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Abstract

In this paper, we study a daycare matching problem in Japan
and report the design and implementation of a new central-
ized algorithm. There are two features that make this market
different from the classical hospital-doctor matching prob-
lem: i) some children are initially enrolled and prefer to be
transferred to other daycare centers; ii) one family may be as-
sociated with two or more children and is allowed to submit
preferences over combinations of daycare centers. We revisit
some well-studied properties including individual rationality,
non-wastefulness, as well as stability, and generalize them to
this new setting. We design an algorithm based on integer
programming (IP) that captures these properties and conduct
experiments on five real-life data sets provided by three mu-
nicipalities. Experimental results show that i) our algorithm
performs at least as well as currently used methods in terms
of numbers of matched children and blocking coalition; ii)
we can find a stable outcome for all instances, although the
existence of such an outcome is not guaranteed in theory.

Introduction
Due to a high demand for daycare services and an increas-
ing number of mothers in the workforce, a large number of
children are placed on a waiting list each year in Japan, espe-
cially in the metropolitan area. The shortage of daycare fa-
cilities has become one of the most serious social issues. The
Japanese Government provides daycare centers with subsi-
dies to relieve the financial burden of early childhood edu-
cation. Currently, kindergartens and daycare centers are free
of charge for children of age from 3 to 5 and fees are de-
ducted for children younger than 3 years old. Although the
national number of children on the waiting list dropped dra-
matically to 5634 in April 2021 from the peak over 26000
a few years ago, the government is still concerned about the
situation after the COVID-19 pandemic.

The allocation of children to daycare centers in Japan is
not based on a first-come, first-served basis. Families with
several children first report to their local municipality their
preferences over combinations of daycare centers and the
municipality then generates a priority ordering over chil-
dren based on its own scoring system. Children from low-
income households and single-parent families, as well as
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those whose guardians are suffering from diseases or disabil-
ities, usually take precedence over others. Nearly all slots are
assigned at the beginning of April each year via a central-
ized algorithm that takes into consideration of both families’
preferences and priorities over children.

The existence of siblings makes this problem resemble
hospital-doctor matching with couples in which a couple of
doctors participates in the job market and submits a joint
preference over pairs of hospitals (Roth 1984). Two obvious
distinctions are that some children may be initially enrolled
and one family may have more than two children. A recent
work studies school choice in Chile where both transfers and
siblings are considered (Correa et al. 2022). However, they
assume families have restrictive higher-first preferences (i.e.
families prioritize the assignment of their children in higher
grades), while in the Japanese daycare matching problem
families can submit their preferences over any possible com-
bination of daycare centers.

We are actively collaborating with several municipalities
and our objective is to design transparent matching algo-
rithms that compute desirable outcomes efficiently. A fun-
damental question is which properties are deemed suitable
and appropriate for this setting. Stability is a standard solu-
tion concept for two-sided matching problems and has been
widely applied in practice (Roth 2008). It is often decom-
posed into individual rationality, non-wastefulness, and fair-
ness in the literature on school choice (Abdulkadiroğlu and
Sönmez 2003). We carefully generalize these properties to
meet the expectations of municipalities and design a cen-
tralized algorithm to achieve them.

We summarize our contributions below:
• Our first contribution is to formalize a realistic model of

the daycare matching market in Japan based on real-life
data sets. To our best knowledge, we are the first to study
a two-sided matching problem in which i) children may
have their initial enrollment and ii) two or more siblings
can submit a joint preference over any possible combi-
nation of daycare centers. We compare our model with
several representative papers in Table 1 and discuss more
papers in the section on related work.

• We generalize some well-studied concepts including in-
dividual rationality, non-wastefulness, and stability by
taking the initial enrollment and siblings’ joint prefer-
ences into account. We adapt these concepts based on the
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requirements of municipalities; children’s welfare is con-
sidered more important than daycares’. One subtle differ-
ence from previous definitions is that children can make
use of other siblings’ assignments when forming a block-
ing coalition.

• We develop and implement an algorithm based on integer
programming (IP) to capture these new properties1. We
evaluate the performance of our new algorithm through
experiments on several real-life data sets. Experimen-
tal results show that the outcomes returned by our al-
gorithm are at least as good as the ones yielded by the
currently applied methods (some of which are computed
by an undisclosed and commercial software package2).
Another surprising result is that we can find a stable out-
come for all instances, although the existence of such an
outcome is not guaranteed in theory.

Related Work
We next give a brief description of related work (a more
detailed literature review is presented in Appendix3). Two
previous works on the Japanese daycare matching problem
study flexible quotas instead of hard quotas and do not con-
sider transfers and siblings (Okumura 2019; Kamada and
Kojima 2019). There exists rich literature on hospital-doctor
matching with couples (Kojima, Pathak, and Roth 2013;
Biró, Manlove, and McBride 2014; Manlove, McBride, and
Trimble 2017; Nguyen and Vohra 2018), which is differ-
ent from our setting as described in Introduction. Dur, Mor-
rill, and Phan (2022), as well as Correa et al. (2022), con-
sider school choice with siblings under the assumption of
restrictive families’ preferences. Hamada et al. (2017) and
Suzuki, Tamura, and Yokoo (2018) study school choice with
initial enrollment without siblings. The problem of refugee
reallocation also deals with families instead of individu-
als (Delacrétaz, Kominers, and Teytelboym 2016; Aziz et al.
2018), but family members are inseparable and they do not
submit preferences over combinations of localities.

