. Decoupling
the target graph autoregressive model in (1) into two au-
toregressions simplifies the model complexity greatly. The
size-oriented autoregression estimates the number of nodes
for the target graph, and the structure-oriented autoregres-
sion aligns historical graphs jointly and aggregates them to
predict node and edge probabilities. In the following con-
tent, we will show that the structure-oriented autoregression
corresponds to a FGW barycenter of graphs (Vayer et al.
2020), whose learning and approximation can be achieved
efficiently based on the proposed IFGW distance.

Two Autoregressions for Graph Generation
FGW distance for graph alignment Denote each graph
G as a tuple (N,µ,A,V ), where N is the number of nodes,
the vector µ in the (N − 1)-Simplex ∆N−1 represents the
empirical node distribution,1 A = [aij ] ∈ RN×N is the ad-
jacency matrix, and V ∈ RN×D represents D-dimensional
node features.2 Given two graphs G1 = (N1,µ1,A1,V1)
and G2 = (N2,µ2,A2,V2), the FGW distance (Vayer et al.
2020) between them is

dfgw(G1, G2) = minT∈Πµ1,µ2
Ei,j∼T [d(v

1
i ,v

2
j )]+

Ei,j,i′,j′∼T⊗T [L(a
1
ii′ , a

2
jj′)]

= minT∈Πµ1,µ2

∑N1

i=1

∑N2

j=1
d(v1

i ,v
2
j )Tij+

∑N1

i,i′=1

∑N2

j,j′=1
L(a1ii′ , a

2
jj′)TijTi′j′ ,

(2)

where d(v1
i ,v

2
j ) measures the distance between node fea-

tures and L(a1ii′ , a
2
jj′) measures the distance between edges.

1In this work, we use a uniform distribution, i.e., µ = 1
N
1N ,

but other node distributions are applicable as well.
2For a non-attributed graph, we treat µ as its node features.

In this work, we implement d(·, ·) as the cross-entropy loss
for categorical node features (one-hot vectors) and mean-
square-error (MSE) for continuous node features. For L(·, ·),
we implement it as the cross-entropy loss for binary ad-
jacency matrices and MSE for weighted adjacency matri-
ces. T ∈ Πµ1,µ2

, and Πµ1,µ2
= {T ≥ 0|T1N1

=
µ2,T

⊤1N2
= µ1} is the set of node joint distributions with

marginals µ1 and µ2.
The FGW distance in (2) minimizes the expected loss

of node pairs and that of edge pairs jointly, in which the
first term corresponds to the Wasserstein distance (Cuturi
2013) between node features while the second term corre-
sponds to the Gromov-Wasserstein (GW) distance between
adjacency matrices (Mémoli 2011; Chowdhury and Mémoli
2019). The optimal T corresponding to the FGW distance
is called optimal transport matrix, which corresponds to the
optimal joint distribution of the graphs’ nodes. In particular,
the optimal transport achieves a probabilistic alignment of
the graphs: the element Tij can be interpreted as the proba-
bility that the node i in G1 matches with the node j in G2.
Accordingly, T ⊗ T is a joint distribution of edges, where
⊗ is the Kronecker product. Its element TijTi′j′ is the prob-
ability that the edge (i, i′) is paired to the edge (j, j′).

Given K graphs {Gk = (Nk,µk,Ak,Vk)}Kk=1, we can
define their N -node FGW barycenter (Peyré, Cuturi, and
Solomon 2016; Vayer et al. 2020) as3

Ḡ, {Tk}Kk=1 = arg minG
∑K

k=1
dfgw(G,Gk), (3)

where the barycenter Ḡ = (N,µ, Ā, V̄ ) minimizes its
FGW distances to the observed graphs and each Tk is the
corresponding optimal transport between Ḡ and the Gk.
Here, µ = 1

N 1N . The optimal transports and the barycenter
are calculated by alternating optimization: the optimal trans-
ports are derived by computing the FGW distances based on
current barycenter, and the new barycenter is obtained by

Ā =
1

µµ⊤
∑K

k=1
TkAkT

⊤
k , V̄ =

1

µ1⊤
D

∑K

k=1
TkVk.

