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Abstract

A significant cause of air pollution in urban areas worldwide
is the high volume of road traffic. Long-term exposure to se-
vere pollution can cause serious health issues. One approach
towards tackling this problem is to design a pollution-aware
traffic routing policy that balances multiple objectives of i)
avoiding extreme pollution in any area ii) enabling short tran-
sit times, and iii) making effective use of the road capacities.
We propose a novel sampling-based approach for this prob-
lem. We provide the first construction of a Markov Chain that
can sample integer max flow solutions of a planar graph, with
theoretical guarantees that the probabilities depend on the ag-
gregate transit length. We designed a traffic policy using di-
verse samples and simulated traffic on real-world road maps
using the SUMO traffic simulator. We observe a considerable
decrease in areas with severe pollution when experimented
with maps of large cities across the world compared to other
approaches.

1 Introduction
Long-term exposure to high amounts of air pollution causes
various health issues (Pope III and Dockery 2006). Data
from WHO (World Health Organization et al. 2016) shows
that 91% of the world’s population lives in places where
the pollution levels exceed the guideline limits. Outdoor air
pollution accounts for an estimated 4.2 million deaths per
year, primarily due to stroke, heart disease, lung cancer, and
chronic respiratory diseases. Low and middle-income coun-
tries suffer the most, especially in the Western Pacific and
South-East Asia regions. Road traffic is considered one of
the most significant contributors to air pollution in urban en-
vironments (Gualtieri et al. 2015). Studies have shown that
people are willing to choose greener routes when credible
information is provided (Ahmed et al. 2020).

Kamishetty, Vadlamannati, and Paruchuri (2020) propose
the development of a transportation policy that distributes
the traffic flow more evenly through a city to reduce the con-
centration of pollution in specific pockets. They use the con-
cept of k-optimality, which ensures that any two flows have
at most ≤ k edges in common, and design a traffic policy
using multiple k-optimal maximum flow solutions to route
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Figure 1: Pollution released on road links for traffic simu-
lation on a large area of Seattle, USA. Colour legend given
at bottom is the percentage of the max pollution. Left is ob-
tained using only a single flow (FFA) and right is using our
MaxFlow-MCMC which uses multiple diverse max flow so-
lutions. As can be seen severe pollution (red, purple, black)
is prevented.

traffic differently on different days or for reasonable time-
lines. Here, k-optimality is a measure (Pearce and Tambe
2007) that is used to capture distinctness between solutions
while maximum flow solutions (Ford and Fulkerson 1956)
are generated to maintain the throughput of traffic network.
However, existing work in this space can only be used for
small areas due to computational scalability issues. We build
upon this line of work to develop a significantly faster solu-
tion for pollution aware traffic routing using a Markov Chain
Monte Carlo (MCMC) (Diaconis 2009; Hastings 1970; Gu-
bernatis 2005; Bubley 2001) based method to sample integer
max flow solutions from a planar graph and generate a k-
Optimal set of max flow solutions (hence named MaxFlow-
MCMC). Our Markov chain extends the algorithm for sam-
pling paths in planar graphs (Montanari and Penna 2015),
and we provide proof of convergence to the stationary dis-
tribution, which assigns a higher probability to max flow so-
lutions with shorter aggregate path length.

To compare our algorithm with the previous work, we
simulated the algorithm on real-world road networks of mul-
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Figure 2: Seven diverse max flows samples from the MaxFlow-MCMC algorithm. Traffic is routed according to these and
simulated in SUMO for equal intervals, resulting in the emission heatmap shown in Figure 1.

tiple cities. We use Simulation of Urban Mobility (SUMO)
(Lopez et al. 2018), which is a traffic simulator in combina-
tion with OpenStreetMap (OSM) (Haklay and Weber 2008),
an open-source tool that helps to model traffic settings on
a real-world map. We also use the emission modeling ca-
pability of SUMO to evaluate the pollution levels gener-
ated by the different solution approaches, namely MaxFlow-
MCMC, k-optimal Pareto Max Flow Algorithm (k-PMFA)
(Kamishetty, Vadlamannati, and Paruchuri 2020) and Ford-
Fulkerson Algorithm (FFA) (Ford and Fulkerson 1956). Our
results show that MaxFlow-MCMC performs as well as the
k-PMFA algorithm in terms of pollution severities while be-
ing scalable to large-scale cities. In particular, we obtained
a 79% decrease in normalized mean pollution compared to
FFA on a larger map corresponding to Seattle (with 18699
edges).