Model
In this section, we introduce the model of daycare matching
in Japan based on real-life data sets. An instance I consists
of a tuple I = (C,F,D,G, ω,≻C ,≻F ,≻D, q). There are a
set of children C, a set of families F , and a set of daycares
D. Each child c pertains to one family f ∈ F and each
family f is associated with a set of children Cf ⊆ C.

The set of children C is partitioned into disjoint families
s.t. i)

⋃
f∈F Cf = C; ii) for any two different families f

and f ′, Cf ∩ Cf ′ = ∅. When Cf consists of one child, i.e.
Cf = {c}, we say child c is an only child of family f . When
Cf consists of several children, i.e. Cf = {c1, . . . , ck} with
k ≥ 2, we say children c1, . . . , ck are siblings of family f .

1Our trial matching system is currently being tested by one mu-
nicipality in the Tokyo metropolis which is interested in deploying
our new algorithm.

2https://www.fujitsu.com/global/about/resources/news/press-
releases/2018/1112-01.html

3https://arxiv.org/abs/2212.02751

Each child c belongs to one of the grades G and let G(c)
denote the grade of child c. Note that siblings from the same
family may belong to the same grade, e.g., twins.

The set of daycares is denoted as D. Let d0 ∈ D de-
note a dummy daycare representing the option of being un-
matched for children. Some children are initially enrolled at
some daycare d ∈ D \ {d0} and prefer to be transferred to
a new one. Let ω(c) ∈ D denote the initial daycare of child
c. If ω(c) = d0, then child c is not initially enrolled (i.e. a
new applicant). We generalize the notion of ω(c) to ω(f) as
follows: given a family f with children Cf = {c1, . . . , ck},
let ω(f) = (ω(c1), . . . , ω(ck)) denote the initial enrollment
of each child from Cf .

There are two types of preference orderings collected in
the centralized matching system. Each child c has a strict in-
dividual preference ordering ≻c over daycares D. We say
daycare d is acceptable to child c if either it is strictly better
than child c’s initial enrollment, i.e., d ≻c ω(c) or it is the
same as child c’s initial enrollment, i.e., d = ω(c). Only ac-
ceptable daycares are listed in ≻c and the dummy daycare
d0 is omitted if child c does not have initial enrollment.

Each family f with k children Cf = {c1, . . . , ck} where
k ≥ 2 also has a strict family preference ordering ≻f over a
tuple of k daycare centers Dk, i.e., a joint preference order-
ing of children Cf . Here a tuple of daycares (d1, . . . , dk) ∈
Dk means that for each integer i ∈ {1, . . . , k}, the i-th child
ci ∈ Cf attends the i-th daycare in the tuple.

During the application phase, if one family’s preference
type falls into one of predefined categories (e.g., all children
must be assigned to the same daycare), then the family just
submits its children’s individual preference orderings and
specifies its preference type. Then the system automatically
generates a family preference ordering. Otherwise, the fam-
ily needs to fill out its complete preference ordering on its
own, which is common in practice.

In Japan, each municipality has its own scoring system to
calculate children’s priority scores. Factors depend on fami-
lies’ circumstances, such as parents’ employment and health
status. Siblings from the same family usually have an iden-
tical priority score, although in some cases one sibling may
be given additional scores due to some characteristics, e.g.,
disability. In order to derive a strict priority ordering over
all children, some small fractions are added for tie-breaking
(based on some complex rules).

Each daycare also derives a strict priority ordering from
children’s priority scores. However, daycares may give ad-
ditional points to some children. For example, if a child has
a sibling who is currently enrolled at some daycare, then the
child receives extra points for that daycare. Note that this
is different from the case in other countries where a child is
given the highest daycare priority if the child has an enrolled
sibling at that daycare (Correa et al. 2022; Dur, Morrill, and
Phan 2022). Another important feature is that if some child
c is initially enrolled at daycare d, then child c has higher
daycare priority at daycare d than those who are not. Each
daycare d has a strict preference ordering ≻d over C ∪ {∅},
where ∅ represents the option of leaving some seats vacant.

The Japanese government imposes two types of feasibil-
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transfer siblings general
2 ≥ 2 preferences

(Biró, Manlove, and McBride 2014) ✗ ✓ ✓
(Manlove, McBride, and Trimble 2017) ✗ ✓ ✓

(Hamada et al. 2017) ✓ ✗ –
(Okumura 2019) ✗ ✗ –

(Kamada and Kojima 2019) ✗ ✗ –
(Dur, Morrill, and Phan 2022) ✗ ✓ ✗

(Correa et al. 2022) ✓ ✓ ✗
Our work ✓ ✓ ✓

Table 1: Comparison with some existing models.

ity regulations: grade-specific minimum room space for each
child and grade-specific maximum teacher-child ratios for
each teacher. In the current matching system, each daycare
d sets a hard quota qgd for each grade g that conforms to the
two feasibility regulations in advance. Note that the target
quotas are designed for new applicants only. If some initially
enrolled child transfers to a new daycare, then one additional
seat becomes available.