The FGW barycenter achieves a joint alignment of {Gk}Kk=1
— for each Gk, its nodes are matched to the nodes of the
barycenter (Xu, Luo, and Carin 2019). Compared with clas-
sic graph matching methods like quadratic assignment pro-
gramming (QAP), the above FGW-based matching method
has advantages on both robustness and efficiency.

Size-oriented autoregression Given {Gt}Tt=0, we first fo-
cus on the sequence of graph sizes, i.e., {Nt}Tt=0, and model
the dynamics of Nt via a classic K-order autoregressive

model, denoted as ARN (K): Nt =
∑K

k=1
φkNt−k + ϵt,

where φ = [φk] represents the coefficients of the model
and ϵt represents the random noise imposed on the output.
This model helps to predict the graph size of future graphs.4
When assuming ϵt to be Gaussian, we can learn the coeffi-
cients by least squares estimation (LSE) (Hamilton 1994).

3In the following content, we ignore Ḡ in some equations for
convenience because we leverage T ’s, rather than Ḡ, in our model.

4When predicting graph sizes, we round the the output of the
model to get integer numbers.
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Structure-oriented autoregression Once the graph size
Nt is determined, a structure-oriented K-order autoregres-
sion, denoted as ARS(K), predicts the isomorphism of
Gt based on the last K historical graphs, i.e., {Gt−k =
(Nt−k,µt−k,At−k,Vt−k)}Kk=1. For the graphs with binary
adjacency matrices and categorical node features, we formu-
late their autoregressive process by:

Gt = (Nt,µt,At,Vt) ∼= Ĝt;g1,g2 = (Nt,µt, Ât, V̂t),

Nt ∼ ARN (K), µt =
1

Nt
1Nt

At,Vt
∼= Ât ∼ Bernoulli(P 1

t ), V̂t ∼ Categorical(P 2
t )

P 1
t = g1({At−k}Kk=1;Nt, {Tt,k}Kk=1)

= sigmoid(MLP(CAT({Tt,kAt−kT
⊤
t,k}Kk=1)))

P 2
t = g2({Vt−k}Kk=1;Nt, {Tt,k}Kk=1)

= softmax(MLP(CAT({Tt,kVt−k}Kk=1))),

(4)

where Ĝt;g1,g2 is an isomorphism of Gt generated by
ARS(K), which is parameterized by two neural networks
g1 and g2. At and Vt are the binary adjacency matrix and the
one-hot node feature matrix of Gt, while Ât and V̂t are their
isomorphic estimations, which are sampled from a Bernoulli
distribution and a categorical distribution, respectively. The
parameters of these two distributions, i.e., P 1

t ∈ [0, 1]Nt×Nt

and P 2
t ∈ ∆Nt×(D−1),5 are parametrized by two neural

networks g1 and g2. We implement them by stacking con-
catenation (CAT) layer, multi-layer perceptron (MLP), and
nonlinear activations. They take the historical graphs as their
inputs, whose hyperparameters are the graph size Nt and the
node joint distributions {Tt,k}Kk=1.

After aligning {At−k,Vt−k}Kk=1 as {Tt,kAt−kT
⊤
t,k}Kk=1

and {Tt,kVt−k}Kk=1, g1 concatenates {Tt,kAt−kT
⊤
t,k}Kk=1 to

a tensor in RNt×Nt×K , then maps the tensor to a matrix in
RNt×Nt by MLP, and uses the sigmoid function to ensure
the output in [0, 1]Nt×Nt . g2 applies a similar pipeline to
{Tt,kVt−k}Kk=1. Besides the graphs with binary adjacency
matrices and categorical node features, our model is appli-
cable to other kinds of graphs — just replacing the distribu-
tions and the activations in (4) with other configurations.