Our Contributions

1. We design a Markov Chain that can be used to sample in-
teger max flow solutions from a planar graph with proba-
bilities proportional to an exponential of the length of the
solution (see Section 3).

2. We use the MCMC method to obtain a set of diverse
max flows (k-optimal) and use it to give the first ap-
proach to designing a large-scale transport policy that
avoids severe pollution while maintaining reasonable
transit times. Traffic routing using such a set of max flows
ensures that i) a diverse set of paths are used, which pre-
vents concentration of pollution ii) vehicles are routed
through shorter paths, and iii) capacity of the road net-
work is fully utilized as it is a max flow (see Section 4).

3. We test our MaxFlow-MCMC traffic policies using the
SUMO traffic simulator on real-world maps.The perfor-
mance was compared with k-PMFA and FFA algorithms.
We also demonstrate the scalability of MaxFlow-MCMC
on large real-world road maps (see Section 6).

2 Related Works
Maximum Flow Problem. The Ford-Fulkerson algorithm
(Ford and Fulkerson 1956), is a popular algorithm to com-
pute the maximum flow between two given points in a net-
work, including traffic networks (Schrijver 2002). However,
it provides us with only a single max flow solution. We aim
to develop an algorithm that will provide multiple max flow
solutions between two points.

Pollution aware routing. There has been some work on
the topic of pollution aware routing (Alam, Perugu, and Mc-
Nabola 2018), (Boriboonsomsin et al. 2012). However, most
of the previous work is focused on minimising the exhaust
emissions and fuel consumption of a vehicle. In recent times,
Google Maps has introduced eco-friendly routing, which
suggests a path in a similar manner (Dicker 2021). Our work
focuses on improving the health of residents who live near
frequently used roads by reducing their long term exposure
to high levels of pollution i.e., we do not explicitly aim to re-
duce the pollution but aim to distribute the pollution better.

k-opt Pareto Max Flow Algorithm (k-PMFA). The k-
Opt Pareto Max Flow Algorithm (Kamishetty, Vadlaman-
nati, and Paruchuri 2020), computes a set of k-Optimal max
flow solutions where each max flow solution has at most k
common edges with every other max flow solution. One of
the steps in the algorithm involves computing all the simple
paths from the source to the destination. A simple path be-
tween two nodes is defined as a path where no node appears
more than once (Easley, Kleinberg et al. 2012). Counting all
the simple paths from a source to a destination was proved
to be #P complete (Valiant 1979), which implies that find-
ing all the simple paths would be an NP-hard problem. Our
algorithm generates a k-optimal set without requiring us to
find and store all the simple paths, and hence it will be more
efficient in terms of time and memory requirements.

MCMC Method for sampling paths in a planar graph.
There is extensive literature on using MCMC method for
generating combinatorial structures (Jerrum, Valiant, and
Vazirani 1986). Typically such generation gives a uniform
distribution over structures. In our case, we need to sample
from a non-uniform distribution (Martin and Randall 2000).
Montanari and Penna (2015) designs an MCMC method for
sampling simple paths in a planar graph. We construct a
Markov Chain over integer Max Flows of a graph, with spe-
cific guarantees on stationery distribution. Our approach for
sampling max flow solutions from a planar graph is inspired
by them but requires additional proofs for showing the irre-
ducibility of the Markov chain, which ensures that capacity
constraints are not violated.

