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Abstract
Estimating the causal effects of a spatially-varying interven-
tion on a spatially-varying outcome may be subject to non-
local confounding (NLC), a phenomenon that can bias esti-
mates when the treatments and outcomes of a given unit are
dictated in part by the covariates of other nearby units. In par-
ticular, NLC is a challenge for evaluating the effects of envi-
ronmental policies and climate events on health-related out-
comes such as air pollution exposure. This paper first formal-
izes NLC using the potential outcomes framework, providing
a comparison with the related phenomenon of causal inter-
ference. Then, it proposes a broadly applicable framework,
termed weather2vec, that uses the theory of balancing scores
to learn representations of non-local information into a scalar
or vector defined for each observational unit, which is sub-
sequently used to adjust for confounding in conjunction with
causal inference methods. The framework is evaluated in a
simulation study and two case studies on air pollution where
the weather is an (inherently regional) known confounder.

Introduction
Causal effects of spatially-varying exposures on spatially-
varying outcomes may be subject to non-local confound-
ing (NLC), which occurs when the treatments and outcomes
for a given unit are affected by covariates of other nearby
units (Cohen-Cole and Fletcher 2008; Florax and Folmer
1992; Chaix, Leal, and Evans 2010; Elhorst 2010). In sim-
ple cases, NLC can be resolved using simple summaries of
non-local data, such as the averages of the covariates over
pre-specified neighborhoods. But in many realistic settings,
NLC is caused by the complex interaction of spatial factors,
and thus it cannot be resolved using simple ad hoc sum-
maries of neighboring covariates. For such scenarios, we
propose weather2vec, a framework that uses a U-net (Ron-
neberger, Fischer, and Brox 2015) to learn representations
that encode NLC information and can be used in conjunction
with standard causal inference tools. The method is broadly
applicable to settings where the covariates are available over
a grid of spatial units, and where the outcome and treatment
are observed in some subset of the grid.

The name weather2vec stems from its motivation to ad-
dress limitations in current methods for estimating causal
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effects in environmental studies where meteorological pro-
cesses are known confounders, aiming to contribute to the
development of new flexible machine learning tools to as-
sess the causal effect of policies and climate-related events
on health-relevant outcomes: a task which has been recently
identified by Rolnick et al. (2022) as a pressing outstanding
challenge for tackling the effects of climate change.

Two applications will be discussed in detail. The first
application follows an earlier analysis by Papadogeorgou,
Choirat, and Zigler (2019), who estimated the air quality
impact of power plant emissions controls. This case study
evaluates the method’s ability to reduce NLC under sparsely
observed treatments (in combination with with propensity
matching methods (Rubin 2005)). The second application is
in meteorological detrending (Wells et al. 2021), and uses
weather2vec to deconvolve climate variability from policy
changes when characterizing long-term air quality trends.
These two examples are accompanied by a simulation study
comparing alternative adjustments to account for NLC.

In summary, this article has three aims:
1. Provide a rigorous characterization of NLC using the

potential outcomes framework, clarifying some connec-
tions with causal interference.

2. Expand the library of NN methods in causal inference by
proposing a U-net as a viable model to account for NLC
in conjunction with standard causal inference tools.

3. Establish a promising research direction for addressing
NLC in scientific studies of air pollution exposure – in
which NLC is a common problem (driven by meteorol-
ogy) for which widely applicable tools are lacking.

We investigate two mechanisms to obtain the representa-
tions: one supervised, and one self-supervised. The super-
vised one formally links the representation of NLC to the
balancing property of propensity (and prognostic) scores in
the causal inference literature (Rubin 2008; Hansen 2008).
This approach requires that the outcome and treatment are
densely available throughout the covariates’ grid. By con-
trast, the self-supervised approach first learns representa-
tions encoding neighboring covariate information into a low-
dimensional vector, which can subsequently be included as
confounders in downstream causal analyses when the out-
comes and treatments are sparsely observed on the grid.

Mathematical proofs of all the propositions in the pa-
per, details of the experiments, and additional explanations
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can be found in the web technical appendix of the pa-
per (Tec, Scott, and Zigler 2022). The code is available at
https://github.com/mauriciogtec/weather2vec-reproduce.