For the rest of this paper, we just treat each grade g at each
daycare d as an independent daycare that only admits chil-
dren of grade g. This simplifies our description of notation
and terminology. We assume each daycare d ∈ D has its ca-
pacity limit qd. We will discuss flexible quotas that comply
with these two regulations at the end of this paper.

An outcome µ is a matching between C and D s.t. i)
each child c is matched to exactly one daycare d (which
can be d0), i.e., |µ(c)| = 1, where µ(c) denotes the day-
care to which c is matched, and ii) µ(c) = d if and only if
c ∈ µ(d), where µ(d) denotes the set of children matched to
d. An outcome is feasible if for each daycare d, |µ(d)| ≤ qd
holds. Given outcome µ and family f with children Cf =
{c1, . . . , ck}, let µ(f) = (µ(c1), . . . , µ(ck)) denote the as-
signment of family f in the outcome µ.

Fundamental Properties
We next introduce two fundamental properties by general-
izing individual rationality and non-wastefulness. Two mu-
nicipalities confirmed that they consider that any desirable
outcome should satisfy these two new properties. We dis-
cuss how to properly define stability in the next section.

Individual rationality requires that each child c is matched
to some daycare that is weakly better than child c’s initial
enrollment. Family rationality captures the same idea except
that we consider families’ preferences instead of children’s
individual preferences.

Definition 1 (Family Rationality). A feasible outcome µ sat-
isfies family rationality if for each family f , either µ(f) ≻f

ω(f) or µ(f) = ω(f) holds.

For the classical matching problem without siblings, non-
wastefulness requires that if a child is not matched to a more
preferred daycare, then the daycare does not have any va-
cant seats. Correa et al. (2022) generalize this idea to the
setting with multiple siblings; if there exists a pair of daycare
d and child c from family f s.t. family f prefers child c to be

matched with d, then daycare d must be full. The same idea
is also included in the stability concepts for matching models
with couples or siblings (Klaus and Klijn 2005, 2007; Mc-
Dermid and Manlove 2010; Dur, Morrill, and Phan 2022).

However, we argue that this generalization may not be ad-
equate. In principle, we believe non-wastefulness should im-
ply that improving the assignment of a family is not possible
without hurting other children/families, i.e., the welfare of
families must be the first priority. We illustrate our concern
through Example 1.
Example 1. Consider one family f with two children c1 and
c2 and two daycares d1 and d2 with one seat each. Both
children are acceptable to both daycares. Family f have
preferences (d1, d2) ≻f (d2, d1). Outcome µ = {(c1, d2),
(c2, d1)} is considered non-wasteful by Correa et al. (2022),
but we can obtain another outcome µ′ = {(c1, d1), (c2, d2)}
without making any child or family worse off, and it is more
preferred by family f .

Instead, we propose a new family non-wastefulness con-
cept in Definition 2 that captures the above mentioned idea.
Definition 2 (Family Non-wastefulness). A feasible out-
come µ satisfies family non-wastefulness, if there does not
exist another feasible outcome µ′ and one family f such that
i) µ′(f) ≻f µ(f) and ii) for each family f ′ ∈ F \ {f}, we
have µ′(f ′) = µ(f ′).

Definition 2 states that a feasible outcome µ is family
non-wasteful if we cannot find another feasible outcome µ′

and family f such that i) children Cf from family f can be
matched to a more preferred tuple of daycares in outcome µ′

and ii) all other families F \{f} are matched to the same tu-
ple of daycares in µ′ as in the outcome µ. When each family
f has an only child, Definition 2 becomes equivalent to the
original concept of non-wastefulness.

Stability
In this section, we generalize the original concept of sta-
bility to the setting of daycare matching with siblings and
initial enrollment. Our new stability concept implies family
non-wastefulness in Definition 2 and it is different from the
ones considered in the literature on matching with couples,
as our concept allows a child to make use of her siblings’
assignment when forming a blocking coalition.

Recall that in the classical hospital-doctor matching prob-
lem, a doctor and a hospital form a blocking pair if they are
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unmatched and prefer to be matched with each other. A fea-
sible outcome is stable if it is individually rational and there
does not exist a blocking pair (Roth 1986). In our setting, a
family expresses preferences over a tuple of daycares. Thus
we consider a blocking coalition between one family and a
set of daycares. Briefly speaking, we say a feasible outcome
is stable if there does not exist any blocking coalition. Note
that we treat family rationality as a different property. As ex-
plained in the section on Integer Programming, we capture
these properties by different constraints separately.

We next introduce a notation λ(·) to simplify the defini-
tion of blocking coalition and stability.

