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Abstract

Deepfake brings huge and potential negative impacts to our
daily lives. As the real-life Deepfake videos circulated on
the Internet become more authentic, most existing detection
algorithms have failed since few visual differences can be
observed between an authentic video and a Deepfake one.
However, the forensic traces are always retained within the
synthesized videos. In this study, we present a noise-based
Deepfake detection model, NoiseDF for short, which focuses
on the underlying forensic noise traces left behind the Deep-
fake videos. In particular, we enhance the RIDNet denoiser
to extract noise traces and features from the cropped face and
background squares of the video image frames. Meanwhile,
we devise a novel Multi-Head Relative-Interaction method to
evaluate the degree of interaction between the faces and back-
grounds that plays a pivotal role in the Deepfake detection
task. Besides outperforming the state-of-the-art models, the
visualization of the extracted Deepfake forensic noise traces
has further displayed the evidence and proved the robustness
of our approach.

Introduction
The video of a synthesized Barack Obama giving a speech
insulting the former president of the United States, Donald
Trump, is widely spread on YouTube1. Without knowing the
truth that the face is synthesized using Jordan Peele’s, people
would possibly get tricked and believe it to be genuine. The
video is generated via deep neural networks that perform
face identity swap and generate hyper-realistic fake videos
appearing authentic, also known as Deepfake (Chawla 2019;
Maras and Alexandrou 2019). Deepfake is first introduced
by the Reddit user ‘deepfakes’ in 2017, utilizing deep neural
networks to swap a source person’s facial identity onto the
target one, maintaining the target person’s facial expression.

Since the first occurrence of the Deepfake face identity
swap technique, methods have been explored to perform
Deepfake detection with the help of deep neural networks
(Afchar et al. 2018; Nguyen, Yamagishi, and Echizen 2019;
Zhao et al. 2021; Zhang et al. 2022; Hu et al. 2022b; Wang
et al. 2022; Hu et al. 2022a; Cheng et al. 2022; Wang and
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1https://www.youtube.com/watch?v=cQ54GDm1eL0

Chow 2022). In specific, most of them focus on the video
itself and boost their performance through the techniques
of computer vision. While the hyper-realistic synthesized
faces are hard to find differences from the authentic ones
visually, forensic traces are left within the face area regard-
less of different face identity swap, fine-tuning, or smooth-
ing techniques. On the contrary, the background area in each
image frame is usually unmodified as the purpose of Deep-
fake is face identity swap, and the less the original video is
modified, the more authentic the synthesized one is likely to
be. However, besides the studies employing the Photo Re-
sponse Non-Uniformity (PRNU) (Lukas, Fridrich, and Gol-
jan 2006) but failing in the Deepfake detection task, few ap-
proaches resort to forensic traces such as noise. Moreover,
many existing methods do not utilize video keyframes for
Deepfake detection, leading to huge information loss. This
is because the keyframes contain the most integrated video
information after common video compression.

In this work, we present a novel noise-based Deep-
fake detection method, NoiseDF for short. In particular, we
study the underlying forensic noise traces of the Deepfake
videos. We crop the face and a background square from
each video keyframe and investigate the different noise pat-
terns between real and fake ones, given the background
squares are unmodified. Also, we adopt the Siamese (Brom-
ley et al. 1993) architecture and train the enhanced RIDNet
denoiser (Anwar and Barnes 2019) to extract the underly-
ing Deepfake forensic noise traces from the face and back-
ground squares. Thereafter, we propose a new Multi-Head
Relative-Interaction method to measure the degree of inter-
action within each face-background pair in multiple views
of dimension and perform Deepfake detection accordingly.
The specialty of the Siamese design is to share the learn-
able weights for both branches so that heterogeneous in-
puts lead to distinct output features. In specific, the level
of relative-interaction is higher for a real face-background
pair than that for a fake face-background pair since only
the fake face contains Deepfake forensic noise traces. We
further apply depth-wise separable convolution for the pro-
jection of the noise features to overcome the efficiency de-
cay of the convolutional neural network (CNN). Overall, our
proposed NoiseDF approach achieves promising Deepfake
detection performance against many existing state-of-the-art
baseline methods. Furthermore, we have visualized the ex-
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Figure 1: Workflow of the proposed NoiseDF model. Cropped face and background squares are passed through the Siamese
architecture for noise feature extraction. Thereafter, the two sets of noise features are computed to obtain the degree of Multi-
Head Relative-Interaction to perform Deepfake detection.

tracted Deepfake noise traces to verify the robustness of our
proposed model in distinguishing fake and real faces.