3 Sampling Integer Max Flows Using
MCMC

We consider the road network to be a planar graph G(V,E).
Edges E of the graph will be the roads, while nodes V will
be the junctions where roads intersect or represent the end of
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Figure 3: Example of a transition in the Markov chain. The underlying road network has 16 junctions forming a grid with max
flow value from 1 to 16 to be 2. The state space consist of all max flows from 1 to 16, which can also be considered as a pair of
1−16 paths (marked using arrows). The transition in Mflow given in Algorithm 1, involves choosing one of the paths p (marked
in red) and one of the faces f ∈ {f1, · · · f10} (marked as blue) of the planar graph at random and rerouting the path along the
face. The faces {f1 · · · f9} are marked in the graph and f10 is the outer face.

roads. Each road in the network has a length and a specific
number of lanes used as the edge’s capacity since one vehi-
cle can travel through each lane at a particular time. Let s be
the source node from which the vehicles travel to the desti-
nation node t. We want to ensure that the maximum number
of vehicles can travel from s to t at any time and hence rep-
resent this as a maximum flow problem.

Our approach starts with an initial integer max flow solu-
tion and makes small random modifications to it, resulting in
a sample from a distribution over integer max flow solutions.
This method is commonly known as Monte Carlo Markov
Chain (MCMC) method. The Ford Fulkerson Algorithm can
find the initial max flow or set of paths. The distribution will
result in higher probabilities for max flows whose aggregate
length of paths is shorter.

Since we are designing a system to route vehicles, we fo-
cus on integer max flow solutions where the flow through
each edge is a non-negative integer. The Integrality Theorem
(Erickson 1999), which is a corollary of the Ford-Fulkerson
Algorithm, states that there exists at least one integer max
flow solution in a graph where all the edge capacities are
non-negative integers. Hence, we will have at least one inte-
ger max flow solution for a road network.

3.1 A Markov Chain for Integer Max Flow
Let us represent an integer max flow solution as a set of mf
number of paths, where mf is the maximum flow value from
s to t, and each path contains a flow of 1. Note that if an
edge has a flow value f , it will be part of exactly f paths.
We define a Markov Chain Mflow, whose state space Ω is
the set of all integer max flow solutions. We define the total
length of a max flow solution x denoted |x| as the sum of
the lengths of all the paths in it. The length of each path will
be the sum of the lengths of all the edges in the path. We
can reroute a path of the max flow solution using a face if
they have one or more common edges, as shown in Figure
3. These transitions are inspired by (Montanari and Penna
2015), who built a similar Markov Chain for sampling paths.
The transitions rules of Mflow are given in Algorithm 1.

The algorithm has a hyperparameter λ that decides the
preference given to the total length of a state. If λ < 1, tran-
sitions to a state with a lesser total length will be more prob-

able. Similarly, if λ > 1, transitions to a state with a higher
total length will be more probable. When λ = 1, the transi-
tion to all neighbouring paths will have the same probability.

3.2 Convergence of the Markov Chain
We show that the Markov chain Mflow converges to a station-
ary distribution which has the property that the probability
of max flow x will be proportional to λ|x|. Setting λ < 1, al-
lows us to sample max flows with shorter aggregate lengths.
First, we show that the distribution with the above property
is a stationary distribution.
Lemma 1. A stationary distribution of Mflow is

π(x) =
λ|x|

Z
where Z =

∑
y∈Ω

λ|y|

Proof. The proof uses standard arguments and is provided
in appendix. 1

Next, we show that starting from any state, Mflow con-
verges to π, by showing that it is Ergodic. An Ergodic
Markov Chain will have a unique stationary distribution and
will converge to it (Durrett 2019). For Ergodicity, we need
to show that it is i.) aperiodic and ii.) irreducible.
Aperiodicity. A Markov chain is said to be aperiodic if

∀x ∈ Ω, gcd{t ∈ N|P t(x, x) > 0} = 1.

where P t is the t step transition probabilities. For Mflow, we
defined transitions in such a way that there is a self-loop with
a probability of at least 1/2. Therefore, Mflow is aperiodic.
Irreducibility. A Markov chain is said to be irreducible if

∀x, y ∈ Ω, ∃t ∈ N | Pt(x, y) > 0.