Naive Learning Paradigm: Bi-level Optimization
The combination of above two autoregressions leads to our
GWAR model with parameters φ, g1, and g2. Given a se-
quence of observed graphs {Gt}Tt=0, we learn φ by the clas-
sic least-square method in (Hamilton 1994) and learn g1 and
g2 by solving the following bi-level optimization problem.

ming1,g2
∑T

t=K+1
dfgw(Ĝt;g1,g2 , Gt), (5)

s.t. ∀t, {Tt,k}Kk=1 ∈ argmin
∑K

k=1
dfgw(G,Gt−k),

where Ĝt;g1,g2 = (Nt,µt,P
1
t ,P

2
t ) is the probabilistic es-

timation of Gt’s isomorphism, and the upper-level prob-
lem aims to minimize the FGW distance between Gt and

5∆Nt×(D−1) means the set of the matrices of size Nt×D, and
each row of such matrices is in the (D − 1)-Simplex.

Ĝt;g1,g2 . Essentially, this objective function pursues the
structural similarity between each observation and its pre-
diction — the FGW distance (Vayer et al. 2020; Chowdhury
and Mémoli 2019) can be valid metrics of graph, which are
equal to zero for isomorphic graphs. The lower-level prob-
lem computes the FGW barycenter. As shown in (3), solving
this problem leads to the joint alignment of historical graphs.

Note that the optimization problem in (5) is statistically-
interpretable. In particular, when we implement the node
pair loss d and the edge pair loss L in (2) as cross-entropy
losses, the objective function can be rewritten as

minT∈Πµt,µt
Ei,j∼T [NLL(p2

jt;vit)]+

Ei,j,i′,j′∼T⊗T [NLL(p1jj′t; aii′t)],
(6)

where p1jj′t is the element of P 1
t , p2

jt is the j-th row of P 2
t .

NLL(p1jj′ ; aii′) = −aii′t log p
1
jj′t−(1−aii′t) log(1−p1jj′t)

is the negative log-likelihood of the edge probability p1jj′t
under the condition that the edge (i, i′) in Gt matches with
the edge (j, j′) in Ĝt;g1,g2 . NLL(p2

jt;vit) = −v⊤
it log p

2
jt is

negative log-likelihood of the node feature probability vec-
tor p2

jt under the condition that the i-th node in Gt matches
with the j-th node in Ĝt;g1,g2 . Therefore, the optimal T leads
to the minimum expectation of the negative log-likelihoods.

Such a bi-level optimization problem can be solved ap-
proximately by an alternating optimization strategy (Xu
2020): given historical graphs, we can first estimate the
Tt,k’s by solving the lower-level problem and then up-
date g1 and g2 by solving the upper-level problem. The
upper-level problem also involves a nested alternating op-
timization — we need to calculate the T associated with
dfgw(Ĝt;g1,g2 , Gt) and then update g1 and g2 by gradient de-
cent under fixed T . Repeating the two steps till the upper-
level objective function converges, we obtain the proposed
GWAR model. Note that, when the g1 and g2 in (4) are linear
models and their parameters are shared and in the Simplex,
we can simplify the problem as follows:
Proposition 1. In the case that

g1({At−k}Kk=1;Nt, {Tt,k}Kk=1) = N2
t

∑
k
βkTt,kAt−kT

⊤
t,k

g2({Vt−k}Kk=1;Nt, {Tt,k}Kk=1) = Nt

∑
k
βkTt,kVt−k,

where β = [βk] ∈ ∆K−1 is the model parameter. We can
simplify the problem (5) and solve it approximately as

minβ
∑T

t=K+1
NLL(P 1

t ;At) + NLL(P 2
t ;Vt), (7)

s.t. ∀t, {Tt,k}Kk=1 ∈ argmin
∑K

k=1
βkdfgw(G,Gt−k),

Proof. In this case, P 1
t = g1({At−k}Kk=1;Nt, {Tt,k}Kk=1)

and P 2
t = g2({Vt−k}Kk=1;Nt, {Tt,k}Kk=1), which coinci-

dent with a weighted FGW barycenter (Xu 2020):

Ḡt, {Tt,k}Kk=1 ∈ argmin
∑K

k=1
βkdfgw(G,Gt−k), (8)

where the Āt and V̄t of Ḡt are P 1
t and P 2

t , respectively.