The contributions of this work are threefold:

• Significantly distinguished from the traditional ap-
proaches relying on computer vision techniques, our
study is the first to achieve good Deepfake detection
performance in the perspective of digital forensic noise
traces. We further visualize the Deepfake forensic noise
traces, which have not been achieved by the computer
vision based detection models.

• We present a novel idea of extracting the face-
background pairs via the Siamese structure towards
Deepfake noise features analyses. Meanwhile, we devise
a Multi-Head Relative-Interaction method that justifies
the level of interaction and similarity between the face
and background noise features in multiple perspectives
of head dimensions regarding the variants of the original
video authenticity.

• We emphasize the keyframe importance in videos and in-
tegrate them for the Deepfake detection task while many
existing detection algorithms have neglected the potential
performance improvements brought by the keyframes.
The proposed NoiseDF approach achieves state-of-the-
art performance against the comparative baseline meth-
ods for both in-dataset and cross-dataset experiments.

Noise Based Deepfake Detection
Although noise trace is not new in the digital forensics do-
main for various tasks and applications, it has been barely
discussed in Deepfake detection. The noise-based Deepfake
detection approaches up to date are mostly relying on the
Photo Response Non-Uniformity (PRNU), a noise pattern
created by small factory defects in the light-sensitive sen-
sors of a digital camera (Lukas, Fridrich, and Goljan 2006).

PRNU has shown strong abilities in source device identi-
fication (Marra et al. 2017; Saito, Tomioka, and Kitazawa
2017) and source anonymization (Picetti et al. 2022). How-
ever, none of the PRNU-based work has shown strong ev-
idence that the PRNU noise can be used for Deepfake de-
tection. Koopman et al. (Koopman, Macarulla Rodriguez,
and Geradts 2018) claimed that the mean normalised cross
correlation score of PRNU noise per video can be used to
distinguish Deepfakes from authentic videos by an experi-
ment with only 10 videos in total given the correct video
labels. But the inversion, Deepfake detection, could not be
performed without knowing the correct labels. Weever and
Wilczek (de Weever and Wilczek 2020) made several ex-
periments calculating the correlation of the PRNU noise and
found out that none of the PRNU noise analyses had resulted
in a definite proof of real or fake. In summary, the PRNU
noise pattern can be a useful tool for device identification
studies, but it is not a good forensic noise tracing material
for Deepfake detection. Therefore, our study is the first to
achieve good performance using a forensic noise trace based
Deepfake detection approach.

Methodology
In this section, we illustrate our novel noise-based Deepfake
detection model in four parts, namely, the data preprocessing
idea on keyframes and face-background pair cropping, the
Siamese Noise Feature Extraction module, the Multi-Head
Relative-Interaction method, and the final Deepfake detec-
tion. The workflow of our approach is shown in Figure 1.

Data Preprocessing
Keyframes are first extracted from the videos in the dataset.
After that, the face square and a background square are
cropped from each keyframe. Details of a data preprocessing
example are shown in Figure 2.
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Figure 2: An example of data preprocessing including keyframe extraction and face and background squares cropping. The face
square in a keyframe is located and cropped, and a background square with the same size and the furthest Euclidean distance
from the detected face within the image frame is found.

Keyframe Extraction Image frames within a video are
usually under video compression for the purpose of space-
saving. Specifically, three types of frames are commonly in-
cluded in a video clip after video compression, I-frame, P-
frame, and B-frame. I-frame, also known as the keyframe
or intra-frame, is a complete image with the largest size
that contains intact information and plays the most impor-
tant role in video compression. P-frame, the predicted pic-
ture, holds only the variations in the current image frame
from the previous image frames within a video. B-frame,
the bidirectional predicted picture, records only the changes
in the current image frame from both the preceding and fol-
lowing image frames to specify the content and saves even
more space than the P-frame (Vijayanagar 2020). In other
words, both the B-frame and P-frame are not complete im-
age frames and lack image information as compared to the I-
frame (keyframe). The number of keyframes within a video
varies depending on the video quality and content motion
complexity. In this study, the FFmpeg tool is adopted for
keyframe extraction from the videos in the datasets.