Definition 3 (Function λ). Given a feasible outcome µ, a
daycare d, and two subsets of children C1, C2 ⊆ C, let
λ(µ, d, C1, C2) denote the number of children who satisfy
the following three conditions: i) they are matched to day-
care d in µ, ii) they are not included in C1 and iii) they have
higher daycare priority than at least one child c ∈ C2.

We use notation λ(·) in the following way: given outcome
µ, daycare d, family f and a subset of children C∗ ⊆ Cf

who prefer to be matched to daycare d, let λ(µ, d, Cf , C
∗)

denote the number of children matched to daycare d in µ
excluding Cf who have higher daycare priority than at least
one child c ∈ C∗.

Example 2. Consider one daycare d and a set of children
C = {c1, c2, c3, c4, c5} in which children c2 and c4 are sib-
lings while others are only children. Suppose daycare d has
three seats and a priority ordering ≻d: c1, c2, c3, c4, c5. For
matching µ = {(c1, d), (c3, d), (c5, d)}, C1 = {c2, c4} and
C2 = {c4}, we have λ(µ, d, C1, C2) = |{c1, c3}| = 2. In
other words, only two children excluding C1 are matched to
daycare d who have higher daycare priority than any child
in C2 (i.e., child c4) in the outcome µ.

In order to develop a good intuition, we first confine our
attention to the real-life data sets used in our experiments
which deal with a setting where each family has at most
one pair of twins and no more than three children. We then
present a general concept of stability in Definition 9.

We next illustrate four types of blocking coalition for
this restrictive setting. Here are three reasons why we break
down Definition 9. Firstly, it is easier to describe each con-
cept and to capture each type of blocking coalition with a
corresponding IP constraint. Secondly, if we could not find
an outcome that fulfills all constraints, then we can relax
them gradually until one exists. Thirdly, the choice of con-
straints involves a trade-off between the number of matched
children and blocking coalitions, i.e., tolerating some form
of blocking coalitions may lead to an increase in the number
of matched children, as shown in our experimental results.

Definition 4 (Blocking Coalition I). Given a feasible out-
come µ, family f with an only child c and daycare d form a
blocking coalition if

• i) (d) ≻f µ(f);
• ii) λ(µ, d, {c}, {c}) ≤ qd − 1.

Definition 4 involves a family with an only child and a
daycare, corresponding to the blocking pair in the original

stability concept. Condition i) of Definition 4 states that fam-
ily f prefers daycare d to its assignment µ(f). Condition ii)
of Definition 4 states that child c can be matched to daycare
d along with all matched children who have higher priority
than child c, which contains two cases: either daycare d has
at least one vacant seat or child c can replace some matched
child c′ with lower daycare priority at daycare d.
Definition 5 (Blocking Coalition II). Given a feasible out-
come µ, family f with two children Cf = {c1, c2} of the
same age (i.e., twins) and daycare d form a blocking coali-
tion if
• i) (d, d) ≻f µ(f);
• ii) λ(µ, d, Cf , Cf ) ≤ qd − 2.

Definition 5 involves a family f with a pair of twins c1
and c2 who apply to the same daycare d. Condition ii) of
Definition 5 states that daycare d can admit children Cf as
well as all matched children who have higher priority than
either child c1 or c2.
Definition 6 (Blocking Coalition III). Given a feasible out-
come µ, family f with children Cf = {c1, . . . , ck}, and a tu-
ple of daycares (d1, . . . , dk) with k distinct daycares, family
f and daycares d1, . . . , dk form a blocking coalition if
• i) (d1, . . . , dk) ≻f µ(f);
• ii) ∀di ∈ (d1, . . . , dk), λ(µ, di, Cf , {ci}) ≤ qdi − 1.

Definition 6 involves a family f with k children {c1, . . .,
ck} who apply to k distinct daycares (d1, . . ., dk). Condi-
tion ii) of Definition 6 states that for each daycare di from
the tuple of daycares (d1, . . ., dk), daycare di can admit the
corresponding child ci from Cf and all matched children
(excluding other siblings from Cf ) who have higher priority
than child ci.
Definition 7 (Blocking Coalition IV). Given a feasible out-
come µ, family f with children Cf = {c1, c2, c3} and a tuple
of daycares (d1, d1, d2) with d1 ̸= d2

4 , family f and day-
cares d1 and d2 form a blocking coalition if
• i) (d1, d1, d2) ≻f µ(f);
• ii) For daycare d1, λ(µ, d1, Cf , {c1, c2}) ≤ qd1 − 2 and

for daycare d2, λ(µ, d2, Cf , {c3}) ≤ qd2 − 1.
Definition 7 involves family f with a pair of twins apply-

ing to the same daycare d1 and another sibling applying to
a different daycare d2. Condition ii) of Definition 7 states
that daycare d1 can admit children c1 and c2 as well as all
matched children (excluding Cf ) who have higher priority
than either c1 or c2, and daycare d2 can admit child c3 along
with all matched children (excluding Cf ) who have higher
priority than child c3.