That is, every state in state space can be reached from
every other state with a finite number of steps. It is shown in
Montanari and Penna (2015) that we can reach any simple
s-t path from any other path by rerouting through the faces
of the planar graph. However, in our case, we need to ensure
that the capacity constraints are not violated. We show this
using the following definition and proposition.

1The extended version of the paper and code can be accessed at
https://sshreevignesh.github.io/MCMCProjectPage/
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Algorithm 1: Mflow(x) defines a step of the Markov Chain
on current state x. See Figure 3, for an example of its run.

1: faces = set of all faces in the planar graph
2: mf = the current integer max flow
3: paths = set of paths in x
4: b← Uniform({0, 1})
5: if b == 1 then
6: f← Uniform(faces), p← Uniform(paths)
7: if f, p do not share an edge or rerouting p through f

violates capacity then
8: return x
9: else

10: y ← reroute(p, f)
11: return y with probability min{1, λ|y|

λ|x| } where |x|
and |y| are the total lengths of x and y.

12: return x
13: end if
14: end if

Definition (Outer paths of an Integer Flow). We assume that
the line joining s and t to be the direction of positive x axis.
We define the outer path of an integer flow in a planar graph
as a path between s and t with a non-zero flow, such that
there is no other path in the flow with a non-zero flow in
between the path and the outer face of the graph. We define
the top outer path as the outer path that contains the node
with the highest y-coordinate and the bottom outer path as
the one that contains the node with the least y-coordinate.

Proposition. We can reach any state in Mflow from any other
state in a finite number of steps.

Proof. Let x and y be any two states in Ω and
paths(x), paths(y) be the set of mf paths in x, y respec-
tively. Let opx ∈ paths(x) and opy ∈ paths(y) be the top
outer paths of x and y respectively. We transform opx and
opy to the same s - t path using a sequence of reversible
Mflow transitions.Let s, v1 · · · , vr, t be common nodes of
opx and opy . For each of the r + 1 subpaths between these
nodes, we convert the subpath in the lower one of opx, opy
to the other. This is possible without violating capacity con-
straints since there is no flow above the top outer paths by
definition. Then we consider the residual flow x′, y′ given by
removing the unit flow through these paths from x, y. Then
we repeat the same process on x′, y′, until the residual flow
becomes 0. A diagrammatic example of the proof is given in
the appendix for clarity.

Since our Markov chain is both irreducible and aperiodic,
it is ergodic and will have a unique stationary distribution
to which it will converge irrespective of the initial state. As
proved in Lemma 1, in the stationary distribution, the prob-
ability of a max flow solution x is proportional to λ|x|.

4 Traffic Routing using MaxFlow-MCMC
We propose to use the MaxFlow-MCMC algorithm (see Al-
gorithm 2) to generate a k-Optimal max flow solution set,

which can be used for routing vehicles in such a way that
the pollution is evenly spread out. Even though our chain is
not rapidly mixing, we can start sampling before the chain
has completely mixed as we do not need the solutions to fol-
low the specific distribution for our use case since we are
just sampling to generate a k-optimal set of max flow solu-
tions. We define the k-optimality of our solution set similar
to the definition of k-similarity in Barrett et al. (2008). A set
of max flow solutions is k-optimal when any two solutions
from the set have at most k common edges.

We use the Ford-Fulkerson Algorithm (Ford and Fulker-
son 1956) to find one max flow solution for the starting state.
We initially let the Markov chain run for a few iterations
without sampling to ensure that the initial state is random
when we start sampling. We sample a random max flow so-
lution from the current distribution every few iterations and
check if it is k-optimal with the solution set. If it is, we ap-
pend it to the solution set. We keep repeating this until we
reach the exit condition. The MaxFlow-MCMC Algorithm
has multiple parameters we can modify to suit our time and
solution constraints, making it scalable for larger maps.