Face and Background Extraction The purpose of Deep-
fake is to accomplish identity swap while maintaining as
much frame area unchanged as possible within the video
and image frames to guarantee authentic looks. Therefore,
a Deepfake video normally has only the face area modified
for identity swap, and most of the background area is un-
changed. For each extracted image frame, we first perform
face detection using dlib2 library and crop the square area
containing the face. It is uncontrollable that the adjacent area
of the face square is totally unmodified since some Deepfake
techniques make unavoidable changes to the background
area by warping back a face square. Thus, we search for the
background area with the largest distance from the detected
face area to ensure that the extracted background square is
unmodified. We crop the background square with the same
size as the face square, and the Euclidean distance between

2https://pypi.org/project/dlib

the central points of the squares is considered when locating
the furthest background square. For each face-background
pair from each image frame, the face square is manipulated
if it is extracted from a Deepfake synthesized video, and the
background one is always unchanged regardless of the au-
thenticity of the video it comes from. The ground-truth label
for each face-background pair is determined based on the
authenticity of the face in the source video.

Siamese Noise Feature Extraction
We employ the Siamese Network structure for noise feature
extraction from the face and background squares, and force
both Siamese branches sharing the weights of the noise fea-
ture extraction network. Within the Siamese architecture, a
pre-trained RIDNet is adopted and improved for Deepfake
forensic noise trace extraction, followed by further feature
extractions from the extracted noise traces.

RIDNet Noise Extraction Comparing to the existing de-
noisers (Guo et al. 2019; Zhang et al. 2017), the single-stage
RIDNet (Anwar and Barnes 2019) is proven to be more ef-
ficient and flexible and can handle both variant and invari-
ant noises with better performance regardless of the noise
standard deviation. RIDNet is composed of a single convo-
lutional layer for feature extraction, four cascaded enhance-
ment attention modules (EAM) for feature learning, and an-
other convolutional layer for the reconstruction of a clean
output image. In detail, the EAMs follow the residual-on-
the-residual architecture and are mainly composed of con-
volutions while the novel idea is the utilization of channel
attention for emphasizing the weights of important features.
In this study, the face and background squares are passed
through the enhanced RIDNet model to extract the under-
lying forensic noise traces instead of eliminating them. We
exploit the pre-trained weights of the RIDNet that can firstly
extract a general level noise n by

n = x− ŷ, (1)
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a subtraction of the output clean image ŷ from the original
input noisy image x. Then, we train this noise extractor with
additional network architectures and further restrictions for
weight updating and finally achieve Deepfake forensic noise
trace extraction that serves for our Deepfake detection pur-
pose. The extracted face and background noise traces are
passed through convolutional layers for further Deepfake
noise feature extraction and dimension adjustment. A layer
normalization is followed to restrict the model training di-
rection and ensure training efficiency.

Siamese Network Siamese Network (Bromley et al.
1993) is first introduced in 1993 for signature verification
purposes based on cosine similarity of the signature fea-
tures such as the curvature of the trajectory and the accelera-
tion. The characteristic of this structure is the shared weights
for both branches, and corresponding similar or unique out-
put features are derived depending on the inputs to the
branches accordingly. A later study has utilized the idea of
the Siamese Network for face verification (Chopra, Hadsell,
and LeCun 2005) by minimizing a discriminative loss func-
tion that makes the similarity metric small for pairs of faces
from the same person, and large for pairs from different per-
sons. In this study, the face and background squares from
an image frame are respectively passed through branches of
the Siamese architecture for noise feature extraction. An au-
thentic video image frame is unmodified and contains the
same kind of clean forensic noise pattern everywhere within
the image, while on the contrary, a Deepfake video image
frame has the face area synthesized and warped so that the
Deepfake noise pattern of the face area is different from that
of the unchanged background area.

The two branches of the Siamese Network share the same
weights. Considering the background squares stay authentic
and unchanged, the model is tuned such that different noise
patterns are extracted from the faces and backgrounds of the
Deepfake synthesized videos, and the same noise patterns
are extracted from that of authentic ones. The two branches
of the Siamese Network are coded as one single branch in
implementation since both branches share the same archi-
tecture and the same set of network weights. The noise pat-
terns are further analyzed with a novel Multi-Head Relative-
Interaction method to perform Deepfake detection.