We next present the general concept of stability without
imposing any limitation on the number of siblings or twins.
Prior to that, we first introduce a new concept called demand
table in Definition 8.
Definition 8 (Demand Table). Given a family f and a tuple
of daycares (d1, . . . , dk) in family preference ≻f , demand
table T = {(d1 : C1), . . ., (dk′ : Ck′)} is given as follows:

4Here we assume if a family has three children including one
pair of twins, c1 and c2 are twins and c3 is another child.
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for each distinct daycare d in (d1, . . . , dk), add an entry in
the form of (d : {c′1, c′2, . . .}) where c′1, c

′
2, . . . are a subset

of children from Cf who apply to daycare d w.r.t. the tuple
(d1, . . . , dk).
Example 3 (Instance of Demand Table). Consider one fam-
ily f with children Cf = {c1, c2, c3} and a tuple of daycares
(d1, d1, d2) in the family preference ordering ≻f . The corre-
sponding demand table T is {(d1 : {c1, c2}), (d2 : {c3})}.
Definition 9 (Stability). Given a feasible outcome µ, family
f with children Cf = {c1, . . . , ck} and a tuple of daycares
(d1, . . . , dk), family f and all distinct daycares in the tuple
(d1, . . . , dk) form a blocking coalition if
• i) (d1, . . . , dk) ≻f µ(f) and
• ii) let T = {(d1 : C1), . . . , (dk′ : Ck′)} denote the de-

mand table w.r.t. (d1, . . . , dk), then for each pair of day-
care d and Cd in T , we have

λ(µ, d, Cf , Cd) ≤ qd − |Cd|.
A feasible outcome µ is stable if there does not exist any
blocking coalition.

We next prove that there may not exist any stable outcome
in general. However, in our experiments using real-life data
sets, we found that a stable outcome exists for all instances.
Theorem 1. The set of stable outcomes may be empty even
if there are only four children and two daycares.

Proof. We prove Theorem 1 through the following counter-
example. Consider three families f1 with two children
Cf1 = {c1, c2}, f2 with one child Cf2 = {c3}, f3 with
one child Cf3 = {c4}, and two daycares d1 with 2 seats and
d2 with 1 seat. The preference and priority profiles are as
follows:

≻f1 : (d1, d1), ≻f2 : (d2), (d1) ≻f3 : (d1), (d2)

≻d1 : c1, c3, c2, c4 ≻d2 : c4, c3

There are five feasible and family rational outcomes to
which we cannot add any more children without violating
feasibility. We next show that none of them satisfies stability.

• For outcome µ1 = {(c1, d1), (c2, d1), (c3, d2)}, family
f3 can form a blocking coalition with daycare d2, as
λ(µ1, d2, {c4}, {c4}) = 0 ≤ qd2

− 1. In other words, no
child matched to daycare d2 in µ1 has a higher daycare
priority than child c4.

• For outcome µ2 = {(c1, d1), (c2, d1), (c4, d2)}, family
f2 can form a blocking coalition with daycare d1, as
λ(µ2, d1, {c3}, {c3}) = 1 ≤ qd1

− 1. In other words,
only one child, i.e., c1, who is matched to daycare d1 in
µ2, has a higher daycare priority than child c3.

• For outcome µ3 = {(c4, d1), (c3, d2)}, family f1
can form a blocking coalition with daycare d1, as
λ(µ3, d1, Cf1 , Cf1) = 0 ≤ qd1 − 2. In other words, no
child matched to daycare d1 in µ3 has a higher daycare
priority than either child c1 or c2.

• For outcome µ4 = {(c4, d1), (c3, d1)}, family f2
can form a blocking coalition with daycare d2, as
λ(µ4, d2, {c3}, {c3}) = 0 ≤ qd2

− 1. In other words, no
child matched to daycare d2 in µ4 has a higher daycare
priority than child c3.

• For outcome µ5 = {(c3, d1), (c4, d2)}, family f3
can form a blocking coalition with daycare d1, as
λ(µ5, d1, {c4}, {c4}) = 1 ≤ qd1

− 1. In other words,
only one child, i.e., c3, who is matched to daycare d1 in
µ5, has a higher daycare priority than child c4.

This completes the proof of Theorem 1.

Integer Programming
In this section, we present a practical algorithm based on
Integer Programming (IP) for the real-life data sets provided
by three municipalities where each family has no more than
three children and at most one pair of twins.

We first introduce another representation of preference or-
derings derived from family preferences used in the IP algo-
rithm. Given family f with k children Cf = {c1, . . . , ck}
and family preference ordering ≻f , a projected preference
ordering ≻f,ci of child ci ∈ Cf consists of the i-th daycare
in each tuple of daycares in ≻f . For an only child c, there
is no difference among ≻c, ≻f and ≻f,c. We next illustrate
the relationship of ≻c,≻f ,≻f,c for child c who has a sibling
through Example 4.

Example 4. Consider one family f with two children Cf =
{c1, c2} and three daycares D = {d0, d1, d2} (including a
dummy daycare d0). Suppose both children c1 and c2 have
the same individual preference ordering d1 ≻c d2.