Related work Previous research has investigated NNs for
the (non-spatial) estimation of balancing scores (Keller,
Kim, and Steiner 2015; Westreich, Lessler, and Funk 2010;
Setoguchi et al. 2008) and counterfactual estimation (Shalit,
Johansson, and Sontag 2017; Johansson, Shalit, and Sontag
2016; Shi, Blei, and Veitch 2019). But none of these works
specifically consider NLC.

Relevant applications of U-nets in environmental studies
include forecasting (Larraondo et al. 2019; Sadeghi et al.
2020), estimating spatial data distributions from satellite im-
ages (Hanna et al. 2021; Fan et al. 2021), indicating that
U-nets are powerful tools to manipulate rasterized weather
data. Also relevant, Lu and Chang (2005) give a specific ap-
plication of NNs for meteorological detrending, although
without considering adjusting for neighboring covariates.
Shen, Mickley, and Murray (2017) do consider regional de-
pendencies by applying patch-wise PCA to extract meteo-
rological features to improve the prediction of air pollution.
Approaches to learning summaries of neighboring covari-
ates for regression-based causal inference have been inves-
tigated in the econometrics literature. For example, WX-
regression models (Elhorst 2010) formulate the outcome
as a linear function of the treatment and the covariates of
some pre-specified neighborhood. CRAE (Blier-Wong et al.
2020) uses an autoencoder over pre-extracted patches of re-
gional census data that is fed into an econometric regres-
sion. In contrast to predictive regression-based approaches,
weather2vec aims at learning balancing scores, which have
known benefits that include the ability to empirically as-
sess the threat of residual confounding and offer protection
against model misspecification that arises when modeling
outcomes directly (Rubin 2008).

There is also a maturing literature on adjusting for un-
observed spatially-varying confounding (Reich et al. 2021).
Spatial random effect methods are popular in practice, al-
though Khan and Calder (2020) have highlighted their sen-
sitivity to misspecification for the purposes of confounding
adjustment. The distance-adjusted propensity score match-
ing (DAPSm) (Papadogeorgou, Choirat, and Zigler 2019)
matches units based jointly on estimated propensity scores
and spatial proximity under the rationale that spatial prox-
imity can serve as a proxy for similarity in spatially-varying
covariates. In the same spirit, Veitch, Wang, and Blei (2019)
use graph embeddings to account for proximity within a net-
work as a proxy for confounding. In general, the primary tar-
get of spatial confounding methods are settings where con-
founding is local conditional on the unobserved spatially-
varying confounders–in contrast to NLC.

Finally, NLC is distinct from causal interference (Tchet-
gen and VanderWeele 2012; Forastiere, Airoldi, and Mealli
2021; Sobel 2006; Zigler and Papadogeorgou 2021; Ogburn
and VanderWeele 2014; Bhattacharya, Malinsky, and Sh-
pitser 2020), although both phenomena arise from spatial
(or network) interaction, and they both impose limitations
on standard causal inference methods. While forms of NLC

have often been acknowledge in the literature of interfer-
ence, to the best of our knowledge, flexible statistical meth-
ods specifically addressing NLC by learning the dependen-
cies with respect to neighboring covariates do not exist.

Potential Outcomes and NLC
We now recall the potential outcomes framework, also
known as the Rubin Causal Model (RCM) (Rubin 2008),
and we later adapt it to the case of NLC confounding. The
RCM distinguishes between the observed outcome Ys at unit
s and those that would be observed under counterfactual (po-
tential) treatments Ys(a) (formally defined below). We start
with some notation. The assigned treatment is denotedAs. It
is assumed to be binary for ease of presentation, although the
ideas generalize to more general treatments. For instance, in
our Application 1, the treatment is whether or not a catalytic
device is installed on a power plant to reduce pollutant emis-
sions. S is the set where the outcome and treatment are mea-
sured (e.g., the location of the power plants); G ⊃ S is a grid
containing the rasterized covariates {Xs ∈ Rd : s ∈ G}; for
any B ⊂ G, XB = {Xs | s ∈ B}; X ⊥⊥ Y | Z denotes
conditional independence of X and Y given Z; lastly, p(·)
denotes a generic probability or density function. We will
assume throughout that Xs only contains pre-treatment co-
variates, meaning they are not affected by the treatment or
outcome.

Definition 1 (Potential outcomes). The potential outcome
Ys(a) is the outcome value that would be observed at
location s under the global treatment assignment a =
(a1, . . . , a|S|).

For Ys(a) to depend only on as, the RCM needs an ad-
ditional condition called the stable unit treatment value as-
sumption, widely known as SUTVA, and encompassing no-
tions of consistency and ruling out interference.