4.1 Implementing Policy in Simulation and Real
World

There are multiple ways by which the MaxFlow-MCMC al-
gorithm can be implemented in real world scenarios: (a)
As described in Kamishetty, Vadlamannati, and Paruchuri
(2020), traffic police can use a different solution to route the
traffic on different days. For example, by identifying a set
of 7 solutions, traffic can be routed using one solution per
day of the week. A solution can be implemented by restrict-
ing the set of paths available for a vehicle to take and the
number of vehicles on each path but does not restrict a ve-
hicle’s choice among the allowed ones. (b) GPS software(s)
like Google maps can use to suggest different set of paths
to different users on different days (Dicker 2021). (c) Au-
tonomous cars can be routed using our method, where vehi-
cles can be instructed to use different paths.

4.2 Traffic Simulation Using SUMO
Simulation of Urban MObility (SUMO) is an open source,
microscopic and continuous traffic simulation package de-
signed to handle large networks. SUMO comes with a large
set of tools for scenario creation and simulation and can
handle multiple aspects of traffic flow generation, including
computation of acceleration, deceleration, emission model-
ing, congestion, etc., resulting in realistic traffic modeling.

4.3 Parameters for MaxFlow-MCMC
Sampling Frequency: The number of iterations after which
we sample a max flow solution from the current distribu-
tion. To increase the number of solutions, we can sample the
solutions more frequently, and if the aim is to improve the
algorithm runtime, we can sample less frequently.
Exit Condition: The user can decide the exit condition of
the algorithm based on requirements. The algorithm can be
run for a fixed number of iterations, or it can be run until a
solution set of the required size is obtained.
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Algorithm 2: x denotes current state of the Markov chain,
FFA denotes Ford Fulkerson Algorithm, mix iter denotes
number of iterations for mixing, num iter denotes num-
ber of iterations for sampling and sf denotes sampling fre-
quency.

1: x← FFA(s,t), solutionset← ∅
2: while iter ≤ num iter + mix iter do
3: if iter > mix iter and iter% sf == 0 then
4: if KOpt(x,solutionset) then
5: solutionset← solutionset + x
6: end if
7: end if
8: x←Mflow(x) (See Algorithm 1)
9: iter← iter+1

10: end while
11: return solutionset

Lambda(λ): Affects the total length of the max flow solu-
tions. A lesser value of lambda would mean that the solu-
tions obtained will typically have a lesser total path length.
In comparison, a higher value of lambda would mean that
the solutions will also include paths of higher length (which
can allow sampling a large number of solutions).
Value of k: Increasing the Value of k would decrease the
time required to obtain a set of solutions of the same size,
but the set would have more common edges, leading to a
lesser spread of pollution in general.

4.4 Complexity Analysis of MaxFlow-MCMC
Time Complexity. The initial FFA step is of complexity
O(|E| ∗mf), where |E| is the number of edges and mf is
the max flow. Calculating the faces needs O(kV ) on aver-
age, and O(V 2) in the worst-case (Schneider and Sbalzarini
2015). At every step of the algorithm, the following compu-
tations need to be done: (a) Randomly choosing a face needs
O(|F |) = O(|E|) since |F | + |E| − |V | = 2 by Euler’s
formula (Trudeau 2013), where |F | and |V | are the number
of faces and nodes respectively. (b) Checking for max flow
condition needs reasoning over the number of edges in the
path, i.e., O(|E|). (c) Rerouting involves O(|E|). (d) Check-
ing for k-Optimality needs to be done every sf steps needing
O(num sol∗|E|2

sf ).
The overall worst-case time complexity would therefore

be O(num iter∗num sol∗|E|2
sf + |V |2). Therefore, worst case

runtime of MaxFlow-MCMC will be polynomial in |E| and
|V |, provided that num iter and num sol are not very high
both of which can be tuned per need in the algorithm. Note
that the runtime for MaxFlow-MCMC does not include the
time required for calculating the faces of the graph since it
was done as a prepossessing step. Schneider and Sbalzarini
(2015) proves that even this step can be computed with an
average complexity of O(k|V |) and therefore will not make
a significant change to the overall runtime.