Multi-Head Relative-Interaction Using Depth-Wise
Separable Convolutions
The traditional cosine similarity method used in the early
Siamese Network related research has achieved good effi-
ciencies. However, a one-step dimension reduction to make
two high-dimensional Deepfake noise trace features become
one single cosine similarity numerical value can cause enor-
mous information loss and deteriorate the performance of
Deepfake detection. Therefore, we devise a novel Multi-
Head Relative-Interaction approach to study the interaction
and similarity between the face noise features and back-
ground noise features. Furthermore, a depth-wise separable
convolutional design is applied to the projection of Multi-
Head Relative-Interaction to speed up and compensate for
the possible efficiency damping. The architecture detail of

Figure 3: Illustration of the Multi-Head Relative-Interaction
module.

the Multi-Head Relative-Interaction is shown in Figure 3.

Multi-Head Relative-Interaction We propose a novel
Multi-Head Relative-Interaction approach to analyze the
features of face and background noise traces in multiple di-
mensions of view. The Relative-Interaction can be described
as mapping the face and the background noise trace features
each to an output, where the mapped face noise trace fea-
ture Ff and background noise trace feature Fb are generated
through learnable projections Wf and Wb with CNNs on the
noise trace features Nf and Nb extracted by the Siamese ar-
chitecture by

Ff , Fb = Wf (Nf ),Wb(Nb). (2)
We compute the dot-product of the projected noise trace fea-
tures Ff and Fb, divide the result by

√
dF , the square root

of the projected noise trace feature dimension, and apply a
softmax function to obtain the weights on the interaction and
similarity between the noise trace features Ff and Fb. The
overall Relative-Interaction output is computed by

RelativeInteraction(Ff , Fb) = softmax(
FfF

T
b√

dF
). (3)

The purpose of the division by
√
dF is to prevent value ex-

plosion after the dot-product of the projected noise trace fea-
tures Ff and Fb.
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Model Name
Test Datasets

FF++ DFDC Celeb-DF DF-1.0

ACC AUC ACC AUC ACC AUC ACC AUC

MesoNet (Afchar et al. 2018) 61.03 58.13 50.02 50.16 36.73 50.01 50.05 50.21

Capsule (Nguyen, Yamagishi, and Echizen 2019) 76.40 83.44 51.30 56.16 61.96 59.93 59.29 61.46

FFD (Dang et al. 2020) 82.29 82.48 59.44 59.47 46.19 55.86 53.69 53.81

CViT (Wodajo and Atnafu 2021) 84.36 93.10 54.36 59.23 46.51 54.33 50.75 51.76

MAT (Zhao et al. 2021) 76.07 86.42 56.99 60.84 62.94 64.99 69.34 69.47

Two-Stream (Luo et al. 2021) 80.69 89.19 54.87 57.13 58.30 66.95 60.86 63.60

TAR (Lee et al. 2021) 53.48 50.00 49.85 50.00 63.29 50.00 49.95 50.00

NoiseDF (Ours) 84.36 93.99 59.87 63.89 70.10 75.89 67.49 70.88

Table 1: Frame-level comparative tests accuracy (%) and AUC scores (%) on the testing datasets after trained on FF++.

A Multi-Head Relative-Interaction expands the Relative-
Interaction to multiple perspectives and dimensions of view
when analyzing the Deepfake forensic noise trace features.
As the learnable convolutional projection weights are initial-
ized randomly and differently for each head, a concatenation
of outputs from h heads by

headi = RelativeInteraction(Wfi(Nf ),Wbi(Nb)), (4)

and

MultiHead(Ff , Fb) = Concat(head1, ..., headh), (5)

brings a broader view of the noise features than a single-
head Relative-Interaction on Nf and Nb, where the i-th head
headi is computed with face and background projections
Wfi and Wbi on Nf and Nb, respectively.