Assumption 1 (SUTVA). (1) Consistency: there is only one
version of the treatment. (2) No interference: the poten-
tial outcomes for one location do not depend on treatments
of other locations. Together, these conditions imply that
Ys(a) = Ys(as) for any assignment vector a ∈ {0, 1}|S|,
and that the observed outcome is the potential outcome for
the observed treatment, i.e., Ys = Ys(As).

To contextualize SUTVA in our power plant example, ob-
serve that it would be violated if the pollution measured at s
depends not only on whether or not the catalytic device was
installed at that power plant (that is, on the assignment As)
but also on whether or not the device was installed on other
power plants (As′ for s ̸= s). We assume SUTVA through-
out as it is common in many causal inference studies. Then,
the potential outcomes allow defining an important estimand
of interest: the average treatment effect.

Definition 2 (ATE). The average treatment effect (ATE) is
the quantity τATE = |S|−1

∑
s∈S {Ys(1)− Ys(0)}.

One cannot estimate the ATE directly since one never si-
multaneously observes Ys(0) and Ys(1). The next assump-
tion in the RCM formalizes conditions for estimating the
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ATE, (or other causal estimands) with observed data by stat-
ing that any observed association between As and Ys is not
due to an unobserved factor.
Assumption 2 (Treatment Ignorability). The treatment As
is ignorable with respect to some vector of controls Ls if and
only if Ys(1), Ys(0) ⊥⊥ As | Ls.

(a) Local Con-
founding.

(b) NLC, no inter-
ference.

(c) Interference, no
NLC.

Figure 1: Confounding types.

This ignorability assumption would fail where there exist
unobserved confounders. For the sake of brevity, we will say
that Ls is sufficient to mean that the treatment is ignorable
conditional on Ls. We now introduce NLC, which occurs
when non-local covariates are among the confounders. It is
formally stated as follows:
Definition 3 (Non-local confounding). We say there is non-
local confounding (NLC) when there exist neighborhoods
{Ns ⊂ G | s ∈ S} such that Ls = XNs is sufficient and
the neighborhoods are necessarily non-trivial (Ns ̸= {s}).

In our power plant example, atmospheric vectors Xs′ are
associated with the air pollution outcomes at other locations
Ys (Shen, Mickley, and Murray 2017), as well as the proba-
bility of installing a catalytic device on a power plant, As.
Figs. 1a and 1b show a graphical representation of local
confounding versus NLC. Horizontal dotted lines emphasize
spatial correlations in the covariate, treatment, and outcome
processes that do not result in confounding. For contrast,
Fig. 1c shows the distinct phenomenon of (direct) interfer-
ence, in which As′ affects As (Ogburn and VanderWeele
2014). (This depiction of is only one of the forms that inter-
ference can take. For instance, it may also happen through
contagion (Ogburn and VanderWeele 2014).)

Subsequent discussion of the size of the NLC neighbor-
hood,Ns, will make use of the following proposition stating
that a neighborhood containing sufficient confounders can
be enlarged without sacrificing the sufficiency.
Proposition 1. Let Ls be a sufficient set of controls includ-
ing only pre-treatment covariates. and let L′

s be another set
of controls satisfying L′

s ⊃ Ls. Then, L′
s is also sufficient.

We can now state a classic result regarding the identifia-
bility of causal effects from observed data under the above
assumptions.
Proposition 2. Assume SUTVA holds and that Ls is suffi-
cient. Then

E [E[Ys | Ls, As = 1]− E[Ys | Ls, As = 0]] , (1)

is an unbiased estimator of τATE (where s is taken uniformly
at random from S).

Eq. (1) already offers a way to estimate causal effects
from observed data (by estimating the two inner condi-
tional expectations). However, it can be highly sensitive to
the specification of the expected outcome model. There are
many alternatives, one of which is to use inverse probabil-
ity of treatment weighting (IPTW) (Cole and Hernán 2008)
(described in the technical appendix for completeness).

Adjustment for NLC with Weather2vec
Accounting for NLC would be fairly straightforward pro-
vided infinite data and the right set of confounders. By virtue
of Proposition 1, one could, in principle, specify a non-linear
regression Ys ≈ f(As,XG, s) that includes every non-local
covariate Xs′ ∈ XG as part of the regressors. With large
model capacity, and infinite repeated samples per location,
this regression would perfectly estimate E[Ys | Ls, As = a],
and thus be able to estimate the ATE using Proposition 2.
But this scenario is far from realistic. Most commonly, there
will be only one observation for each s, requiring additional
structure to enable statistical estimation. Thus, we consider
the question: what kind of statistical and functional model
(e.g., to predict the probability of treatment) reflects the
causal structure of NLC and allows for flexible statistical
models under such restrictions?