Space Complexity. Following are the key steps involved
in the algorithm, which require: (a) A memory of O(|E|2)
for storing all the faces. (b) A memory of num sol ∗mf ∗

Name λ num iter sf

MaxFlow-MCMC1 0.95 50000 25
MaxFlow-MCMC2 0.95 25000 25
MaxFlow-MCMC3 0.90 50000 25
MaxFlow-MCMC4 0.95 50000 50
MaxFlow-MCMCLarge 0.99 until 7 sol 25
MaxFlow-MCMCKanpur 0.95 until 7 sol 25

Table 1: Parameter values used for experiments. The first
four are used for ablation studies and the last two are for
large scale experiments.

|E|) for storing the solution set. This leads to a overall worst-
case space complexity of O((num sol ∗mf ∗ |E|+ |E|2).
In summary, our algorithm has a time and space complex-
ity that is tractable in the number of edges and, therefore,
scalable to larger networks.

5 Experimental Details
The parameters for experiments on large scale graphs named
MaxFlow-MCMC Large, are presented in Table 1. Since
the MaxFlow-MCMC method is applicable only for planar
graphs, we modified the real-world network to make it pla-
nar by removing the non-planar components such as bridges.
Since there can be cases of multiple sources and destinations
for vehicles, we performed experiments with more than one
source and destination also. We introduce a virtual source
and a virtual destination node, connected to all the source
and sink nodes respectively, using infinite capacity edges
(Borradaile et al. 2011). Algorithms were then used with ve-
hicles traveling from the virtual source to the virtual sink.

We tested MaxFlow-MCMC for different values of k and
simulated traffic using the SUMO simulator (Lopez et al.
2018). We used Sage Math (The Sage Developers 2021)
to find the faces of the roadmap. Vehicles were released in
waves with an interval of 5 seconds each for the small map
and an interval of 15 seconds each for the larger map. They
are released in waves so that a reasonable distance is created
before the next wave of vehicles is allowed into the simu-
lation. The number of vehicles per wave was equal to the
maximum flow from the source to the destination. We in-
creased the interval for the large map since it involved roads
with different speed limits. Vehicles also have to slow down
at junctions for turning, and a larger path can potentially in-
volve a larger number of turns. We use NOx values (i.e.,
NO and NO2 values) to measure the pollution due to their
high dependency on traffic flow and their adverse impact on
human health (Tomàs Vergés 2013). The plots were gener-
ated using matplotlib (Hunter 2007).

Due to the randomness involved in our algorithm, differ-
ent runs using the same parameters may provide us with a
different number of solutions. Hence, we use each solution
of the generated k-optimal set for 1 hour and compute Nor-
malised Mean pollution (NOxnm) to compare the different
runs of the algorithm accurately.

NOxnm =
Mean amount of NOx released per hour

Total number of edges with non-zero emissions

14500



Map name Sq. km Edges Nodes s, t Pairs k

Small map 0.03 37 25 1 9
Seattle 25.16 18699 14939 2 170
Berkeley 82.90 30808 24864 1 440
Kanpur 18.50 29956 20707 1 350
Islington 14.90 5382 2367 2 300

Table 2: Details of the maps used for the experiments. We
use a small map to compare with k-PMFA since it is infeasi-
ble to run for larger maps.

SUMO provides us with the amount of NOx released for
every edge with non-zero emissions over the simulation pe-
riod. We calculate NOxnm by taking the mean pollution
over all the edges and dividing it by the total number of so-
lutions we used, as we use one solution per hour. NOxnm

helps us understand how well the pollution is distributed
over an area. This is due to the insight that to decrease
NOxnm, we need to decrease the mean amount of NOx
released, or we have to increase the number of edges being
used. Since we are releasing the same number of vehicles
per hour for all the simulations, NOxnm will be highly de-
pendent on the pollution spread.