Family f requires that either both children are enrolled at
the same daycare or if only one child can be matched, then
higher precedence is given to child c1. This rules out the
possibility that two children are enrolled at different day-
cares. The family preference ordering ≻f and the projected
preference ordering ≻f,c of each child c are as follows:

≻f : (d1, d1), (d2, d2), (d1, d0), (d2, d0), (d0, d1), (d0, d2)

≻f,c1 : d1, d2, d1, d2, d0, d0
≻f,c2 : d1, d2, d0, d0, d1, d2

As shown in Example 4, a given daycare d may appear
multiple times in the projected preference ordering ≻f,c and
the dummy daycare d0 cannot be omitted in ≻f,c if child c
has another sibling.

Given a projected preference ordering ≻f,c of child c and
a position p ∈ [1, |≻f,c|] in the range from 1 to the length
of child c’s projected preference ordering ≻f,c, let d(c, p)
denote the daycare at position p in ≻f,c and let P (c, d) =
{p : d(c, p) = d} denote the set of positions corresponding
to daycare d in ≻f,c.

We next introduce four types of binary variables used in
the IP algorithm. For each child c ∈ C and each position p ∈
[1, |≻f,c|], create a variable yc,p indicating whether child c
is matched to the p-th element in ≻f,c

5.

yc,p =

{
1 if c is matched to the p-th element in ≻f,c

0 otherwise.
(1)

5It is inaccurate to state that “child c is matched to the p-th
‘daycare’ in ≻f,c”, as the same daycare at position p may appear
multiple times in ≻f,c.
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For each child c ∈ C and each position p ∈ [1, |≻f,c|],
create a variable αc,p indicating whether child c is matched
to the r-th element in ≻f,c with r ≤ p as follows:

αc,p =

p∑
r=1

yc,r. (2)

For each child c ∈ C who has a sibling and each position
p ∈ [1, |≻f,c|], create a variable βc,p indicating whether
child c can be matched to the p-th element without modi-
fying other families’ assignment. Please note that βc,p = 1
if child c cannot be matched to the p-th element without
changing other families’ assignment, and βc,p = 0 other-
wise. There are two cases when determining the value of
βc,p. The first case is that child c from family f has a twin
ct and both children apply to the same daycare at position p,
i.e., d(c, p) = d(ct, p).

βc,p =


1 if d(c, p) admits at least

qd − 1 children except for Cf

0 otherwise.
(3)

The second case is that child c and all of her siblings apply
to different daycares at position p:

βc,p =

{
1 if d(c, p) admits qd children except for Cf

0 otherwise.
(4)

For each child c ∈ C who has a sibling and each position
p ∈ [1, |≻f,c|], create a variable γc,p indicating whether
child c can coexist with all matched children who have
higher priority than either c or his twin ct (if any). Similar to
variables β, variable γc,p = 1 means that child c cannot co-
exist with all matched children with higher priority than ei-
ther c or her twin ct (if any), and γc,p = 0 otherwise. We also
consider two cases depending on whether child c has a twin
ct who applies to the same daycare at position p. The first
case is that child c from family f has a twin ct who applies
to the same daycare at position p, i.e. d(c, p) = d(ct, p):

γc,p =


1 if d(c, p) admits at least qd − 1 children

with higher priority than c or ct except for Cf

0 otherwise.
(5)

The second case is that child c and all of her siblings apply
to different daycares:

γc,p =


1 if d(c, p) admits exactly qd children

with higher priority than c except for Cf

0 otherwise.
(6)

Recall that an outcome is feasible if i) each child c ∈ C is
matched to at most one daycare; and ii) each daycare d ∈ D
can accommodate at most qd children. We capture these two
requirements through Constraints 7 and 8, respectively.

|≻f,c|∑
p=1

yc,p ≤ 1 ∀c ∈ C (7)

∑
c∈C

∑
p∈P (c,d)

yc,p ≤ qd ∀d ∈ D (8)

As we use children’s projected preferences, we need to en-
sure that siblings must be matched to a tuple of daycares
that are located at the same position of each child’s projected
preference ordering. That is, for each family f with children
Cf = {c1, ..., ck}, for each position p ∈ [1, |≻f,c|],

yc1,p = ... = yck,p. (9)

Family rationality is guaranteed by Constraint 10 com-
bined with Constraints 9. For each child c ∈ C with ω(c) =
d ̸= d0, we have

|≻f,c|∑
p=1

yc,p = 1. (10)

Non-wastefulness
We capture non-wastefulness with the following four con-
straints.