When P 1
t ,P

2
t ∈ argmin

∑K

k=1
βkdfgw(G,Gt−k), their

14569



isomorphisms, i.e., R(P 1
t ), R(P 2

t ) with an arbitrary permu-
tation R imposed on the node indices, are also the optimal
solution of (8). In this case, the optimal transport T in the
upper-level objective (6) becomes redundant (Xu 2020) be-
cause the T corresponds to a permutation of node indices as
well. Therefore, removing the optimal transport problem in
the upper-level objective (6) and applying (8) as the lower-
level problem, we simplify (5) as (7).

This proposition indicates that in this special case, our
GWAR model becomes a mixture model of historical graphs
under the FGW distance. Accordingly, the alignment of his-
torical graphs and the estimation of the new graph can be
achieved jointly by computing a FGW barycenter.

Unfortunately, both (5) and its simplified version (7) re-
quire to compute the FGW barycenter when solving the
lower-level problem. Moreover, because the alignment of
historical graphs is necessary for both learning and infer-
ence, the computation of the barycenter is required in the
testing phase. In particular, this step involves computing K
FGW distances iteratively, which limits the application of
our GWAR model in practice because the complexity of
FGW distance is O(N3) in general for the graphs with N
nodes. What is worse, it not only owns time-consuming
feed-forward computations but also leads to complicated
backpropation — computing the gradients of T ’s by AutoD-
iff is slow and costs a lot of memory because of the iterative
computation of the T ’s. Although some attempts have been
made to reduce the complexity of the FGW distance, e.g.,
the scalable GWL in (Xu, Luo, and Carin 2019), the low-
rank GW distance in (Scetbon, Peyré, and Cuturi 2021), and
so on, they still need to compute the optimal transport ma-
trix in a nonparametric and transductive way. To make our
GWAR model applicable in practice, we parametrize the op-
timal transport and propose a learning-based inductive FGW
distance, which reformulates the learning task and reduces
its computational cost greatly.

Efficient Learning and Inference
Inductive FGW Distance
According to the above analysis, the main bottleneck of our
model is the computation of the FGW distance and barycen-
ters. To reduce its computational complexity, we design an
inductive FGW (IFGW) distance. Our design is inspired
by the amortization strategy of variational inference (Kim
et al. 2018), which parametrizes the variational probability
of each sample by a shared encoder and takes the samples
as the inputs. Given arbitrary two graphs G1 and G2, we pa-
rameterize the optimal transport associated with their FGW
distance by a graph neural network (GNN) with coupled at-
tention layers. As shown in Figure 2(a), GNN converts the
two graphs to two sets of node embeddings, i.e., X1 =
h(G1) ∈ RN1×M and X2 = h(G2) ∈ RN2×M , where we
set h to be a graph isomorphism network (GIN) (Xu et al.
2018) in this work. Assuming the node embeddings to yield
a normal prior distribution, we derive two attention maps:

S = diag(µ1)Gumbel-smrow(X1W1W
⊤
2 X⊤

2 ),

Z = Gumbel-smcol(X1U1U
⊤
2 X⊤

2 )diag(µ2),
(9)

where γ = {W1,W2,U1,U2 ∈ RM×H} are linear map-
pings, and Gumbel-smrow and Gumbel-smcol apply row-wise
and column-wise Gumbel-softmax (Jang, Gu, and Poole
2016) to a matrix, respectively. Using Gumbel-softmax can
suppress the over-smoothness problem when the number of
nodes is large. Obviously, S ∈ Πµ1,· and Z ∈ Π·,µ2

, so that
when S = Z, we obtain a matrix in Πµ1,µ2

.
In summary, our IFGW distance decouples the two-side

marginal constraint on the optimal transport matrix T to two
one-side constraints on S and Z. We learn the parameters of
neural networks by solving the optimization problem:

min
h,γ

loss(G1, G2;h,γ) =

min
h,γ

Ei,j∼S [d(v
1
i ,v

2
j )] + Ei,i′,j,j′∼S⊗Z [L(a

1
ii′ , a

2
jj′)]︸ ︷︷ ︸

difgw(G1,G2;h,γ)