For MaxFlow-MCMC, we set λ close to 1 since we mea-
sure the lengths of paths in meters. Given that the probability
of our Markov chain moving from one state to another de-
pends on the difference in their length, and if we set lambda
to a smaller value like 0.5, the probability of moving to a
state that is just 5 meters longer would be close to 0.03.

For comparison with previous work on k-PMFA
Kamishetty, Vadlamannati, and Paruchuri (2020), we needed
to make some modifications since the algorithm was de-
signed for directed graphs. Hence, it can become inefficient
to distribute the pollution in road networks containing lanes
in both directions. This is because solutions generated by
it can include flow in both directions of the road as part of
two different paths, e.g., a max flow solution can contain one
path that has a flow of 1 from node p to node q, whereas an-
other path can have a flow of 1 from node q to node p. This
will lead to increased pollution with no effective increase
in capacity, which can be avoided. Hence, we extend the
k-PMFA algorithm to undirected graphs by using Breadth-
First Search (BFS) on the flow graph of the max flow solu-
tions to generate the individual paths. This can help avoid
the above situation while retaining the max flow solutions
where the flows do not cancel each other.

Runtime results presented were measured on an Intel E5-
2640 processor on an HP SL230s compute node. All the re-
sults were averaged over 30 runs.

6 Results
We benchmark the performance of Maxflow-MCMC policy
on large-scale maps of many cities along with baseline al-
gorithms. We also compare it with the previous work of k-
PMFA (Kamishetty, Vadlamannati, and Paruchuri 2020) on a
small map due to its scalability issues. All the networks were
obtained from OpenStreetMap (Haklay and Weber 2008).

FFA (BFS) FFA (Dijk) MCMC(3) MCMC(7)

Figure 4: Maxflows (top) and pollution (bottom) generated
for the different policies on the map of Seattle with two
s, t-pairs. MCMC(k) denotes routing using k samples from
Markov Chain. MaxFlow-MCMC with 7 samples prevents
severe pollution (red, orange) from happening in any area.
Legend of colors is same as Figure 1.

Pollution reduction in City Scale Road Networks. We
benchmarked MaxFlow-MCMC on four larger real-world
road networks, namely Seattle, Berkeley, Kanpur, and Is-
lington, to demonstrate scalability (see Table 3). Table 2
provides details of the maps used. We used MaxFlow-
MCMCLarge from Table 1 for all the simulations. For Kan-
pur map, we set the value of λ = 0.95 since λ = 0.99 was
giving us longer paths. We use two versions of FFA, which
use Breadth First Search (BFS) and Dijkstra’s shortest path
algorithm, respectively, to find the augmenting paths. The
difference between the two versions of FFA is that BFS finds
the shortest paths in terms of the number of edges and Di-
jkstra’s finds in terms of total path length. We also use two
versions of MaxFlow-MCMC, which samples 3 and 7 max
flow solutions, respectively.

In Table 3, the average pollution per link has decreased
for all maps while there is some increase in the average dis-
tance traveled and total pollution summed up over all the
edges. This is because the samples can be slightly longer
than the shortest paths. However, the pollution is spread out
because of the diverse samples, decreasing the max pollu-
tion in any link, which was our objective. It is also clear
that increasing the number of max flow solutions sampled
from 3 to 7 further prevents severe pollution. Figure 4 shows
the NOx heatmap and the paths used by the algorithms for
the multi-source multi-sink scenario of Seattle. The heatmap
shows that while Maxflow-MCMC distributes pollution over
a much larger area, it also reduces the concentration of pol-
lution in specific areas compared to FFA. Plots for the other
cities are provided in the Appendix.