Constraint 11 corresponds to the blocking coalition con-
cept in Definition 4 which involves families with an only
child. For each family f with an only child c and each po-
sition p ∈ [1, | ≻f,c |], let d denote the daycare at position
p,

(1− αc,p) ∗ qd ≤
∑
c′∈C

∑
p∈P (c′,d)

yc′,p (11)

Constraint 12 corresponds to the blocking coalition con-
cept in Definition 5 which involves families with a pair of
twins who apply to the same daycare. For each family f with
twins denoted by c1 and c2, as well as each position p such
that twins c1 and c2 apply to the same daycare at position p,
let c∗ denote either c1 or c2, then we have

(1− αc∗,p) ≤ βc∗,p. (12)

Constraint 13 corresponds to the blocking coalition con-
cept in Definition 6 which involves families with siblings
applying to all different daycares. For each family f with
children Cf and each position p such that siblings Cf apply
to all different daycares at position p, the following holds for
any child c ∈ Cf ,

(1− αc,p) ≤
∑

c′∈Cf

βc′,p. (13)

Constraint 14 corresponds to the blocking coalition con-
cept in Definition 7 which involves families with a pair of
twins applying to the same daycare and a third sibling apply-
ing to a different daycare. For each family f with children
Cf = {c1, c2, c3} and a tuple of daycares (d1, d1, d2) with
d1 ̸= d2 at position p in ≻f , let c∗ denote either c1 or c2,
then the following holds,

(1− αc∗,p) ≤ βc∗,p + βc3,p. (14)

Stability
We next explain how to capture stability with the follow-
ing four constraints corresponding to four types of blocking
coalitions. Constraint 15 corresponds to the blocking coali-
tion concept in Definition 4 which involves families with an
only child. For each family f with an only child c and each
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position p ∈ [1, |≻f,c|], let d denote the daycare at position
p and let C∗ ⊆ C denote a set of children who have higher
priority than child c at daycare d,

(1− αc,p) ∗ qd ≤
∑

c′∈C∗

∑
p′∈P (c′,d)

yc′,p′ . (15)

Constraint 16 corresponds to the blocking coalition con-
cept in Definition 5 which involves families with a pair of
twins who apply to the same daycare. For each family f with
twins denoted by c1 and c2, as well as each position p such
that twins c1 and c2 apply to the same daycare at position
p, let c∗ denote the child who has lower priority at daycare
d(c∗, p) between c1 and c2, then we have

(1− αc∗,p) ≤ γc∗,p. (16)

Constraint 17 corresponds to the blocking coalition con-
cept in Definition 6 which involves families with siblings
applying to all different daycares. For each family f with
children Cf and each position p such that siblings Cf apply
to all different daycares at position p, the following holds for
any child c ∈ Cf ,

(1− αc,p) ≤
∑

c′∈Cf

γc′,p. (17)

Constraint 18 corresponds to the blocking coalition con-
cept in Definition 7 which involves families with a pair of
twins applying to the same daycare and a third sibling ap-
plying to a different daycare. For each family f with chil-
dren Cf = {c1, c2, c3} and a tuple of daycares (d1, d1, d2)
with d1 ̸= d2 at position p in ≻f , let c∗ denote the child who
has lower priority at daycare d1 between c1 and c2, then the
following holds,

(1− αc∗,p) ≤ γc∗,p + γc3,p. (18)

The objective of the IP algorithm is to maximize the total
number of matched children as described in Constraint 19.
Recall that a dummy daycare d0 can be included in chil-
dren’s projected preferences, so we must remove the number
of children who are matched to daycare d0.

max
∑
c∈C

|≻f,c|∑
p=1

yc,p −
∑
c∈C

∑
p′∈P (c,d0)

yc,p′ (19)

Experiments
In this section, we evaluate the performance of our new algo-
rithm by running experiments on five real-life data sets pro-
vided by the following three municipalities. Shibuya ward is
one of the major commercial centers in Tokyo with a popu-
lation of more than 220, 000. Tama is a rural city located in
the west of the Tokyo Metropolis with a population of less
than 150, 000. Moriguchi is one of the satellite cities of the
Osaka Metropolis with a population of around 140, 000.

All experiments were conducted on a laptop with an Ap-
ple M1-Max processor and 32Gb of memory. Our IP model
was implemented via Google OR-Tools using the default
CP-SAT solver 6. For all five data sets, stable outcomes were

6https://developers.google.com/optimization

computed in no more than 2 seconds. We also run more
experiments, where we restrict IP constraints; the running
times vary from a few seconds to around 40 minutes. The
details of these experiments are presented in Appendix.

We summarize the basic information of the five data sets
in Table 2. We found three common features in these data
sets. Firstly, each family contains no more than three chil-
dren and at most one pair of twins. Secondly, around 15% of
children have siblings and more than 7% of children prefer
to transfer. Thirdly, daycares are suffering from a shortage
of seats for ages 0 and 1, but there is an excess of seats for
ages 3 and above. We give more details about the imbalance
of demand and supply by age in Appendix.

For Shibuya ward, the status quo outcome is calculated
by the commercial software package mentioned in Introduc-
tion. We have no access to the detailed implementation of
that algorithm and it is not clear whether it satisfies the desir-
able theoretical properties discussed in this paper. For Tama
city and Moriguchi city, the status quo outcome is calcu-
lated manually and it takes several government officials one
or two weeks to determine and verify the outcome.

We compare the outcomes yielded by IP and the status
quo in Table 3 and we can draw two conclusions from these
experiments: i) our IP algorithm outperforms the currently
applied methods used by Tama and Moriguchi city and per-
forms the same as the commercial algorithm for Shibuya
ward 7, ii) there always exists a stable outcome for five real-
life data sets.