Depth-wise Separable Convolution The depth-wise sep-
arable convolution idea is introduced by Chollet (Chollet
2017) to avoid the possible overfitting and time-consuming
problem of CNNs during model training. The depth-wise
separable convolution operates the same procedure as a reg-
ular convolution does but utilizes much fewer parameters
and strengthens the efficiency. In our NoiseDF model, we
propose depth-wise separable convolutions instead of stan-
dard convolutional layers for the learnable convolutional
projections upon the face and background noise trace fea-
tures and all other convolutions in the model. As a result, a
more efficient model is obtained with fewer parameters and
fewer chances of overfitting with the help of the depth-wise
separable convolution.

Deepfake Detection
Following the innovative Multi-Head Relative-Interaction
approach, we apply batch normalization (Ioffe and Szegedy
2015) along with refinement operations to adjust the output
shape and gradually reduce the dimension using fully con-
nected layers for a final sigmoid calculation by

σ(x) =
1

1 + exp(−x)
, (6)

where x is the output of the final fully connected layer, to
generate the ultimate prediction results upon the candidate
videos for the Deepfake detection. During the training pro-
cess, the entire network is tuned according to the loss values
of each training epoch. Weights of the improved pre-trained
Siamese Noise Extraction Network module are updated to
extract the Deepfake noise traces and gradually satisfy our
demand.

Experiments

Datasets

FaceForensics++ (FF++) (Rössler et al. 2019) is currently
the most widely adopted training dataset in the existing
Deepfake detection work. It contains 1,000 real videos and
four fake video subsets each contains 1,000 fake videos syn-
thesized from the 1,000 real ones using FaceSwap (FS),
Deepfakes (DF), Face2Face (F2F) (Thies et al. 2016), and
NeuralTextures (NT) (Thies, Zollhöfer, and Nießner 2019)
manipulation techniques, respectively. Three qualities have
been released, namely, Raw, HQ (c23), and LQ (c40), where
the latter two are compressed using the H.264 codec with
different compression levels. We chose the HQ (c23) dataset
as our training dataset because it is similar to the real-life
Deepfake video quality, and followed the official split ratio
to extract a balanced image frame dataset for real and fake.

The purpose of the Deepfake detection task is to pre-
vent Deepfake attacks with unknown manipulation tech-
niques from affecting human lives with the help of the ex-
isting Deepfake video datasets. As the real-life Deepfake
videos have become harder to distinguish, we also chose
the datasets with better qualities for cross-dataset evalua-
tion on the proposed model. In specific, we tested the well-
trained model performance on Deepfake Detection Chal-
lenge (DFDC) (Dolhansky et al. 2019), Celeb-DF (Li et al.
2020), and DeeperForensics-1.0 (DF-1.0) (Jiang et al. 2020)
datasets.
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Denoisers
Test Datasets

FF++ DFDC Celeb-DF DF-1.0

ACC AUC ACC AUC ACC AUC ACC AUC

CBDNet (Guo et al. 2019) 73.29 81.46 61.94 64.04 65.23 62.80 69.84 73.05
DnCNN (Zhang et al. 2017) 84.13 92.41 58.34 61.62 61.55 71.63 56.58 54.82

RIDNet (Anwar and Barnes 2019) 84.36 93.99 59.87 63.89 70.10 75.89 67.49 70.88

Table 2: Ablation study on adopting different denoisers in our detection model.

Experimental Settings
We adopted h = 8 heads with head dimension 64 for
the Multi-Head Relative-Interaction method and resized the
lengths for all input face and background squares to 64 for
consistency during training. The proposed model is trained
with a batch size of 16 and a learning rate of 5e− 5. Exper-
iments are conducted on a Tesla V100 GPU. We evaluated
the Deepfake detection performance using the overall cor-
rectness accuracy and the area under the receiver operating
characteristic (ROC) curve (AUC) score at the frame level
for testing.

Results
Model Evaluation We only considered the state-of-the-art
Deepfake detection algorithms that have source code pub-
lished and reproducible in the comparative test for a fair
game. We maintained the same experimental settings as ours
while keeping their optimal parameter settings whenever ap-
plicable for training and testing.

We first trained the proposed NoiseDF Deepfake detec-
tion model with the FF++ training set and evaluated the
model performance on the FF++ testing set. Then, we ran
Deepfake detection using the well-trained model on the
other high-quality datasets for cross-dataset evaluation. The
state-of-the-art baseline models with source codes published
for comparative tests are trained and tested on the same
datasets as ours while maintaining their original optimal ex-
periment settings when applicable. As a result, our novel
NoiseDF model outperforms the state-of-the-art Deepfake
detection baselines for both in-dataset and cross-dataset ex-
periments with respect to accuracy and AUC scores. Details
are shown in Table 1.