+ τ1KL(S∥Z) + τ2(KL(X1∥N ) + KL(X2∥N )),

(10)

where S = S(G1, G2;h,γ) and Z = Z(G1, G2;h,γ) are
neural networks taking G1 and G2 as their inputs and with
parameters h,γ. In (10), the first line of objective function
corresponds to the definition of our IFGW distance, while
the second line contains the regularizers ensuring i) S and Z
are similar to each other; and ii) the distributions of the node
embeddings are close to a normal distribution N (0, IM ).

After solving (10), given arbitrary two graphs, we can es-
timate their discrepancy by the learned IFGW distance, in
which the optimal transport is derived directly by (9) based
on the learned neural network. Because of avoiding iterative
optimization, the IFGW distance is extremely fast. Based
on the IFGW distance, we can further define the IFGW
barycenter and approximate multiple optimal transports in
an inductive way. Recall that the output of GIN yields a nor-
mal prior distribution. Therefore, instead of computing the
barycenter graph explicitly, we sample from the normal dis-
tribution and approximate the embeddings of the barycen-
ter’s nodes directly. As a result, given {Gk}Kk=1, we obtain a
N -size IFGW barycenter and the optimal transports as

Ḡ, {Tk}Kk=1 = argmin
∑K

k=1
difgw(G,Gk;h,γ)

⇔ µ =
1

N
1N , X̄ ∼ N (0, IM ), Xk = h(Gk)

Sk = diag(µ)Gumbel-smrow(XW1W
⊤
2 X⊤

k )

Ā =
1

µµ⊤
∑

k

SkAkS
⊤
k , V̄ =

1

µ1⊤
D

∑

k

SkVk.

(11)

Figure 2(b) shows the computation of {Sk}Kk=1.

Two-Step Optimization of Our GWAR Model
Replacing the FGW distance with the IFGW distance, our
learning task is reformulated as two optimization problems:

Learning the IFGW distance Sample arbitrary two
graphs from the graph sequence and solve

minh,γ
∑

G,G′∈{Gt}T
t=0

loss(G,G′;h,γ). (12)
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Figure 2: (a) An illustration of IFGW distance, where “⊗”
means inner product and FC means linear layer. The OT
module in the dotted frame infers optimal transport. (b) An
illustration of IFGW barycenter, which leverages a GIN and
the OT module to infer multiple optimal transports.

Learning the GWAR model Fix the learned parameters
{h∗,γ∗} and optimize the following problem:

ming1,g2
∑T

t=K+1
difgw(Ĝt;g1,g2 , Gt;h

∗,γ∗),

s.t. ∀t,
{Tt,k}Kk=1 = argmin

∑
k
difgw(G,Gt−k;h

∗,γ∗).

(13)

(13) is not a bi-level optimization because Tt,k’s can be de-
rived by (11) directly. We solve (12) and (13) by stochastic
gradient descent and obtain the GWAR model accordingly.
The learned IFGW distance is applicable in the inference
phase so it also accelerates our model when predicting.

Experiments
We apply our GWAR to both synthetic and real-world graph
modeling tasks, and compare it with the state-of-the-art
models, including VGRNN (Hajiramezanali et al. 2019),
DynAE, DynRNN and DynAERNN (Goyal, Chhetri, and
Canedo 2020). Specifically, DynAE is a graph autoencoder.
DynRNN and DynAERNN are based on recurrent neural
networks. VGRNN models the hidden states as a graph re-
current neural network. When implementing our GWAR,
we set the number of GIN layers to be 5, the dimension
M = 64, the dimension H = 32, and the weights of reg-
ularizers in (10) are τ1 = τ2 = 0.1. For the g1 and g2 of
GWAR, their MLPs contains two hidden layers, whose hid-
den dimension is 32. We learn both (12) and (13) by SGD
and set the batch size to be 5, the learning rate to be 0.05,
and the number of epochs to be 100. We run the experiments
below on a server with two Nvidia GTX3090 GPUs.