One desirable statistical property to consider is spatial
stationarity. Intuitively, it entails that the distributions of Ys
and As with respect to a neighboring covariate Xs′ should
only depend on δ = s−s′ (their relative position). Formally,
it requires that for any set B ⊂ G, displacement vector δ,
and s ∈ G, the following identity holds p(As, Ys | XB =
x) = p(As+δ, Ys+δ | XB+δ = x). For weather2vec, we
focus on the U-net (Ronneberger, Fischer, and Brox 2015),
which are neural network models composed of convolution
operators that are approximately spatially stationary and al-
low learning predictions from neighboring inputs at every
point of a grid. An overview of U-nets is provided in the
next section for completeness. A key property is that a U-
net fθ can transform the input covariates XG onto an output
grid Zθ,G := fθ(XG) of same spatial dimensions in which
each scalar or vector Zθ,s ∈ Zθ,G localizes contextual spa-
tial information from the input grid.

U-nets are not the only neural architecture with these
properties. For instance, one could adapt residual networks
(He et al. 2016) as a shallow alternative to a U-net. The
essence of weather2vec is to define appropriate learning
tasks to obtain the NN weights θ. Two such tasks are con-
sidered, summarized below and described in detail in subse-
quent sections.

1. (Supervised) Assuming the treatment is densely avail-
able over G, estimate Zθ,G as the probability of treatment
conditional on non-local covariates.

2. (Self-supervised) If the treatment is not densely avail-
able over G, then learn Zθ,s so that it is highly predictive
of Xs′ for any s′ within a specified radius of s. Then
use Zθ,s as an input in a second-stage model to learn the
treatment probability.

These strategies allow learning a propensity score,
p(As = 1 | Zθ,s), which can be used within a well-
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established causal inference technique such as IPTW to pro-
duce robust causal estimates of τATE. Later we also consider
a variant based on prognostic scores (Hansen 2008), which
are predictive functions of the untreated outcomes.

An Overview of the U-net for Summarizing NLC
The U-net transformation involves two parts: a contrac-
tive stage and a symmetric expansive stage. These steps
use convolutions with learnable parameters and non-linear
functions to aggregate information from the input grid spa-
tially and create rich high-level features. The convolutions in
the contractive path duplicate the number of latent features
at each layer. Then, these intermediate outputs go through
pooling layers which halve the spatial dimensions. Together,
these operations augment the dimensionality of each point of
the grid, combining information at many spatial points with
richer information contained at fewer points. Convolutions
propagate information spatially, and the deeper they are in
the contractive path, the larger their propagation reach (in
the original scale of the input grid). The expansive path, on
the other hand, uses up-sampling to progressively interpo-
late the deep higher-level features back to a finer spatial lat-
tice, and then uses convolutions to reduce back the latent di-
mensionality at each grid point; with the characteristic that,
in contrast to the input grid, every point now localizes spa-
tial information. The output vector can have any arbitrary
dimension after possibly applying an additional layer after
the expansive path (or before the contractive path, or both).
The technical appendix provides a visual example of the U-
net architecture. See also the original work by Ronneberger,
Fischer, and Brox (2015).

The unknown weights θ learn what non-local information
is summarized by Zθ,s. The depth of the U-net (number of
down/up layers) dictates the maximum radius of spatial ag-
gregation. Shallow U-nets operating on fine-grained grids
may have limited spatial aggregation capabilities. Convolu-
tions, pointwise activations, pooling, and upsampling lay-
ers are all spatially stationary operations. However, some
commonly used operations, such as padding and batch nor-
malization layers, may affect stationarity. Some strategies
that can be implemented to reduce their impact is removing
padding, masking outputs, and replacing batch normaliza-
tion with FRN layers (Singh and Krishnan 2020) or other
valid normalization. We implement these strategies further
in the details of our applications.

Learning NLC Representations Via Supervision
The supervised approach links the proposed representation
learning to the seminal work of Rubin (1978) on propensity
scores for causal inference. We briefly summarize balancing
scores following the standard presentation.