As listed in Table 1, most models perform well on FF++
for the in-dataset experiment except the TAR method and
a few early approaches. Meanwhile, our proposed NoiseDF
model still slightly outperforms all of them on FF++. The
performance damping has occurred for all models in the
cross-dataset evaluation. The DFDC dataset is observed to
be the hardest dataset because it contains Deepfake videos
with 8 different facial manipulation techniques that the well-
trained models have not seen. Celeb-DF, although brings
huge challenges once released, is becoming easier to be
overcome by the recent computer vision approaches such as
Two-Stream and MAT by extracting plenty of image features
due to its high resolution.

DF-1.0, adopted for the purpose of attacker countermove

testing, contains a testing set with different levels of arti-
ficial noise trace perturbations and distortions added to the
videos. In Table 1, our model is the only one to achieve the
highest AUC score over 70% on DF-1.0 against all other
comparative baseline methods although it ranks number two
in the accuracy evaluation. A high AUC score demonstrates
the probability that a random positive sample scores higher
than a random negative sample from the testing set, in other
words, the ability of our well-trained classifier to distinguish
between real and fake faces. The reason for a relatively lower
accuracy than the AUC score is that the threshold to classify
real and fake is always fixed at 0.5 for the accuracy evalua-
tion upon the sigmoid output scores, while the real threshold
for the optimal model performance is usually different from
0.5. Therefore, despite a classification with the threshold
value set to 0.5 does not perform well, the proposed model
is still able to distinguish between real and fake on DF-1.0
according to the achieved highest AUC score. In conclusion,
although introducing random levels of noise trace perturba-
tions and distortions, DF-1.0 does not bring significant chal-
lenges to our proposed detection model that relies on the
Deepfake forensic noise traces.

In addition, earlier approaches with pure CNN backbones
have shown poor transferability in cross-dataset evaluation.
The reason might be that the pure CNN architecture is not
robust for the generalization on other datasets. On the con-
trary, recent detection models such as Two-Stream and MAT
with attention mechanisms added consider both local and
global image features, illustrating considerably high perfor-
mance in both in-dataset and cross-dataset experiments. The
TAR model is proved to be very time-consuming and is ob-
served that it incorrectly labels all input faces to be authen-
tic, which causes bad performance on all testing datasets as
shown in Table 1.

Deepfake Forensic Noise Trace Visualization Recent
Deepfake detection models using computer vision tech-
niques have attempted to visualize the dominant image fea-
tures that determine the final predictions of the models.
However, although the visualized heatmaps are able to lo-
cate the determining parts within the face area, they have
exhibited similar feature patterns for both real and fake. In
this section, we sampled some real and fake faces from the
testing sets and visualized the heatmaps of the image fea-
tures extracted by the recent Two-Stream and MAT com-
puter vision models. As Figure 4(a) shows, the top three
rows display the images and the heatmaps of the correspond-
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Figure 4: (a) Heatmap visualization of the extracted image features by MAT and Two-Stream Deepfake detection models. The
hotter (red color) a position is, the more features are learned by the models. (b) Visualization of the Deepfake forensic noise
traces extracted by the NoiseDF model. Obvious face shapes can be observed from the fake face squares.

ing real faces, while the bottom three rows display that of the
fake faces. For a certain part in the heatmap, the hotter it is
with the red color, the more features were learned by the
model at there. As a result, it is observed that although the
image features are successfully extracted and visualized, the
real and fake faces are indistinguishable simply based on the
heatmaps.

To compare with our model, we further visualized the
extracted Deepfake forensic noise traces from a sample
testing dataset of face-background pairs. In specific, we
froze the weights of the noise extraction network within
the Siamese Noise Feature Extraction module and displayed
the extracted Deepfake forensic noise traces of each face-
background pair by our model. In Figure 4(b), we displayed
some sample results of the noise traces extracted from face-
background pairs for both real and fake image frames us-
ing our well-trained NoiseDF model. As Figure 4(b) shows,
the fake image frames with cropped face and background
squares and the extracted noise traces are displayed on the
left, while to the right are the synthesized image frames
along with the corresponding noise traces. The fake face
squares exhibit obvious Deepfake forensic noise traces with
colorful and complex noise traces displayed with obvious
face shapes while all other image squares have shallow or
nearly no forensic noise trace as expected.