For each method, we consider one synthetic dataset and
three real-world datasets. Synthetic graph sequence: We
generate a sequence of synthetic graphs with length T =
100 by a 5-order structure-oriented autoregression, where
the size of each graph is fixed as 50, the T ’s in (4) are
identity matrices, and the remaining model parameters and
the initial five graphs are set randomly. Each graph con-
tains a binary adjacency matrix, uniform node distribution,
and one-hot node features. Email-EU: The Email-EU tem-
poral network in (Paranjape, Benson, and Leskovec 2017)

Time

(a) Baselines

Time

(b) GWAR

Figure 3: The comparison for various methods on their
learning strategies. The baselines require the information of
node indices while our GWAR does not require it.

is a collection of emails between members of a European
research institution. We extract a sequence of graphs, in
which each graph represents the email interactions per day.
UCI: The UCI dataset (Panzarasa, Opsahl, and Carley 2009)
comprises of private messages sent on an online social net-
work at the University of California, Irvine. The graph se-
quence contains social interactions per day. Math-Small:
The Math-Overflow network in (Paranjape, Benson, and
Leskovec 2017) is a collection of interactions on the stack
exchange website. Three types of interactions are included:
answers to questions, comments to questions and comments
to answers. We sample a subset called Math-Small, which
contains one graph per month and ensures each graph has at
least 30 edges and at most 3,000 nodes.

For each dataset, we imitate unaligned scenarios by
merely preserving ∆N × 100% nodes randomly from each
graph, where ∆N ∼ Uniform(α − 0.1, α + 0.1) and
α ∈ {0.9, 0.7, 0.5} controls the seriousness of unalign-
ment. Given such unaligned evolutionary graphs, the base-
lines have to use the indices of the preserved nodes and treat
the learning task as predicting links with missing data. Note
that without the side information of node indices, all the
baselines are inapplicable, while GWAR does not require
such side information, which can be trained directly on the
sequences of arbitrary-sized and unaligned graphs. Figure 3
shows the difference between our models and the baselines.

For each dataset, we convert the long unaligned graph se-
quence to N short sequences of length K + 1, where the
order K = 5 for the synthetic data and 7 (the number of
days per week) for the real-world data. For each model, we
train it on 80% sequences and test it on the remaining 20%
sequences by predicting the last graph based on the K ob-
servations. Our GWAR only generates the isomorphisms of
target graphs because it does not leverage any side informa-
tion of node index. Therefore, for fairness, we evaluate the
performance of each model by measuring the average of the
FGW distance between each real graph and the correspond-
ing generated graph, i.e., d̄fgw = 1

N

∑N
n=1 dfgw(Gn, Ĝn),

which reflects the accuracy of the structural information cap-
tured by the models. For the graphs without node attributes,
we just compare the estimated adjacency matrices with the
real ones and the measurement becomes the averaged GW
distance (Chowdhury and Mémoli 2019), i.e., d̄gw. Besides
d̄gw, we match the predicted graph achieved by each method
with the ground truth and calculate the F1-score of the link
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Sampling rate α 0.9 0.7 0.5
VGRNN 0.447±0.012 0.452±0.017 0.466±0.023
DynAE 0.480±0.018 0.507±0.024 0.520±0.035
DynRNN 0.496±0.019 0.509±0.027 0.525±0.032
DynAERNN 0.470±0.011 0.479±0.015 0.485±0.020

GWARFGW 0.384±0.004 0.438±0.008 0.460±0.010
GWARLR-FGW 0.356±0.006 0.441±0.009 0.473±0.011
GWARIFGW 0.348±0.012 0.385±0.019 0.406±0.021

Table 1: Comparisons on synthetic data (d̄fgw±Std.)
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Figure 4: (a) The performance under various K’s. (b) The
runtime per batch with respect to different graph sizes.

prediction results. For our GWAR, the F1-score is calculated
based on the optimal transport matrix associated with d̄gw,
while for the baselines, the F1-score is derived directly based
on the link prediction results. To demonstrate the efficiency
of our IFGW distance, we compare the runtime and perfor-
mance of our learning method with the IFGW distance, the
original FGW distance (Vayer et al. 2020), and the low-rank
FGW (LR-FGW) distance implemented based on (Scetbon,
Peyré, and Cuturi 2021). We train and test each model in 5
trials and record the mean and the standard deviation.