Comparison with k-PMFA. k-PMFA (Kamishetty, Vad-
lamannati, and Paruchuri 2020) is a pollution-aware routing
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C
ity Traffic Length Pollution (NOxnm in g)

Policy avg(m) avg max total
B

er
ke

le
y FFA(BFS) 8528 0.945 10.2 57.4

FFA(Dij) 8001 0.718 8.5 54.3
MCMC(3) 9457 0.462 6.7 66.5
MCMC(7) 9456 0.316 5.7 66.7

Is
lin

gt
on

FFA(BFS) 4723 2.048 13.7 62.7
FFA(Dij) 4930 2.047 13.7 65.3
MCMC(3) 4976 1.369 8.0 67.5
MCMC(7) 4945 1.150 7.6 67.0

Se
at

tle

FFA(BFS) 3270 2.402 18.2 57.6
FFA(Dij) 2133 1.999 10.0 55.4
MCMC(3) 3914 0.856 12.8 77.3
MCMC(7) 4041 0.512 12.3 83.6

K
an

pu
r FFA(BFS) 4628 1.152 8.8 48.0

FFA(Dij) 4248 0.922 8.8 44.2
MCMC(3) 4513 0.597 6.6 50.6
MCMC(7) 4512 0.444 5.9 50.7

Table 3: Comparison of path lengths and pollution for differ-
ent traffic policies and cities simulated in SUMO. Since our
MaxFlow-MCMC policy is randomized, we provide mean
value from 30 runs. The standard error (Siddharth Kalla
2022) for all values was less than 7%. Avg. pollution de-
creases significantly in all cases. Max pollution also reduces
in most cases helping our objective of distributing the pollu-
tion better. There is some increase in distance travelled and
hence the total pollution (summed up over all the links).

C
ity Traffic Length Pollution (NOxnm in g)

Policy avg (m) avg max total

Sm
al

lM
ap FFA(BFS) 213 4.387 9.6 61.4

FFA(Dij) 198 4.6 19.9 73.9
k-PMFA(7) 208 1.9 11.3 72.3
MCMC(7) 207 1.8 11.8 69.1

Table 4: Comparing the pollution values of k-PMFA and
MCMC for the small map with k = 9.

algorithm that we compare within Table 4. The table shows
the performance of three algorithms, namely MaxFlow-
MCMC, k-PMFA, and FFA. As shown, the Maxflow-MCMC
gives comparable results while being scalable.

Effect of hyperparameters. Figure 5 studies the effect of
using multiple max flow solutions on the pollution level. We
also experiment with four different hyperparameter values of
MaxFlow-MCMC as given in Table 1, denoted as MaxFlow-
MCMC 1-4. It shows that increasing the number of solutions
after 7-10 does not significantly change the NOxnm value
across the different sets of parameters tested. A key insight
from this experiment is that for practical purposes, we can
identify a set of, say 7 solutions and use one solution per
day of the week to route the vehicles and obtain a better
distribution of pollution compared to the FFA solution.

Figure 5: The change in normalised mean pollution reduces
as we increase the number of solutions (obtained by increas-
ing value of k). While there is significant reduction upto 10,
the benefits are lesser later.

Figure 6: The runtime of k-PMFA is two orders of magnitude
higher than MCMC, making it infeasible for road networks
over a few sq km. Increasing the value of k increases the
diversity but also the runtime, especially after k = 10.

Runtime. Figure 6 shows the runtime comparison re-
sults between MaxFlow-MCMC and k-PMFA. Although
MaxFlow-MCMC provides approximately the same num-
ber of solutions as k-PMFA, it is significantly faster. For
example, for k = 10 the runtime needed for k-PMFA is
110.07 seconds while the slowest MCMC version has a run-
time of 1.89 seconds. For values of k from 1 to 15, the
slowest version of MaxFlow-MCMC (MaxFlow-MCMC1)
showed a speedup of 65x on average, and the fastest version
(MaxFlow-MCMC2) showed a speedup of 130x on average.

7 Conclusion
We design a Markov Chain to sample integer max flow so-
lutions for a planar graph. We used it to build an urban
traffic routing policy that prevents the concentration of pol-
lution. Since MCMC algorithms are very efficient, we are
able to scale our experiments to large cities. We believe that
the sampling method for integer max flows can be of in-
dependent interest in solving other combinatorial optimiza-
tion problems. For future work, the policy can be expanded
to non-planar graphs since real-world maps can contain fly-
overs and traffic between multiple sources and destinations.
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