Due to the confidentiality agreement with local munici-
palities, we do not have the authorization to disclose these
data sets and our codes, but we have given full description
of our IP algorithm for reproducibility purpose.

Future Work
We elaborate on several research questions that would be
beneficial for other theoretical models or applications.

Flexible Quotas One of the main objectives of Japanese
daycare matching market is to reduce (or ideally eliminate)
the number of unmatched children. A possible approach is to
establish flexible quotas instead of hard targets that comply
with two feasibility regulations imposed by the government.
As shown in two recent work (Okumura 2019; Kamada and
Kojima 2019), flexible quotas could significantly increase
the number of matched children.

However, based on the feedback from the municipalities,
there are two main reasons that flexible quotas are not em-
ployed in the current system. Firstly, daycare centers are op-
erated independently and municipalities do not have the au-
thority to interfere in their management. Secondly, children
of certain ages require specialized facilities (e.g. crawl space
for babies) and thus superfluous room for higher grades can-
not be utilized by children of age 0 or 1.

7Although our IP algorithm returned exactly the same outcome
as the status quo (i.e., the commercial software) for both Shibuya
data sets, the results can be different for other cases. For instance,
Tama also purchased the same software, but the performance was
not as good as the status quo (i.e., the manual method).
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# children in Tama Shibuya Moriguchi
the family 2021 2022 2021 2022 2021

# children – 635 550 1589 1372 915
# daycares – 33 33 72 72 54

# families
1 542 462 1331 1161 777
2 42 44 120 101 66
3 3 0 6 3 2

# families 2 3 8 14 25 9
with twins 3 3 0 4 3 1
# children 1 41 24 92 66 85
who prefer 2 20 16 41 27 10
to transfer 3 0 0 2 2 0

Table 2: Numbers of children, daycares, and families in five data sets. The second column corresponds to families with 1,2 or
3 children. For instance, the bottom row calculates the number of children who prefer to transfer from families with 1, 2, or 3
children.

Tama-21 Tama-22 Shibuya-21 Shibuya-22 Moriguchi-21
status quo IP status quo IP status quo IP status quo IP status quo IP

# matched children 558 560 464 464 1307 1307 1087 1087 669 680
# blocking coalition 42 0 2 0 0 0 0 0 116 0

family rationality ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓
family non-wastefulness ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓

Table 3: Comparison of outcomes for five data sets

We are still interested in designing algorithms under flex-
ible quotas, as it may be possible to reallocate unused room
space among children of certain ages. For example, suppose
age 0 and 1 form group 1, age from 2 to 5 form group 2 and
room space is shared between each age group.

Fairness Although experimental results on several real-
life data sets show existence of stable outcomes in practice,
there is no theoretical guarantee that there always exists a
stable outcome in general. Thus it is worth studying how to
properly define fairness concepts that are compatible with
family rationality and family non-wastefulness (or possibly
weaker concepts of non-wastefulness).

Here are several factors that need to be considered when
defining fairness: i) should a child or a family has envy to-
wards a child, a family or a set of families? ii) which pri-
ority ordering should we consider when giving precedence
to some children or families (daycares’ priorities, a common
ordering over children, a common ordering over families,
or combinations of these priority orderings)? iii) should we
confine envy to the set of children who have the same grade
only or should we allow envy across grades? iv) when some
agent a (a child or a family) has envy towards another agent
b, should the envy be deemed as justified only if there exists
a feasible outcome after agent a replaces agent b? v) can we
compute a fair outcome efficiently, e.g., in polynomial-time?

Indifferences Families are requested to submit strict pref-
erences over tuples of daycare centers. Here are two aspects
in which indifferences may be superior. Firstly, it is natural
and reasonable to assume that a family is indifferent between
some options. Secondly, allowing indifferences can increase

the number of matched children in theory. The extreme case
is that each family submits a binary preference ordering over
tuples of daycares (i.e. only acceptable tuples).

The common ordering over children and daycare priori-
ties over children are derived from priority scores and ties
occur often in the data sets. As priorities are important in
determining which children take precedence over others, it
is unclear how different choices of tie-breaking for priority
orderings affect the outcome.

Other Properties Pareto optimality is a stronger concept
than non-wastefulness, which requires that there is no other
outcome in which all agents are weakly better off and at least
one agent is strictly better off. As stability and Pareto opti-
mality are generally incompatible for two-sided matching
problems (Roth 1984), we have to give up one of them when
designing algorithms. Although it is not the main concern of
this work, it is interesting to consider i) whether there ex-
ists a Pareto optimal outcome that also satisfies some other
properties; ii) whether it promotes the welfare of children.

Strategy-proofness is an important property in mechanism
design and has been extensively studied in matching mar-
kets. Although it may be impossible to design algorithms
that achieve strategy-proofness and other desirable proper-
ties for the daycare matching problem, we want to figure out
to what extent families are willing to manipulate their strate-
gies (i.e. misreporting their true preferences) in practice.
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