Table 1 lists the learning results derived by different mod-
els. We can find that our GWAR outperforms its competitors
consistently, which verifies its superiority. When increas-
ing the noise (desceasing α), although the performance of
our GWAR degrades slightly, its results are still better than
those of the baselines. In particular, the learning of the base-
lines requires well-aligned graphs. Accordingly, the noise
imposed on the data will break the evolutionary patterns of
edges directly (as shown in Figure 3(a)). On the contrary,
our GWAR fully leverages all edges of historical graphs to
predict each future edge because the soft alignment achieved
by the T ’s. In other words, our model considers more infor-
mation and thus mitigates the negative influence of noise.

To demonstrate the robustness of our method to the model
misspecification problem, we design several GWAR models
with different K’s and train the model on the synthetic data.
Figure 4(a) shows that the performance of our GWAR is rel-
atively stable with respect to the change of K’s when it is
learned based on the IFGW distance, which means that our
methods are robust to the model misspecification problem.
Figure 4(b) visualizes the GWAR on the runtime per graph.
The result shows that applying our IFGW distance indeed

Dataset Email-EU UCI Math-Small
Time Span 802 days 193 days 78 months
#Nodes 89 1899 3000
#Total Edges 12216 17950 50652
VGRNN 0.481±0.013 0.755±0.006 Out-of-memory
DynAE 0.475±0.028 0.700±0.001 0.787±0.003
DynRNN 0.507±0.031 0.760±0.017 Out-of-memory
DynAERNN 0.493±0.019 0.735±0.002 0.801±0.005

GWARFGW 0.424±0.009 0.669±0.014 Out-of-memory
GWARLR-FGW 0.460±0.013 0.678±0.017 Out-of-memory
GWARIFGW 0.399±0.016 0.652±0.020 0.763±0.022

Table 2: Comparisons on real-world data (d̄gw ± Std.)

Synthetic Email-EU UCI
VGRNN 0.829 0.693 0.658
DynAE 0.832 0.702 0.680
DynRNN 0.831 0.713 0.684
DynAERNN 0.829 0.690 0.662
GWARFGW 0.838 0.706 0.677
GWARLR-FGW 0.825 0.698 0.678
GWARIFGW 0.840 0.715 0.684

Table 3: Comparisons for various methods on F1-score

improves the efficiency of our model greatly, which achieves
about 100 times acceleration compared with the models us-
ing FGW or LR-FGW distances in the case of large graphs.

Table 2 shows that our GWAR achieves better results than
the baselines on the three real-world datasets, which further
shows the effectiveness of our model. Moreover, when ap-
plying our IFGW distance, we improve the scalability of
GWAR greatly. In particular, for the Math-Small dataset,
GWAR with the original FGW distance and its low-rank ver-
sion suffer from the out-of-memory issue caused by the iter-
ative optimization of optimal transports. Some baselines also
have the same problem in our machine. Applying the IFGW
distance helps our model to avoid the issue successfully and
achieve the best performance. Besides calculating the FGW
distance between each real graph and the corresponding gen-
erated graph, we can match the generated graph to the real
one and calculate the F1-score of the link prediction result.
Table 3 shows the comparisons of various methods on both
synthetic and read-world datasets.