Definition 4 (Propensity score). b(Ls) is a balancing score
iff As ⊥⊥ Ls | b(Ls). The coarsest balancing score is
b(Ls) := p(As = 1 | Ls), widely known as the propen-
sity score.

Definition 5 (Prognostic score). b(Ls) is a prognostic score
iff Ys(0) ⊥⊥ Ls | b(Ls). The coarsest prognostic score is
b(Ls) := E[Ys(0) | Ls].

The propensity score blocks confounding through the
treatment (Rubin 2005); prognostic scores do so through the
outcome (Hansen 2008). The importance of these definitions
is summarized by the next well-known result.
Proposition 3. If b(Ls) is a balancing score, then Ls suf-
fices to control for confounding iff b(Ls) does. The same
result holds for the prognostic score under the additional
assumption of no effect modification.

This result suggests considering Ls to be implicitly de-
fined by the full covariates grid “centered” at s, letting the
network weights learn the effective radius of dependence.
We can equate Zθ,s to either the propensity score or the
prognostic score via direct regression, which amounts to
minimizing the binary classification and regression loss:

Lprop
sup (θ) =

∑
s∈SCrossEnt(As,Zθ,s) (2)

Lprog
sup (θ) =

∑
s∈S:As=0(Ys −Zθ,s)

2. (3)
Notice that Eq. (3) applies only to untreated units. The
learned propensity score can be directly plugged into a ro-
bust estimator such as IPTW or it can be used as a covari-
ate in the case of the prognostic score. Learning θ through
supervision results in an efficient scalar Zθ,s compressing
NLC information, allowing for θ to just attend to relevant
neighboring covariate information that pertains to confound-
ing. Yet supervision may not be possible with small-data
studies where Ys andAs are only measured sparsely. In such
cases, the supervised model will likely overfit the data. For
example, in application 1 of the paper, S consists only of
measurements at 473 power plants, while the size of G is
128 × 256. Overfitting would invalidate common causal in-
ference methods like IPTW that rely on unbiased estimates
of the propensity score.

Representations Via Self-supervised
Dimensionality Reduction
Self-supervision frames the representation learning problem
as dimension reduction without reference to the treatment
or outcome. The representations are then used to learn a bal-
ancing score for causal effect estimation in a second analysis
stage. This approach requires specification of a fixed neigh-
borhoodNs (parameterized by a radiusR) and latent dimen-
sion k, resulting on different representations for different
hyper-parameter choices, which can be selected using stan-
dard model selection techniques (such as AIC) in the second
stage. The dimension reduction’s objective is that Zθ,s en-
codes predictive information of any Xs+δ for (s+ δ) ∈ Ns.
A simple predictive model Xs+δ ≈ gϕ(Zθ,s, δ) is proposed.
First, let Γϕ(·) be a function taking an offset δ as input and
yielding a k × k matrix, and let hψ(·) : Rk → Rd be a de-
coder with output values in the covariate space. The idea is
to consider Γϕ(δ) as a selection operator acting on Zθ,s. The
task loss function can be written succinctly as

Lself(θ, ϕ, ψ | R) =∑
s∈G

∑
{δ : ∥δ∥≤R} (Xs+δ − hψ(Γϕ(δ)Zθ,s))2 .

(4)

The technical appendix provides additional intuition about
Eq. (4) and a connection with PCA. While Eq. (4) is formu-
lated for spatial dimensionality reduction only, an advantage
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patch-based self-supervised supervised spatial + supervised
Task VAE CRAE W2V-SELF WX LOCAL AVS W2V-SUP CAR W2V-CAR

Linear 0.58 0.04 0.02 0.58 0.58 0.53 0.01 0.58 0.04
Linear-sparse 0.59 0.06 0.06 0.58 0.58 0.57 0.1 0.59 0.1

Non-linear 0.58 0.13 0.11 0.58 0.58 0.58 0.07 0.58 0.18
Non-linear-sparse 0.59 0.15 0.14 0.57 0.57 0.57 0.15 0.58 0.19

Table 1: Comparisons in average causal effect error (Bias =
∑n
i=1 n

−1(τ̂
(i)
IPTW − τATE)|) for different propensity score models

in simulated datasets across n = 10 random seeds. Dense task: As and Ys are observed on the full 128× 256 grid. Sparse task:
As and Ys are observed in 1000 points scattered throughout the grid.

of this expression is that it can be easily extended to multi-
task settings and dimensionality reduction in the temporal
axis for spatiotemporal data. We plan to explore these possi-
bilities for future work.