Ablation Study In this study, the purpose of the adopted
denoiser is to be enhanced and trained for complete Deep-
fake forensic noise trace extraction. Therefore, a blind de-
noiser with better noise extraction performance is preferred.
We conducted an ablation study on different state-of-the-art
blind-denoising models for comparison to confirm the abil-
ity of the chosen denoiser in noise trace extraction. Specifi-
cally, we switched the forensic noise trace extractors in our

NoiseDF model in different training sessions and tested the
performance of CBDNet (Guo et al. 2019), DnCNN (Zhang
et al. 2017), and RIDNet for both in-dataset and cross-
dataset evaluations. As Table 2 shows, CBDNet performs
well in some cross-dataset tests while failing on FF++; on
the contrary, the DnCNN model achieves relatively satis-
fied performance for the in-dataset experiment on FF++ but
does not fit well in the cross-dataset experiment. As a result,
the proposed Deepfake detection model with RIDNet has
shown dominant performance against that with CBDNet and
DnCNN for both in-dataset and cross-dataset evaluations.

Conclusion

In this study, we present a novel noise-based Deepfake de-
tection model from the perspective of digital forensics view
and introduce the efficient and novel Multi-Head Relative-
Interaction with depth-wise separable convolutions to boost
the detection performance. Meanwhile, we introduce the
creative face-background cropping strategy to distinguish
the Deepfake forensic noise patterns between real and fake
videos with the help of Siamese architecture. Our approach
derives both the state-of-the-art performance on all baseline
datasets and promising visualization evidence of the forensic
noise traces. Admittedly, one unavoidable limitation of this
work is that we are unable to deal with the case when the
face covers a large region of an image, that is, the cropped
face and background squares are overlapped. In this work,
this kind of image data is omitted in the experiment. Fu-
ture work will cover this limitation and further improve the
model performance.
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R. 1993. Signature Verification Using a ”Siamese” Time
Delay Neural Network. In Proceedings of the 6th Inter-
national Conference on Neural Information Processing Sys-
tems, NIPS’93, 737–744.
Chawla, R. 2019. Deepfakes: How a pervert shook the
world. International Journal for Advance Research and De-
velopment, 4: 4–8.
Cheng, H.; Guo, Y.; Wang, T.; Li, Q.; Chang, X.; and Nie,
L. 2022. Voice-Face Homogeneity Tells Deepfake. arXiv
preprint arXiv:2203.02195.
Chollet, F. 2017. Xception: Deep Learning with Depthwise
Separable Convolutions. In 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 1800–1807.
Chopra, S.; Hadsell, R.; and LeCun, Y. 2005. Learning a
similarity metric discriminatively, with application to face
verification. In 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition.
Dang, H.; Liu, F.; Stehouwer, J.; Liu, X.; and Jain, A. K.
2020. On the Detection of Digital Face Manipulation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR).
de Weever, C.; and Wilczek, S. 2020. Deepfake detection
through PRNU and logistic regression analyses. Technical
report, University of Amsterdam.
Dolhansky, B.; Howes, R.; Pflaum, B.; Baram, N.; and Fer-
rer, C. C. 2019. The Deepfake Detection Challenge (DFDC)
Preview Dataset. arXiv:1910.08854.
Guo, S.; Yan, Z.; Zhang, K.; Zuo, W.; and Zhang, L. 2019.
Toward convolutional blind denoising of real photographs.
2019 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).
Hu, J.; Liao, X.; Liang, J.; Zhou, W.; and Qin, Z. 2022a. FIn-
fer: Frame Inference-Based Deepfake Detection for High-
Visual-Quality Videos. Proceedings of the AAAI Conference
on Artificial Intelligence, 36(1): 951–959.
Hu, J.; Liao, X.; Wang, W.; and Qin, Z. 2022b. De-
tecting Compressed Deepfake Videos in Social Networks
Using Frame-Temporality Two-Stream Convolutional Net-
work. IEEE Transactions on Circuits and Systems for Video
Technology, 32(3): 1089–1102.