Conclusion
We have proposed a novel GWAR model for privacy-
preserved evolutionary graph modeling. To learn and apply
the model efficiently, we develop an acceleration strategy
based on a novel IFGW distance and make the model appli-
cable for large-scale graphs. Our GWAR makes the first at-
tempt to build an autoregressive model for unaligned evolu-
tionary graphs, which protects private information of nodes
hidden behind their temporal behaviors. The IFGW distance
is an efficient method that approximates optimal transports
in a parametric and inductive way. In the future, we plan
to improve our method for link prediction and community
tracking in private-preserving scenarios.
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Erdos, P.; Rényi, A.; et al. 1960. On the evolution of random
graphs. Publ. Math. Inst. Hung. Acad. Sci, 5(1): 17–60.
Goyal, P.; Chhetri, S. R.; and Canedo, A. 2020. dyn-
graph2vec: Capturing network dynamics using dynamic
graph representation learning. Knowledge-Based Systems,
187: 104816.
Hajiramezanali, E.; Hasanzadeh, A.; Narayanan, K.;
Duffield, N.; Zhou, M.; and Qian, X. 2019. Variational
Graph Recurrent Neural Networks. Advances in Neural In-
formation Processing Systems, 32: 10701–10711.
Hamilton. 1994. Time Series Analysis. Time Series Analy-
sis.
Holland, P. W.; Laskey, K. B.; and Leinhardt, S. 1983.
Stochastic blockmodels: First steps. Social networks, 5(2):
109–137.

Igamberdiev, T.; and Habernal, I. 2021. Privacy-preserving
graph convolutional networks for text classification. arXiv
preprint arXiv:2102.09604.
Jang, E.; Gu, S.; and Poole, B. 2016. Categorical
reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144.
Kim, Y.; Wiseman, S.; Miller, A.; Sontag, D.; and Rush,
A. 2018. Semi-amortized variational autoencoders. In In-
ternational Conference on Machine Learning, 2678–2687.
PMLR.
Kumar, S.; Zhang, X.; and Leskovec, J. 2019. Predicting
dynamic embedding trajectory in temporal interaction net-
works. In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining,
1269–1278.
Li, X.; Zhou, Y.; Dvornek, N.; Zhang, M.; Gao, S.; Zhuang,
J.; Scheinost, D.; Staib, L. H.; Ventola, P.; and Duncan, J. S.
2021. Braingnn: Interpretable brain graph neural network
for fmri analysis. Medical Image Analysis, 74: 102233.
Li, Y.; Qian, B.; Zhang, X.; and Liu, H. 2020. Graph neural
network-based diagnosis prediction. Big Data, 8(5): 379–
390.
Liao, R.; Li, Y.; Song, Y.; Wang, S.; Hamilton, W.; Du-
venaud, D. K.; Urtasun, R.; and Zemel, R. 2019. Ef-
ficient Graph Generation with Graph Recurrent Attention
Networks. Advances in Neural Information Processing Sys-
tems, 32: 4255–4265.
Luo, D.; Xu, H.; Zha, H.; Du, J.; Xie, R.; Yang, X.; and
Zhang, W. 2014. You are what you watch and when you
watch: Inferring household structures from IPTV viewing
data. IEEE Transactions on Broadcasting, 60(1): 61–72.
Mémoli, F. 2011. Gromov–Wasserstein distances and the
metric approach to object matching. Foundations of compu-
tational mathematics, 11(4): 417–487.
Panzarasa, P.; Opsahl, T.; and Carley, K. M. 2009. Patterns
and dynamics of users’ behavior and interaction: Network
analysis of an online community. Journal of the Ameri-
can Society for Information Science and Technology, 60(5):
911–932.
Paranjape, A.; Benson, A. R.; and Leskovec, J. 2017. Motifs
in temporal networks. In Proceedings of the tenth ACM in-
ternational conference on web search and data mining, 601–
610.
Pareja, A.; Domeniconi, G.; Chen, J.; Ma, T.; Suzumura,
T.; Kanezashi, H.; Kaler, T.; Schardl, T.; and Leiserson, C.
2020. Evolvegcn: Evolving graph convolutional networks
for dynamic graphs. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, 5363–5370.
Paul, M.; and Dredze, M. 2011. You are what you tweet:
Analyzing twitter for public health. In Proceedings of the
International AAAI Conference on Web and Social Media,
volume 5, 265–272.
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