NLC and Interference
The introduction briefly contrasted NLC with the related
problem of interference, a topic that we expand on here. We
first formalize the concept of interference, following closely
the form of interference considered in Forastiere, Airoldi,
and Mealli (2021), which replaces SUTVA with the follow-
ing neighborhood-level assumption, termed the stable unit
neighborhood treatment value assignment (SUTNVA).

Assumption 3 (SUTNVA). (1) Consistency: there is only
one version the treatment. (2) Neighborhood-level interfer-
ence: for each location s, there is a neighborhood Ns such
that the potential outcomes depend only on the treatments at
Ns. Together, these conditions imply that Ys(a) = Ys(aNs)
for any assignment vector a ∈ {0, 1}|S|, and that the ob-
served outcome is the potential outcome for the observed
treatment, i.e., Ys = Ys(ANs

).

This definition of interference only considers direct inter-
ference, leaving aside indirect mechanisms such as conta-
gion (Ogburn 2018; Shalizi and Thomas 2011). Investigat-
ing the role of NLC in such scenarios is left for future work.
We now describe one generalization of the ATE for this type
of direct interference. The statement uses potential outcomes
of the form Ys(as = a,ANs\{s}) – a short-hand notation for
the potential outcome that assigns the treatments of all the
neighbors of s to their observed treatments in the data.

Definition 6 (DATE). The direct average treatment effect
(DATE) is the quantity τDATE = |S|−1

∑
s∈S{Ys(as =

1,ANs\{s})− Ys(as = 0,ANs\{s})}.
The following proposition by Forastiere, Airoldi, and

Mealli (2021) states two conditions under which one can
“ignore” interference.

Proposition 4. Assume SUTNVA. Conditions (1) and (2)
correspond to the notions of neighborhood-level ignorabil-
ity and conditional independence of the neighboring treat-
ments. If (1) ANs

⊥⊥ Ys(a) | Ls for all a ∈ {0, 1}|Ns| and
(2) As ⊥⊥ As′ | Ls for all s ∈ S, s′ ∈ Ns. Then Eq. (1) is an
unbiased estimator of τDATE.

When NLC is present (the arrows from Xs′ in Fig. 1b),
conditions (1) and (2) can be violated. To see this, consider

Figure 2: Interference + NLC.

Fig. 2 representing the co-occurrence of interference and
NLC. Adjusting only for local covariates would violate con-
dition (1) with a spurious correlation between Ys and As′
(through the backdoor path Ys ← Xs′ → As′ ). Similarly, a
spurious correlation between As and As′ would persist via
the path As ← Xs′ → As′ . For such cases, weather2vec
can play an important role in satisfying (1) and (2) since,
after controlling for NLC (consisting in Fig. 2 of adjust-
ing for both Xs and Xs′ and blocking the incoming arrows
from neighboring covariates into one’s treatments and out-
comes), the residual dependencies would more closely re-
semble those of Fig. 1c. In summary, adjusting for NLC with
weather2vec can aid satisfaction of the conditional indepen-
dencies required to estimate causal effects with the same es-
timator used to estimate the ATE absent interference. Notice
that τDATE is not the only estimand of interest, for instance,
in future work we wish to explore the role of non-local co-
variates when estimating spill-over effects (Ogburn 2018).

Simulation Study
We conduct a simulation study that roughly mimics a dataset
where pollution dispersion is influenced by non-local mete-
orological covariates as in our applications. We briefly de-
scribe the setup and results here. The technical appendix
contains additional details and visualizations.

Data generation summary. Two-dimensional covariates
simulating wind vectors are generated from the gradient
field of a random spatial process. The treatment probabil-
ity and the outcome (simulating air pollution) are non-local
functions of the covariates such that areas with lower out-
comes have a higher probability of treatment, with a fixed
treatment effect of τate = 0.1. Two varying factors are con-
sidered: whether S is dense or sparse; and whether the sim-
ulated data is linear or non-linear on the covariates. The im-
plicit radius of NLC is determined by using 13× 13 convo-
lution kernels to simulate the treatment and outcomes with
non-linear operations.