Ioffe, S.; and Szegedy, C. 2015. Batch Normalization: Ac-
celerating Deep Network Training by Reducing Internal Co-
variate Shift. In Proceedings of the 32nd International Con-
ference on International Conference on Machine Learning.
Jiang, L.; Li, R.; Wu, W.; Qian, C.; and Loy, C. C. 2020.
DeeperForensics-1.0: A Large-Scale Dataset for Real-World
Face Forgery Detection. In CVPR, 2889–2898.
Koopman, M.; Macarulla Rodriguez, A.; and Geradts, Z.
2018. Detection of Deepfake Video Manipulation. In Pro-
ceedings of the 20th Irish Machine Vision and Image Pro-
cessing conference, 133–136.
Lee, S.; Tariq, S.; Kim, J.; and Woo, S. S. 2021. TAR:
Generalized Forensic Framework to Detect Deepfakes Us-
ing Weakly Supervised Learning. In ICT Systems Security
and Privacy Protection.
Li, Y.; Yang, X.; Sun, P.; Qi, H.; and Lyu, S. 2020.
Celeb-DF: A Large-Scale Challenging Dataset for Deep-
Fake Forensics. In 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 3204–3213.
Lukas, J.; Fridrich, J.; and Goljan, M. 2006. Digital camera
identification from sensor pattern noise. IEEE Transactions
on Information Forensics and Security, 1(2): 205–214.
Luo, Y.; Zhang, Y.; Yan, J.; and Liu, W. 2021. Generaliz-
ing Face Forgery Detection With High-Frequency Features.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 16317–16326.
Maras, M.-H.; and Alexandrou, A. 2019. Determining au-
thenticity of video evidence in the age of artificial intelli-
gence and in the wake of Deepfake videos. The International
Journal of Evidence & Proof, 23(3): 255–262.
Marra, F.; Poggi, G.; Sansone, C.; and Verdoliva, L. 2017.
Blind PRNU-Based Image Clustering for Source Identifica-
tion. IEEE Transactions on Information Forensics and Se-
curity, 12(9): 2197–2211.
Nguyen, H. H.; Yamagishi, J.; and Echizen, I. 2019. Use
of a Capsule Network to Detect Fake Images and Videos.
arXiv:1910.12467.
Picetti, F.; Mandelli, S.; Bestagini, P.; Lipari, V.; and Tubaro,
S. 2022. DIPPAS: a deep image prior PRNU anonymization
scheme. EURASIP Journal on Information Security, 2022.
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Thies, J.; Zollhöfer, M.; and Nießner, M. 2019. Deferred
Neural Rendering: Image Synthesis Using Neural Textures.
ACM Trans. Graph., 38(4).
Thies, J.; Zollhofer, M.; Stamminger, M.; Theobalt, C.; and
Niessner, M. 2016. Face2Face: Real-Time Face Capture
and Reenactment of RGB Videos. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2387–2395.

14555



Vijayanagar, K. R. 2020. I, P, and B-frames – Differences
and Use Cases Made Easy. https://bit.ly/34OArtI. Accessed:
2021-05-01.
Wang, T.; Cheng, H.; Chow, K. P.; and Nie, L. 2022. Deep
Convolutional Pooling Transformer for Deepfake Detection.
arXiv preprint arXiv:2209.05299.
Wang, T.; and Chow, K. P. 2022. A Lightweight Reli-
ably Quantified Deepfake Detection Approach. In Annual
ADFSL Conference on Digital Forensics, Security and Law.
Wodajo, D.; and Atnafu, S. 2021. Deepfake Video Detection
Using Convolutional Vision Transformer. arXiv preprint
arXiv:2102.11126.
Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; and Zhang, L.
2017. Beyond a Gaussian denoiser: Residual learning of
deep CNN for image denoising. IEEE Transactions on Im-
age Processing, 26(7): 3142–3155.
Zhang, Y.; Wang, T.; Shu, M.; and Wang, Y. 2022. A Ro-
bust Lightweight Deepfake Detection Network Using Trans-
formers. In PRICAI 2022: Trends in Artificial Intelligence,
275–288. ISBN 978-3-031-20862-1.
Zhao, H.; Wei, T.; Zhou, W.; Zhang, W.; Chen, D.; and
Yu, N. 2021. Multi-attentional Deepfake Detection. In
2021 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2185–2194.

14556