Baselines. We implement the supervised (W2V-SUP) and
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Figure 3: Application 1: The effectiveness of catalytic devices to reduce power plant ozone emissions.

self-supervised methods (W2V-SELF) using depth-2 U-nets.
We then compare them with several baselines: first, no ad-
justment (UN), computed as the difference in means of
treated and non-treated; LOCAL, which uses local covariates
only; AVG, which appends averages of neighboring covari-
ates, assuming the neighborhood size is known. Next, we
use two convolutional autoencoders baselines of dimension
reduction that operate on pre-extracted patches of the ora-
cle size; CRAE (Blier-Wong et al. 2020) and VAE (Kingma
and Welling 2013). Notice that although we include these
baselines for reference, patch-based estimates do not scale
to large datasets. Next, we consider WX linear logistic clas-
sification (Elhorst 2010) using a larger kernel of the oracle
size. Finally, an approach based solely on spatial modeling
CAR (Besag 1974), and a hybrid method combining the spa-
tial term with the supervised U-net (W2V-CAR). 10 random
seeds are run for each configuration.

Causal estimation. All the estimates are based on IPTW
from a learned propensity score. For LOCAL, avg, and meth-
ods based on dimension reduction, we fit the learned vec-
tors through a two-layer feed-forward network (FFN) for the
propensity score. We consider four latent dimensions for the
self-supervised method and all dimension reduction base-
lines.

Results summary. The results are summarized in Ta-

ble 1. When S is dense, the supervised weather2vec out-
performs all others, exhibiting near-zero bias in the linear
case and a small amount of finite-sample bias in the non-
linear case. The self-supervised version is competitive in all
scenarios, performing better than the alternatives in the non-
linear sparse case.

Applications in Air Pollution and Climate
Application 1: Quantifying the impact of power plant
emission reduction technologies The study aims to quan-
tify the impact of SCR/SNCR catalytic devices (Muzio,
Quartucy, and Cichanowiczy 2002) to reduce emissions
among coal-fired power plants in the U.S (Papadogeorgou
2016). See the technical appendix for a detailed descrip-
tion of the dataset. Since air quality regulations are inher-
ently regional and power plants are concentrated in regions
with similar weather and economic demand factors, regional
weather correlates with the assignment of the intervention.
Further, weather patterns (such as wind vectors, precipita-
tion, and humidity) dictate regional differences in the for-
mation and dispersion of ambient air pollution. Thus, the
weather is a potential confounding factor that cannot be en-
tirely characterized by local measurements.

Self-supervised features from NARR. We construct a
dataset of atmospheric covariates following Shen, Mickley,
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Figure 4: Application 2: Meteorological detrending of SO4.

and Murray (2017). We downloaded monthly NARR data
(Mesinger et al. 2006) containing averages of gridded atmo-
spheric covariates across the mainland U.S. for the period
2000-2014. We considered 5 covariates: temperature at 2m,
relative humidity, total precipitation, and north-sound and
east-west wind vector components. For each variable, we
also include its year-to-year average. Our dataset is identi-
cal to Shen, Mickley, and Murray (2017), except that they
project it to a lower resolution, while we keep it so that
each grid cell covers roughly a 32 × 32 km area, form-
ing a 128 × 256 grid. We implemented the self-supervised
weather2vec with a lightweight U-net of depth 2, 32 hidden
units, and only one convolution per level; see the appendix
for additional details. To measure the quality of the en-
coding, Fig. 3a shows the percentage of variance explained
(R2), comparing with neighbor averaging and local values.
This metric is computed as the coefficient determination,
which is essentially the average squared correlation between
the prediction and the actual data, aggregated by distance to
the center. The results show that the 32-dimensional self-
supervised features provide a better reconstruction than av-
eraging and using the local values. For instance, the 300km
averages only capture 82% of the variance, while the self-
supervised weather2vec features capture 95%. See the ap-
pendix for details on the calculation of the R2 and neural
network architecture.

Estimated pollution reduction. We evaluate different

propensity score models for different neighborhood sizes of
the June 2004 NARR weather2vec-learned features with the
same logistic model and other covariates as in DAPSm, aug-
mented with the self-supervised features. We selected the
representation using features within a 300km radius based
on its accuracy, recall, and AIC in the propensity score
model relative to other considered neighborhood sizes (Fig-
ure 3b). The causal effects are then obtained by perform-
ing 1:1 nearest neighbor matching on the estimated propen-
sity score as in DAPSm. Figure 3c compares treatment ef-
fect estimates for different estimation procedures. Overall,
standard (naive) matching using the self-supervised features
is comparable to DAPSm, but without requiring the addi-
tional spatial adjustments introduced by DAPSm. The same
conclusion does not hold when using local weather only ,
which (as in the most naive adjustment) provides the scien-
tifically uncredible result that emissions reduction systems
significantly increase ozone pollution. Do notice the wide
confidence intervals which are constructed using conditional
linear models fitting the matched data sets (Ho et al. 2007).
Thus, while the mean estimate shows a clear improvement,
the intervals show substantial overlap, warranting caution.

Application 2: Meteorological detrending of sulfate We
investigate meteorological detrending of the U.S. sulfate
(SO4) time series with the goal (common to the regulatory
policy and atmospheric science literature) of adjusting long-
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term pollution trends by factoring out meteorologically-
induced changes and isolating impacts of emission reduction
policies (Wells et al. 2021). We focus on SO4 because it is
known that its predominant source in the U.S. is SO2 emis-
sions from coal-fired power plants, on which observed data
are available for comparison. Thus, we hypothesize that an
effectively detrended SO4 time series will closely resemble
that of the power plant emissions.

Prognostic score. We obtained gridded SO4 concentration
data publicly available from van Donkelaar et al. (2021),
consisting of average monthly values in the mainland U.S.
in 2000–2014. The data is aggregated into 32km-by-32km
cells to match the resolution of atmospheric covariates. The
model uses a U-net with quadratic loss for the (log) concen-
trations of SO4. Since the prognostic score is defined based
on outcome data in the absence of treatment, we leverage
the fact that the power plant emissions were relatively con-
stant for the period 2000-2005 and using 2006 as test data
– regarding this period as absent of treatment. The model
predictions, aggregated by all points in the grid is shown in
Figure 4a. The difference between the red line (the prognos-
tic score fit) and the black dotted line (the SO4) observations
during 2000 - 2006 is a proxy for the meteorology-induced
changes in the absence of treatment.

Trend estimation. For comparability we adhere to the rec-
ommended detrending model by (Wells et al. 2021). Accord-
ingly, we specify a regression with a year and seasonal fixed-
effect term. Rather than pursue an entirely new methodology
for detrending, we intentionally adhere to standard best prac-
tices and merely aim to evaluate whether augmenting this
approach with the weather2vec representation of the prog-
nostic score offers improvement. The outcome log(Ys,t) for
untreated units is regressed using the predictive model

µs,t = α+ δyear(t) + γmonth(t) +
∑p
j=1βpX

p
st (5)

for all s ∈ S∗ and t = 1, . . . , T ; and where δℓ is the year
effect for ℓ = 2000, . . . , 2014; γκ is the seasonal (monthly)
effect for κ = 1, . . . , 12; S∗ ⊂ S are the locations of the
power plants; and Xp

st are the controls with linear coeffi-
cients βs,p. These controls are obtained from a B-spline ba-
sis of degree 3 using: 1) local weather only, and 2) local
weather plus the weather2vec prognostic score. The model is
fitted using Bayesian inference with a Gibbs sampler. Figure
4b shows the fitted (posterior median) yearly and monthly
trends, which resemble the power plant emissions trends
much more closely than the predicted trends from models
that include local or neighborhood average weather. Notice
the “double peak” per year in the monthly power plant emis-
sions (owing to seasonal power demand), which is only cap-
tured by the detrended weather2vec series.

Discussion and Future Work
While notions of NLC have been acknowledged in causal
inference, a potential-outcomes formalization of NLC and
flexible tools to address it are lacking. We offer such a for-
malization, along with a flexible representation learning ap-
proach to account for NLC with gridded covariates and treat-
ments and outcomes measured (possibly sparsely) on the

same grid. Our proposal is most closely tailored to prob-
lems in air pollution and climate science, where key relation-
ships may be confounded by meteorological features, and
promising results from two case studies evidence the poten-
tial of weather2vec to improve causal analyses over those
with more typical accounts of local weather. A limitation
of the approach is that the learned weather2vec representa-
tions are not as interpretable as direct weather covariates and
using them could impede transparency when incorporated
in policy decisions. Future work could explore new meth-
ods for interpretability. Other extensions could include ad-
ditional data domains, such as graphs and longitudinal data
with high temporal resolution. The links to causal interfer-
ence explored in Section NLC and Interference also offer
clear directions for future work to formally account for NLC
in the context of estimating causal effects with interference
and spill-over.
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